A Investigation of the Chapel Parallelisation
of the Singular Value Decomposition

Damian G McGuckin
Pacific ESI

Glebe NSWAustralia

damianm@esi.com.au

Peter L Harding
PerformlQ
Caulfieldsouth VIC, Australia

plh@performig.com

Donald E K Carpenter
Rcific ESI
Tallai QLD, Australia
donc@esi.com.au

Keywords: Paallel Programming, Chapel Language, Numerical Linear Algebra, Singular Value Decomposition

ABSTRACT

This paper discusses the parallelisation (using the
programming language Chapel) of one of the most often used
algorithms for the Singularalue Decomposition of a matrix.
The mathematical alterations and programming constructs
used to achiee that parallelisation are examined at length.
Performance and validation tests showing the increased
parallel performance that occurs when run on a multi-core
computer architecture are documentehapels <rial
performance is compared against that of Fortran that
implements the original algorithm. Only parallelisation in a
Symmetric Multi-Processor environment is explored.

1. Introduction

During research into the mathematics behind aaded
engineering software tools,\v&eal linear algebra algorithms
were implemented in Chapel, a programming language
designed for produsté parallel computing at scale [1]The
parallelisation and implementation of one of those algorithms,
which together are calld@tie exerciseis dscussed herein.

Five decades ago, Golub and and Reinsch published
their algorithm for the Singular Value Decomposition (SVD)
of a rectangulam x n matrix written using the programming
language Algol60 [2].That algorithm, calledhe classical
SVD herein, is a clear and concise expression of the
underlying mathematics. It has been the basis of other near
clones or slight variants, the most significant of whiels the
implementation written in éttran IV later that same decade
as a component of the LIKEK [3] toolkit.

As an algorithm that was both compute-inteasind
mathematically comple the classical SVD was deemed to be
an «cellent candidate from which to learnvinto parallelise
other linear algebra algorithms and program them in Chapel.
Alternative S/D algorithms with improed performance or
accuray (or both) that hee gpeared since the late 1980s
were rejected as candidates becausg wmuld hae alded
nothing to the weerall learning experience.

The eercise is not really about computing the SVD
because Chapel can do this today with its iat&fto the
Fortran LAPACK [4] toolkit. The SVD is simply thexample
with which to illustrate hew Chapel can help facilitate the
parallelisation of a linear algebra algorithm.

What follows assumes that the reader has some
familiarity with the Chapel language, the programming of
numerical linear algebra, and floating point computations.

Pacific ESI

2. Objectives and Constraints

Rather than its programming, it is the mathematics behind an
linear algebra algorithm that dominatespigsallelisation and
implementation. Soknowing how to craft that mathematics
will be crucial to achieving a production-grade algorithm.
That information, showing the use of Chapefarallel
processing and generic programming features, is the sole
objective and output of this xercise.

Various constraints were placed on thereise, drven
by the context in which it was being done:

a. theaccuracyof the results would not be sacrificed for
the algorithms performance, i.e. its elapsed run-time;

b. the readability of the Chapel code ould at least
match that of the Algol60 used in the original; and

c. theserial performance of the implementation should
be competitie with that of either Fortran or C/C++.

Only parallelisation in a Symmetric Multi-Processor (SMP)
ervironment, i.e. on a single computer system or what Chapel
calls onelocale is explored. Ary parallelisation in a
Distributed Multi-Processor eironment is ignored by
design, or more correctlpy project scope (and budget).

3. Chapel Overview

Chapel is a programming language thatilitates the clear
expression of algorithms for computational mathematids.
achieves this by prariding features that ale a high level of
abstraction.

Chapel provides ylicit data-parallel constructs (the
forall -expression and thiorall -statement) and sgeral idioms
that support data parallelism implicitly (reductions and scans,
whole-array assignment and arithmetic, and function and
operator promotion). It also providespdicit task-parallel
constructs, theébegin, cobegin and coforall. The last tvo
sentences are far too brief to do justice to their content.

The implementation uses marof the data parallel
features, including the compact form of tieeall statement,
but none of the task parallel features.

Chapels underlying support for cleaeasy-to-read and
powerful generic programmingand polymorphism was used
to ensure that the code works for botlal(32) andreal(64)
floating point types.As Chapel seeks to support processors
with hardware implementations of floating point types such as
real(16) andreal(128) by introducing them into the language

March 2021

CHIUW-2021

in the near future, that same code should work unchanged.

Chapels aility to expressarray opeationsconcisely is
particular interesting in a linear algebra cahteOneexample
of this is the concept ofsubmatrix Consider the declaration
of anm x n two-dimensional (2D) array (or matri¥):

var Z:[1..m, 1.n]real(64)

Chapel can be used to do thingselikoncisely reference
respectiely a submatrix ofZ or male a opy of the entirety
of one of its columns using the concept of an array slice as:

ref Zremainder
const Zcolumnj

Ji..m,j..n]; // no opy invdved
Z[.., k]; /I make a ©py of a mlumn

While such slicing has anverhead, its judicious use in the
Chapel implementation of the classical SVD algorithnvedo
that this @erhead was minimal and the clarity ofpeession
that it provided was most welcome.

Numeroushasic linear al@bra procedureswere written
for this eercise to support fundamental one-dimensional (1D)
array operations.Their use helped tovaid the slowness of
some whole-array arithmetic operations which were less than
performant due to Chapel not supportirectorisation at the
time. Asan interim measure to enhance their performance,
limited manual loop unrolling as done within some of these
routines, but only where this pretd to be avantageous.

An additional routine written for thisxercise was the
owverloaded functioncmplx which asoided the need to use
type casting when constructingcamplex2w) number from
arguments wherav is the width in bits of the floating point
numbers which comprise the real and imaginary components
of the return wlue of that function. This utility function
accepts as argument(s), omeal(w) number or two real(w)
numbers, or onémag(w) number or even a wple of two
real(w) numbers. lItprovides slightly more comprehensi
functionality than that of the intrinsic function of the same
name that has beewailable to Fortran users for decades.

4. Array Storage Schemes

Any parallelisation must ensure data locality when handling
2D arrays within a linear algebra algorithm so that it
maximises hits (or minimises misses) on a computational
processos cache during memory access [5]. This access and
hence locality is in turn intricately liekl to the arrangement
of those arrays within memory.

Fortran, the language which still casts a giant shado
over mathematical software programmingee today uses a
column-major array storage scheme. Algorithms that are
implemented in Fortran process arrays column-by-column to
ensure that data that is next to be processed is closeefor e
adjacent) to data that has just been process€his
maximises the cache hit# very long list of linear algebra
algorithms hee been (and are being) written to access and
process data in this wayncluding the classical SVD.

Chapel on the other hand, usesoa-major storage
scheme (by default) for its arrays, juseli€/C++ and Rscal.
Algorithms that are to be implemented in Chapel should
process arrays weby-row to maximise those same cache hits,
not the arrangement for algorithms previously written to suit
Fortran. Thiswill mean that those algorithms had to be
reformulated, a task that mel to be he major challenge of
this exercise!

Pacific ESI

Rirallelisation of the SVD in Chapel

Version 1.1

5. Algorithm Overview

The SVD decomposition of a real x n rectangular matriXA
computes the rectangulaguare and diagonal matrices V,
andX such that

As=UZVT (1a)
where

> =diag(oy, 05, -+, 0y) (1b)
and

utu=viv=w" =| (1c)

Three floating point inteng cde sgments ma& up he
original 1970 Algol60 algorithm:

a. Areduction (using Householder reflections) &f to
its bi-diagonal formz’ whose respeate dagonal and
off-diagonal elements ang, ande, at columnk and
wheree; = 0;

b. Anaccumulation of those same reflections to form an
estimate oV, andU; and

c. An iteratve diagonalisation (using an initially
shifted QR stratgyy) of Z' that isolates the diagonal
o by eliminating the dfdiagonale, by transforming
3’ such thak, = 0 which implieswy = gy;

after which theoy are sorted into descending order and the
column ordering ot) andV adjusted appropriately to match.

From an abstract perspei most of the floating point
operations seen during the reduction (with reflections) and
accumulation (of those reflections) are just the matrix
operations:

Z += xxy'
y i=Zx%xX
y :=ZT xx

)

wherex andy are intermediate vectors addrefers to the an
of the matricesA, U orV (or submatrix thereof).

The only dominant floating point operation seen during
the iteratve dagonalisation is the application of @hs
rotation matrices to pairs of columns withinandV. During
this diagonalisation, an iteredi process is used to isolate (in
turn), thek'th dngular \alue, kO1..n. Each pass of wery
such iteratie pocess identifies the colump closest tok
(2= j <k) wherew;_; is small. This defines the submatrix
2'[j..k, j..K] through which the algorithm wilthase zeros
by applying a mix of multiple Gens rotations, in factk(— j)
of them, to adjacent voand column pairs oE'. That Gvens
rotation mix is then also applied conseedii to two-column
submatrices dJ[1..m, j..k]andV[1..n,j..k], i.e.

Uim,iivt *= G(6)
Vin,iivt *=GW)

whereG(6;) and G(y;) are compact Giens rotation matrices,

@)

- _ Urcos@) -sin@)U
@) = B+sin(9i) +cos@)D

Uk cosg;) -—sin;) U @
W) = Bising) +cost)

6, andy; are the rotation angles applied to columnsk of
respectiely U andV, andiO[j, k —1].

March 2021

CHIUW-2021

Either two-column matrix that appears on the left hand
side of EqQ.3 is problematic. Accessing data in that matrix will
likely cause serious cache misses because its components
come from columns of Chapel 2D arralsandV, stored in
row-major order Also, with just tvo columns in that matrix,
it will not be large enough to see much performanai g
from parallelisation.Quite clearly there is no future from the
perspectie d parallelisation for Eq.3 as it stands and the
underlying mathematics must be reformulatéd. least one
such example of this exists [6],utb that approach as
discarded because of its complexity.

Of later interest to this discussion is tlaetfthat if each
column of those ter column submatrices is treated separately
then Eq.3 can be written in complgpace as

Uim,ivt +Urim il x=G(&)
Vin,is1 +Vin ii x=Gw)

whereG°(8,) and G.(;) are comple compact forms of the
Givens rotations of Eq.4 defined in compkpace as

()

G(8) = cos@,) +sin(g;) i = cmplx(cos@,), sin@;))
G®(¢1) = cosg) +sin@) i = cmplx(cos@), sin))
with cmplx being the Chapel function mentioned in §3.

(6)

6.

Refinements and enhancements must be applied to the
algorithm of the classical SVD to yield a parallel Chapel
implementation. Thesmainly relate to data locality issues,
accuray, and importantly how Givens rotations are applied.

Implementation Considerations

6.1 Achieving Data Locality Implicitly

The first technique that helps aclgechta locality is optimal
memory access when reduciAgo its bi-diagonal form (with
Householder reflections) and accumulating those reflections
onU andV. The intensie mmputations identified in Eq.3
are an outer product and dwnatrix-vector product &riants.
The library routinedot was rejected for these tasks because of
obsered poor performanceWith the projecs sope not
extending to iwestigating this problem (and rectifying it), the
code snippets shown belavere used, explained assuming a
matrix Z[?zD] of some typeR, and two vectors,x[?xD] and
y[?yD] of the same type. Unless explicitly noted in these
snippets, the quest for performance did not exploit loop
unrolling, this being relgeted to a future impneement.

6.1.1 \ector Outer Product This operation is
Z += xxy'

It can be parallelised in an cache-friendly fashion as:
[(r,QinzD]Z[r, c] +=Xr] * y[c];

No loop unrolling has been attempted.

6.1.2 Matrix-Vector Product | This operation is
y=2Zx%xx

It can be parallelised in a row-major fashion as:

const(rows, columns) = zD.dims();
consty = [rin rows] inner(columns, Z][r.], X);

where theinner routine is currently a 4-way unrolled (serial)
inner productinline procedure which is noteactorised. An
unroll beyond a 4-way was found to be counterprodecti

Paific ESI

Rirallelisation of the SVD in Chapel

Version 1.1

6.1.3 Matrix-Vector Product Il This operation is
x=2Z"xy
There are serious cache misses in a parallelisation like:

const(rows, columns) = zD.dims();
constx = [cin columns] inner(rows, Z|.., c], y);

Rewriting this to access memory in awgnajor fashion
demands the use of a pseudo partial-reduction, an alternati
which is fractionally less (but still sufficiently) accurate

var y : [j in columns] O:R;

[(r, © in zD with (+ reducey)] y[c] += x[r] * Z[r, c];
Again, no loop unrolling has been attempted.
6.2 Achieving Data Locality Explicitly

The second technique that helps aghieata locality is the
judicious use of a cached gopf data that is referenced more
than once within a single pass of a loop. In particular,

a. atthei'th g¢age of the bhi-diagonalisation, an easily
cached local cgpis made of tha’th diagonal column
of A and used during that stage, and

b. & thei'th gage of the left accumulation dd, an

easily cached local cggs made of that same column
from (a), and used during that stage.

Doing this, as opposed to working withref-erence to that
column, can often dramatically impm the cache hit rate and
hence the algorithra’performance.

The abee gproaches mitigte the cache miss rate
problem. Thememory penalty during the algorithm totals an
additionalm + n floating point numbers, a smaN@head for
better algorithm performanceThese unit-stride copies are
also a pre-requirement for vectorisation to occur.

6.3 Applying Givens Rotations

A Chapel implementation of the first line of the algebra in
Eq.5 for eery i rotations within one iteration pass during the
iteratve dagonalisation stage is shown in Fig. 1. It demands
that every G°(8,) associated with that iteration has been
captured in @omplex2w) 1D array called (sayt[j. . k].

foriinj..k-1do
constgti = gt[i];
for rin rowsdo
{ constug = cmplx(U[r i+1], U[r, i]) * gti;
) (U[r, i+1], U[r, i]) = (ug.re, ug.im);
}

Figure 1 Serial Gvens Rotation - Simple Version

With a recursie relationship between successi®lumns
beyond the second in Fig.1, there is no independence between
the columns at the outer loop making its parallelisation
impossible. Theoverheads of working with the inner loop in
parallel is horrendous so its parallelisation is impractical from
ary perspectie. Deeper inspection st that the operations
within each rav are independent of the operations ofyan
other ravs. Thoserows are nw obvious candidates for
parallelisation and there are certainly more than enough
computations per v to make that parallelisation arthwhile.

March 2021

CHIUW-2021

Reversing the order of thdor loops in Fig.1 reeals an
algorithm nariant with the elements of each inner loop
independent of each other which can be parallelised. Each of
these can run in parallel by just replacing the outside loop
with aforall. The (now) parallel Chapel implementation of
the algebra of that first line in Eqg.5 is shown in Fig.2.

forall rin rowsdo // feasible as eachwois independent
foriinj.. k-1do
constugt = cmplx(U[r i+1], U[r, i]) * ot[i];
) (U[r, i+1], U[r, i]) = (ugt.re, ugt.im);
}

Figure 2 Paallel Givens Rotation - Simple Version

Testing shaved that the complenumber arithmetic ran much
slower than a longhandevsion using real number arithmetic,
probably caused by the Chapel compiler being understandably
conscious about its accugac It would handle compie
arithmetic by subroutine calls that do complfeimber range
reduction to woid overflow and underflow. These tw
floating point exceptions are most unlikely because the sum of
the squares of the elements ®f(6,) will always equate to

1.0. On that basis, a longhandession of the comple
arithmetic of Fig.2 was used in the production algorithm.

Further testing neealed a rgister stall in the (recunss)
inner loop of Fig.2. The loop was unrolled to force more
computations into each pass through this lodpis seemed
to minimise the impact of this stall on the performance of the
code. Thismeant that nws had to be processed in tiles,
suitably handling an remainder when the number ofw®
was ot an exact multiple of the tile siz&iling two rows at a
time reduced the impact of the stall, four rows at a time more
so, but tiling of more than four rows at a time resulted in too
mary cache misses forven medium sized matricesSo, the
production version uses founwdiles.

The code in Fig.2 ws programmed as a generic Chapel
inline proc with longhand arithmetic. This as then able to
be re-used for the second line in Eq.5 which applies a related
(but different) complg compact Giens rotations, namely
G°(y), to submatrices of .

6.4 Miscellaneous

In the classical SVD implementation, one loop fatoan
index from n down to 1 and eecutes the loop only if the
element of an arrag[l..n] at that ind& is not negligible
when compared to the norm of the bi-diagonal mattix.
relies on asentinel \alue of e[1] always being zero (0.0) so
that it never executes (but instead exits) the loop when that
index is one (1). The Chapel code does not rely on the
sentinel value and explicitly tests the irda each iteration.
The impact on the run time was shown to be negligible.

Within the classical SVD, there aredwlaces during
the iteratve dagonalisation where there is a risk di@ating
point exception occurring during the computations of the
explicitly-calculated initial shift or the implicitly-calculated
Givens rotation matricesThis is due to some elementsXf
being almost zero. Some simple scaling techniques that help
avdd such problems e keen included within this Chapel
implementation. Ishould be noted that the approach used is
only an interim measureniting a solution using techniques

Paific ESI -4 -

Rirallelisation of the SVD in Chapel

Version 1.1

and methods from an updated BLAS approach [7] and the
Chapel IEEE754 module [8].

7. Performance Measurement

The ideal parallelisation hadg the run-time if the number of
central processor unit (CPU) cor€son which to run the
algorithm are doubled; and hab that run-time again if the
number of CPU cores are doubled for a second tifrtas
direct proportionalityspeedugcan be expressed as:

R
Re

where the run-time of the code in parallel mode wBaores
are used iRc, and the run-time of the code in serial mode
when only one core is usedRs.

=C ()

Any parallelisation is unlikly to be the ideal of Eq.7.
The real world relationship is bettexpgessed as a function
along the lines of

Ry
5= = S(C)
Re
The termS(C) is thespeedup When it is a damped variant of
a linear function, its most common form, it is a measure of
how closely a parallel algorithm delrs on that ideal of
direct proportionality.

(8)

8. Numerical Experiments

To ensure consisteyc with the original reference [2],
numerical &periments were run on the dwnost extreme of

its three (explicitly chosen ditult) validation casesFurther
experiments were run on one of these test cases tadpro
performance data to measure thefedfveness of the
parallelisation. Allof the experiments quoted herein were run
on a dual Intel Xeon E5-2650v4 system with 8 memory
channels and 24 computational cores so that no more than
three cores shared one such channel at peak core usage.

The first test case is the specific (small Bmatrix A
defined as:

F22 +10 +2 +3 +70
E+14 +7 +10 +0 +8 g
g-1 +13 -1 -11 +3Q
0-3 -2 +13 -2 +40
A= 9
049 48 41 -2 +47 ®)
O+9 +1 -7 +5 -10
Oy — + +5 +10
D2 6 6 45 417
Ogt4 45 +0 -2 +2Q

The second test case is the gen&ie N matrix A whose
elementsy; are defined as:

go ifi>]
O1ifi<j
0

Performance data from experiments with Eq.10 run for a mix
of matrix sizesN [[2400, 3200, 4000and actie coresC
where C[4, 8, .. Chad @nd Cay is the total number of
cores on the system was used valeate the speedupThe
independent and dependent experimental variables during
these performance tests were respelgtithe number of cores

on which each experimentas run and the elapsed time of

March 2021

CHIUW-2021

each &periment. Thevalue of N was chosen large enough
that the run-time start-upverhead was an insignificant part of
the elapsed (or run) time of each experiment in the sequence.

To ensure that onlyC cores would be used for data
parallelisation, theonfig constant definition

--dataParTasksPerLocaleC

was gven as a ommand-line option to the Chapedeeutable
to control the number of tasks used for data parallelisation.

The serial performance of the algorithnaswneeded to
provide a baseline elapsed running time for when each test
case vas not parallelised. Such serialisation was aedidy
calling the algorithm from within aerial block and using

--dataParTasksPerLocale1
on the command line for consistgrwecauseC = 1.
8.1 Software Ratform

All numerical experiments were run witlkergsion 1.22.0 of the
Chapel compilerchpl, with a gcc (version 4.8.5) back-end.
The Chapel compiler options used were:

chpl --fast --ieee-float

The second option wisely demands that the compiler not
violate the IEEE 754 Standard [9] in the code it produced.

8.2 AccuracyVerification

The SVD decomposition of the x n matrix A of Eq.1a can
be verified by comparing that sar@gainst them x n matrix
productA’ of those decomposed parts, i.e.

A=UZzZVT (12)

From Eq.11, the worst relaé eror in ary element of A" is
the scaled wrst case in th&@o-norm JA of the matrix of
relatve erors between elements 6f and A, aj anday, i.e.

1

_1 . 0ogh o

0A=—xl-—nU0i,j O1.N,1..N
N g &g

Where somen; was zero, the relatie gror A in Eq.12 vas

replaced by its absolute counterpart. The scaling by the

reciprocal ofN tries to remue the effect of the error from the

computation of Eq.11 itself which has an error Nfx ¢

(wheree is the machine precision).

(12)

9. Discussion

The real (or elapsed or run) timdR: for the \arious
experimental cases etal(64) precision are gen in Table 1.

Cores | N=2400 N= 3200 N= 4000
C R-(sec3 Rc(secs Rc(secs

1 50.6480 125.4140 | 247.4930

4 | 15.8240 40.3940 79.8760

8 | 11.3730 31.2230 62.9920

12 10.5180 30.0970 61.2090

16 7.3890 22.5310 47.9370

20 6.9630 18.1110 38.5160
24 7.0750 17.0310 32.2210

TABLE 1. Elapsed Times on a Xeon E5-2650-v4

The speedus(C) seen in thosex@eriments could then be
computed from eacR: using Eq.7. The results are plotted in

Pacific ESI -5-

Rirallelisation of the SVD in Chapel

Version 1.1

an un-smoothed fashion in Fig.3.

—e—N=2400

N=3200 N=4000

S(C) Speedup

0 5 10 15 20 25
C (cores)

Figure 3 Speedup (S(C)) Against Cores (C) Used

The plot shws that the results parallelised well and thay the
scaled consistently with the matrix size. The speedupedsirv
largely a damped linear cuvbetween one and eight cores.
Beyond eight cores, the system no longer has one dedicated
memory channel for each task (or core) and those tasks ha
to compete for communication (or memory) bandwidth, the
speedupcurve would be expected taxkibit some change in
behaiour at this point. For the Xeon E5-2650v4 on which
the experiments lva keen run, this scenario occurs after eight
cores and that explains the kink seenvabjpst after eight
cores. Bgond that, the performance goes back to being a
damped linear cuesagan.

A simple and robusterification of the correctness and
accuray of the Chapel implementation looked at the singular
values of Eq.9 and Eq.10 from the numerical experiments and
compared them against that from the original reference [2].
For Eg.9, these actually ke exact values of:

> =[V1748 ,20 V384 , 0, 0]

Using absolute errors in the case of the last values, and
relatve @arors for the rest, the reference case wsho
calculation errors for these of:

AY =[23¢, 13¢ ,13¢ , 6¢ , 13¢]

For thereal(32) case in the Chapel implementation:
AZ =[le, 2¢,2¢, 12¢ , 12¢]

and forreal(64) case:
AY =[<1le,<1le,3¢, 8¢, 3]

The relatve arors are een smaller while the absolute errors
are comparableFor Eq.10 and the case ®f = 30 from the
original reference, the 29 rehadi erors (and one absolute
error for the smallest singular value which was close to zero)
shaved a similar to that just seen for EqSo it was accepted
that at least in the calculation of singulalues, correctness
was werified and accurgayoals were met.

A more detailed verification of correctness and
accurag looked at the results of Eq.12 with the numerical
experiments done with Eq.9 and Eq.10. In these test cases,
the scaled worst erra@0-norm JA of Eq.12 nger exceeded
O(kNe), wherek was a snall intgger, and often fractional.
This was better that the theoretical error and on this basis, it
was accepted that correctness was verified and acgweals
were met. For the size of matrices used in the original

March 2021

CHIUW-2021

reference [2], such accusads quite acceptable ven for
real(32) data. But for the size of the matricegolmed in the
numerical &periments seen earljeit is only an acceptable
accuray with real(64) data, being unreliable faeal(32)
data. Thatinaccurag for even medium-sized matrces is a
problem with the underlying algorithm, not the Chapel
implementation, and is one of the reasong wiore accurate
alternatves ae used today such as those in (say) the
LAPACK [4] toolkit.

The cunes of Fig.3 used the elapsed run-tirkg, of
Fig.1, to calculate the speedup for the SVD, a time which
includes some start-upverheadH, where H was 0.3+0.03
seconds depending on theperiment. Recalculatinghe
speedup usindR: - H (to remae that orerhead) produced
plots which lookd identical to those in Fig.3, and on that
basis, thg are not reproduced here.

10. Comparison Against Fortran

For completeness, the SVD of a 1683603 test matrix
computed by the seridsvdc.froutine from the LINRCK [3]
toolkit was compared ainst that computed by the Chapel
implementation. Thenumerical results matched and the
aveaged run times showed that

a. thisFortran LINFACK [3] toolkit implementation took
about 14.03 seconds, and

b. the Chapel implementation as discussed herein in
serial mode took about 13.36 seconds.

Those numbers clearly shothat the un-gctorised Chapel
code code is just as fast as the Fortran code, at least to an
engineering leel of accuray. These figures highlight that
when it gves itself, or is gien, a level playing field, Chapel

now competes with Fortran in terms of performanéeurther,
nothing needs to change in the Chapel code tovatlto run

mary times fasterin parallel.

For the record, the compiler usedcaswgfortran at the
same revision as that of the back-gped i.e. version 4.8.5It
was wsed as

gfortran -O3 -mfma -msse4.2 -fno-math-errno ...

to ensure that the comparison was as fair as possiblactin f
Fortran was gien a dight edge as those options aclgeome
small level of vectorisation in the codeChapel on the other
hand, has noectorisation capability currently although some
manual loop unrolling has been done in inner products and
Givens rotation computationsThe numerical xperiments
were run on the same Intel Xeon E5-2650v4s used for the
speedup experiments.

11. Conclusion

This paper has discussed in detail the parallelised Chapel
implementation of the classical SVIDnly matrices made up

of what Chapel callgeal(w) floating point numbers were
consideredcomplexw) were ignored. Not a better SVDytb

the same SVD except that itaw parallelised, albeit with the
restriction that it is not a distributed implementation. It runs
on a single Chapdbcale All numerical experiments were
made with the same test cases as the original reference to
ensure that the same rigorous validation standards used in the
original paper applied to the Chapel implementation that
came out of this)ercise.

Pacific ESI

Rirallelisation of the SVD in Chapel

Version 1.1

The numerical xperiments showed both consistent
parallelisation and good performandRewriting the classical
SVD to suit Chape$ row-major ordering dominated theovk
load in the redesign of the floating point operatiofitie
original objectves and constraints of thexercise were met by
Chapel, especially that of the code being a readableséion
of the underlying computational mathematics. That code
contained no obtruge parallelisation hints opragmas sen
in some other parallel programming languagds. also
avaded the complexity of having to wert to Fortran-like
column-major matrix ordering that Chapebwn dmapped
feature can pnade, or the confusion andrerhead of verking
with matrix transpose temporary arrays and theyiogpback
and forth associated with their use.

Chapels ease of gpression of classical programming
concepts made implementation straightfarsv and its high
level of abstraction goided the need to use obscurelevel
features to extract performance. Chapel certainlyeteld on
its promise of programmer productivity with most of the
effort for the implementation being spent on theettgpment
of the algorithm mathematics rather than on language or
interface issues. The 1-based irithg used in the classical
SVD (and eery reputable linear algebra text) easily mapped
to the same within Chapelith Chapel storing arrays in
row-major ordering, the classical SVD needed some redesign
to obtain good data locality access patterns and maximise
cache hits during memory access. Once the application of
Givens rotations meed to complex space, the performance
problems in the iterate dagonalisation resolved themselves.

During ary Givens rotation and the more accurate
Householder reflection of the LARK [4] toolkit, safe
scaling techniques [7] should in the future be incorporated
into this Chapel implementationThey would improse te
robustness of the computation across the board, not just in
extreme cases. It mayven make it more efective for
real(32) data. The floating point operations that wouldvha
to be done as part of such a tastuld demand the use of
something lile the Chapeleee754module [8].

As of the time of writing, Chapel is on the brink of
being able to vectorise code. Once that situation happens, the
vectorisation of the algorithm for the operations in both Eq.2
and Eq.5 should impve toth the parallel and serial run-times
well beyond the limited super-scalar performanceveedd
by the loop unrolling done currenthRather than mak the
compiler tale dl the responsibility for vectorisation, that task
would be simpler if Chapel has a true sheattor type that
maps closely to Single Instruction Multiple Data (SIMD)
instructions. Ora nore general note, once Chapel supports
vectorisation in some shape or form, it mayfeefively
preclude the need for the hugefoef that goes into the
development of production gradeasic (or low-level) linear
algebra toolkits such as GotoBLAS [10] or BLIS [11].

Aside from the ectorisation and Householder reflection
just mentioned, future should look at all those things that were
out of scope for thisxercise. Anative S/D implementation
in Chapel could consider alternagidgorithms [12] for better
performance or accuramr both. Thelatest releases of the
EIGEN [13] C++ template libraryLAPACK [4] toolkit, the
GSL (GNU Scientific Library) [14], olibflame[15,16] would
be ideal sources of inspiration. These alteweatimght
include the Jacobi SVD for matrices of a small to medium
size such as were used in the earlier numeriqa¢réments,

March 2021

CHIUW-2021

or the more compledivide-and-conquer algorithms thatviea
appeared in the 1990s for da@r matrices.Multi-locale (or
distributed) implementations also need to be considered
especially for lager matrices. And then there is also the need
to handle sparse matrices which might need d&erdifit
algorithm altogether!

The use of the 4.8.5 release of the GNU compilers is
suboptimal, but conseative. For those chasing superior
performance, not really one of the goals of thier@se,
newer releases of those compilers oere better the use of
the LLVM back-end in Chapel would be more likely to help
achieve teir goal.

The experience of thisxercise, and that of others who
re-factor numerical algorithms with Chapel with awi¢o
their parallelisation should be collated into a single document.
Having such a reference might help to ensure that others will
not have 1 go hrough the same, sometimes painful and time-
consuming, learning process.

12. Acknowledgments

The authors are highly apprecietid the assistance from the
entire Chapel deslopment team, especially the support from
Brad Chamberlain and Michael Ferguson.

The first author is particularly grateful for some
insightful emails on zero-based array subscripts from Dr
Martin Richards, seral invaluable discussions on Chapel
with Emeritus Professor Jan Hext, and & fgrobing and
perceptve omments from JéHammond that were crucial to
exposing the final performance hurdle within the iteati
diagonalisation stage.

Finally, the authors thank the angnous reiewers
who picked up on some areas where tighter language or better
explanations were needed.

13. REFERENCES

[1] ChamberlainBL (2015), Chapel In: Programming
Models for Parallel Computing, edsavan Balaji,
MIT Press, ISBN 978-0-262-52881-8.

[2] Golub GH, Reinsch C (1970),Singular \alue
Decomposition and Least Squares Solutiddsmer.
Math. 14, pp403-420.

[3] Dongarra JJ, Bunch JR, Moler CB, @@t GW
(1979),LINPACK User’s Guide, SIAM: Philadelphia,
PA. ISBN 0-89871-172-X.

[4] AndersonE, Bai Z, Bischof C, Blackford S, Demmel
J, Dongarra J, Du Croz J, Greenbaum A, Hammarling
S, McKenng A, Sorensen D (1999),APACK Users’
Guide (3d ed.), SIAM: Philadelphia, PA. ISBN
0-89871-447-8.

[5] Beyls K, D'Hollander E (2009)Refactoring for Data
Locality, IEEE Computed2(2), pp62-71.

[6] Van Zee FG, van de Geijn RA, Quintana-Orti G
(2014), Restructuring the ridiagonal and Bidigonal
QR Algorithms for Brformance ACM Transactions
on Mathematical Softwa((3), pp1-34.

Pacific ESI

Rirallelisation of the SVD in Chapel

(7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

(18]

(16]

Version 1.1

AndersonE (2017), Algorithm 978: Safe Scaling in
the Level 1 BLAS ACM Transactions on
Mathematical Softward4l, pp1-28.

McGuckin D, Harding P (2019))3 - an IEEE754

Introspection ®olkit Overviev, Internal Report
19-CH-002, Pacific ESI 2019.
IEEE Standard for Floating Point Arithmetic:

ANSI/IEEE Std 754-2019 (2019), The LatesvR@&n
of the IEEE Std 754.

GotoKJ, van de Geijn RA (2008}igh Rerformance
Implementation of the kel3 BLAS ACM
Transactions on Mathematical Softw), pp1-14.

Low TM, Igual F Smith T, Quintana E (2016),
Analytical Modeling is Enough for HigheFormance
BLIS, ACM Transactions on Mathematical Sodine
43(2), ppl-18.

Berry MW, Mezher D, Philippe B, Sameh A (2005),
Parallel Algorithms for the Singular alue
Decomposition In: Handbook of Parallel Computing
and Statistics, eds. Errisos Johronkoghiorghes.
Chapman and Hall (CRC Press) 2003SBN
978-0824740672.

JacobB, Guennebaud G (2020EIGEN - a C++
Library, Seehttp://eigen.tuxfamily.org

GalassiM, Davies J, Theiler J, Gough B, Jungman G,
Alken R Booth M Rossi FUlerich R (2019),The
GNU Scientific Libary Reference Manual See
https://www.gnu.org/software/gsl/doc/latex/gsl-ref.pdf

Van Zee FG, Chan E, van de Geijn RA, Quintana-Orti
ES, Quintana-Orti G (2009Y,he libflame Library for
Dense Matrix ComputationslEEE Computing in
Science and Engineeririd(6), pp56-63.

Van Zee FG, Chan E, van de Geijn RA (2011),
libflame In: Encyclopedia of Parallel Computing, eds.
David Padua. Springer Boston, MA. ISBN
978-0-387-09765-7.

March 2021

