
A Investigation of the Chapel Parallelisation
of the Singular Value Decomposition

Damian G McGuckin Peter L Harding Donald E K Carpenter
Pacific ESI PerformIQ Pacific ESI

Glebe NSW, Australia CaulfieldSouth VIC, Australia Tallai QLD, Australia
damianm@esi.com.au plh@performiq.com donc@esi.com.au

Keywords: Parallel Programming, Chapel Language, Numerical Linear Algebra, Singular Value Decomposition

ABSTRACT

This paper discusses the parallelisation (using the
programming language Chapel) of one of the most often used
algorithms for the Singular Value Decomposition of a matrix.
The mathematical alterations and programming constructs
used to achieve that parallelisation are examined at length.
Performance and validation tests showing the increased
parallel performance that occurs when run on a multi-core
computer architecture are documented.Chapel’s serial
performance is compared against that of Fortran that
implements the original algorithm. Only parallelisation in a
Symmetric Multi-Processor environment is explored.

1. Introduction

During research into the mathematics behind advanced
engineering software tools, several linear algebra algorithms
were implemented in Chapel, a programming language
designed for productive parallel computing at scale [1].The
parallelisation and implementation of one of those algorithms,
which together are calledthe exercise, is discussed herein.

Five decades ago, Golub and and Reinsch published
their algorithm for the Singular Value Decomposition (SVD)
of a rectangularm × n matrix written using the programming
language Algol60 [2].That algorithm, calledthe classical
SVD herein, is a clear and concise expression of the
underlying mathematics. It has been the basis of other near
clones or slight variants, the most significant of which was the
implementation written in Fortran IV later that same decade
as a component of the LINPACK [3] toolkit.

As an algorithm that was both compute-intensive and
mathematically complex, the classical SVD was deemed to be
an excellent candidate from which to learn how to parallelise
other linear algebra algorithms and program them in Chapel.
Alternative SVD algorithms with improved performance or
accuracy (or both) that have appeared since the late 1980s
were rejected as candidates because they would have added
nothing to the overall learning experience.

The exercise is not really about computing the SVD
because Chapel can do this today with its interface to the
Fortran LAPACK [4] toolkit. The SVD is simply the example
with which to illustrate how Chapel can help facilitate the
parallelisation of a linear algebra algorithm.

What follows assumes that the reader has some
familiarity with the Chapel language, the programming of
numerical linear algebra, and floating point computations.

2. Objectives and Constraints

Rather than its programming, it is the mathematics behind any
linear algebra algorithm that dominates itsparallelisation and
implementation. So,knowing how to craft that mathematics
will be crucial to achieving a production-grade algorithm.
That information, showing the use of Chapel’s parallel
processing and generic programming features, is the sole
objective and output of this exercise.

Various constraints were placed on the exercise, driven
by the context in which it was being done:

a. theaccuracyof the results would not be sacrificed for
the algorithm’s performance, i.e. its elapsed run-time;

b. the readability of the Chapel code would at least
match that of the Algol60 used in the original; and

c. the serial performance of the implementation should
be competitive with that of either Fortran or C/C++.

Only parallelisation in a Symmetric Multi-Processor (SMP)
environment, i.e. on a single computer system or what Chapel
calls one locale, is explored. Any parallelisation in a
Distributed Multi-Processor environment is ignored by
design, or more correctly, by project scope (and budget).

3. Chapel Over view

Chapel is a programming language that facilitates the clear
expression of algorithms for computational mathematics.It
achieves this by providing features that allow a high level of
abstraction.

Chapel provides explicit data-parallel constructs (the
forall -expression and theforall -statement) and several idioms
that support data parallelism implicitly (reductions and scans,
whole-array assignment and arithmetic, and function and
operator promotion). It also provides explicit task-parallel
constructs, thebegin, cobegin, and coforall. The last two
sentences are far too brief to do justice to their content.

The implementation uses many of the data parallel
features, including the compact form of theforall statement,
but none of the task parallel features.

Chapel’s underlying support for clear, easy-to-read and
powerful generic programmingand polymorphism was used
to ensure that the code works for bothreal(32) andreal(64)
floating point types.As Chapel seeks to support processors
with hardware implementations of floating point types such as
real(16) andreal(128) by introducing them into the language

Pacific ESI - 1 - March 2021

CHIUW-2021 Parallelisation of the SVD in Chapel Version 1.1

in the near future, that same code should work unchanged.

Chapel’s ability to expressarray operationsconcisely is
particular interesting in a linear algebra context. Oneexample
of this is the concept of asubmatrix. Consider the declaration
of anm × n two-dimensional (2D) array (or matrix)Z:

var Z : [1 .. m , 1 .. n] real(64);

Chapel can be used to do things like concisely reference
respectively a submatrix ofZ or make a copy of the entirety
of one of its columns using the concept of an array slice as:

ref Zremainder = Z[i .. m , j .. n]; // no copy inv olved
const Zcolumnj = Z[.. , k]; // make a copy of a column

While such slicing has an overhead, its judicious use in the
Chapel implementation of the classical SVD algorithm proved
that this overhead was minimal and the clarity of expression
that it provided was most welcome.

Numerousbasic linear algebra procedureswere written
for this exercise to support fundamental one-dimensional (1D)
array operations.Their use helped to avoid the slowness of
some whole-array arithmetic operations which were less than
performant due to Chapel not supporting vectorisation at the
time. As an interim measure to enhance their performance,
limited manual loop unrolling was done within some of these
routines, but only where this proved to be advantageous.

An additional routine written for this exercise was the
overloaded functioncmplx which avoided the need to use
type casting when constructing acomplex(2w) number from
arguments wherew is the width in bits of the floating point
numbers which comprise the real and imaginary components
of the return value of that function. This utility function
accepts as argument(s), onereal(w) number, or two real(w)
numbers, or oneimag(w) number, or even a tuple of two
real(w) numbers. Itprovides slightly more comprehensive
functionality than that of the intrinsic function of the same
name that has been available to Fortran users for decades.

4. Array Storage Schemes

Any parallelisation must ensure data locality when handling
2D arrays within a linear algebra algorithm so that it
maximises hits (or minimises misses) on a computational
processor’s cache during memory access [5]. This access and
hence locality is in turn intricately linked to the arrangement
of those arrays within memory.

Fortran, the language which still casts a giant shadow
over mathematical software programming even today, uses a
column-major array storage scheme. Algorithms that are
implemented in Fortran process arrays column-by-column to
ensure that data that is next to be processed is close (or even
adjacent) to data that has just been processed.This
maximises the cache hits.A very long list of linear algebra
algorithms have been (and are being) written to access and
process data in this way, including the classical SVD.

Chapel on the other hand, uses aro w-major storage
scheme (by default) for its arrays, just like C/C++ and Pascal.
Algorithms that are to be implemented in Chapel should
process arrays row-by-row to maximise those same cache hits,
not the arrangement for algorithms previously written to suit
Fortran. This will mean that those algorithms had to be
reformulated, a task that proved to be the major challenge of
this exercise!

5. Algorithm Over view

The SVD decomposition of a realm × n rectangular matrixA
computes the rectangular, square and diagonal matricesU , V,
andΣ such that

(1a)A ≡ U Σ VT

where

(1b)Σ ≡ diag(σ1,σ2, . . . ,σ n)

and

(1c)UTU ≡ VTV ≡ VVT ≡ I

Three floating point intensive code segments make up the
original 1970 Algol60 algorithm:

a. A reduction (using Householder reflections) ofA to
its bi-diagonal formΣ′ whose respective diagonal and
off-diagonal elements arewk andek at columnk and
wheree1 ≡ 0;

b. An accumulation of those same reflections to form an
estimate ofV, andU ; and

c. An iterative diagonalisation (using an initially
shift’ed QR strategy) of Σ′ that isolates the diagonal
σ k by eliminating the off-diagonalek by transforming
Σ′ such thatek ≡ 0 which implieswk ≡ σ k;

after which theσ k are sorted into descending order and the
column ordering ofU andV adjusted appropriately to match.

From an abstract perspective, most of the floating point
operations seen during the reduction (with reflections) and
accumulation (of those reflections) are just the matrix
operations:

(2)

Z + = x × yT

y : = Z × x

y : = ZT × x

wherex andy are intermediate vectors andZ refers to the any
of the matricesA, U or V (or submatrix thereof).

The only dominant floating point operation seen during
the iterative diagonalisation is the application of Givens
rotation matrices to pairs of columns withinU andV. During
this diagonalisation, an iterative process is used to isolate (in
turn), thek’th singular value, k∈1. .n. Each pass of every
such iterative process identifies the columnj closest tok
(2 ≤ j < k) wherew j−1 is small. This defines the submatrix
Σ′[j . . k, j . . k] through which the algorithm willchasezeros
by applying a mix of multiple Givens rotations, in fact (k − j)
of them, to adjacent row and column pairs ofΣ′. That Givens
rotation mix is then also applied consecutively to two-column
submatrices ofU [1. .m, j . . k] andV[1. .n, j . . k], i.e.

(3)
U1..m , i ..i+1 × = G(θ i)

V1..n , i ..i+1 × = G(ψ i)

whereG(θ i) andG(ψ i) are compact Givens rotation matrices,

(4)

G(θ i) ≡




+ cos(θ i)

+ sin(θ i)

− sin(θ i)

+ cos(θ i)





G(ψ i) ≡




+ cos(ψ i)

+ sin(ψ i)

− sin(ψ i)

+ cos(ψ i)





θ i andψ i are the rotation angles applied to columnsj . . k of
respectively U andV, and i ∈ [j , k − 1].

Pacific ESI - 2 - March 2021

CHIUW-2021 Parallelisation of the SVD in Chapel Version 1.1

Either two-column matrix that appears on the left hand
side of Eq.3 is problematic. Accessing data in that matrix will
likely cause serious cache misses because its components
come from columns of Chapel 2D arrays,U andV, stored in
row-major order. Also, with just two columns in that matrix,
it will not be large enough to see much performance gain
from parallelisation.Quite clearly, there is no future from the
perspective of parallelisation for Eq.3 as it stands and the
underlying mathematics must be reformulated.At least one
such example of this exists [6], but that approach was
discarded because of its complexity.

Of later interest to this discussion is the fact that if each
column of those two column submatrices is treated separately,
then Eq.3 can be written in complex space as

(5)
U1..m , i+1 + U1..m , i i × = Gc(θ i)

V1..n , i+1 + V1..n , i i × = Gc(ψ i)

whereGc(θ i) and Gc(ψ i) are complex compact forms of the
Givens rotations of Eq.4 defined in complex space as

(6)
Gc(θ i) = cos(θ i) + sin(θ i) i = cmplx(cos(θ i), sin(θ i))

Gc(ψ i) = cos(ψ i) + sin(ψ i) i = cmplx(cos(ψ i), sin(ψ i))

with cmplx being the Chapel function mentioned in §3.

6. Implementation Considerations

Refinements and enhancements must be applied to the
algorithm of the classical SVD to yield a parallel Chapel
implementation. Thesemainly relate to data locality issues,
accuracy, and importantly, how Giv ens rotations are applied.

6.1 Achieving Data Locality Implicitly

The first technique that helps achieve data locality is optimal
memory access when reducingA to its bi-diagonal form (with
Householder reflections) and accumulating those reflections
on U and V. The intensive computations identified in Eq.3
are an outer product and two matrix-vector product variants.
The library routinedot was rejected for these tasks because of
observed poor performance.With the project’s scope not
extending to investigating this problem (and rectifying it), the
code snippets shown below were used, explained assuming a
matrix Z[?zD] of some typeR, and two vectors,x[?xD] and
y[?yD] of the same type. Unless explicitly noted in these
snippets, the quest for performance did not exploit loop
unrolling, this being relegated to a future improvement.

6.1.1 Vector Outer Product This operation is

Z + = x × yT

It can be parallelised in an cache-friendly fashion as:

[(r, c) in zD] Z[r, c] += x[r] * y[c];

No loop unrolling has been attempted.

6.1.2 Matrix-Vector Product I This operation is

y = Z × x

It can be parallelised in a row-major fashion as:

const(rows, columns) = zD.dims();
consty = [r in rows] inner(columns, Z[r, ..], x);

where theinner routine is currently a 4-way unrolled (serial)
inner productinline procedure which is not vectorised. An
unroll beyond a 4-way was found to be counterproductive.

6.1.3 Matrix-Vector Product II This operation is

x = ZT × y

There are serious cache misses in a parallelisation like:

const(rows, columns) = zD.dims();
constx = [c in columns] inner(rows, Z[.., c], y);

Rewriting this to access memory in a row-major fashion
demands the use of a pseudo partial-reduction, an alternative
which is fractionally less (but still sufficiently) accurate

var y : [j in columns] 0:R;

[(r, c) in zD with (+ reducey)] y[c] += x[r] * Z[r , c];

Again, no loop unrolling has been attempted.

6.2 Achieving Data Locality Explicitly

The second technique that helps achieve data locality is the
judicious use of a cached copy of data that is referenced more
than once within a single pass of a loop. In particular,

a. at the i ’th stage of the bi-diagonalisation, an easily
cached local copy is made of thei ’th diagonal column
of A and used during that stage, and

b. at the i ’th stage of the left accumulation onU , an
easily cached local copy is made of that same column
from (a), and used during that stage.

Doing this, as opposed to working with aref -erence to that
column, can often dramatically improve the cache hit rate and
hence the algorithm’s performance.

The above approaches mitigate the cache miss rate
problem. Thememory penalty during the algorithm totals an
additionalm + n floating point numbers, a small overhead for
better algorithm performance.These unit-stride copies are
also a pre-requirement for vectorisation to occur.

6.3 Applying Givens Rotations

A Chapel implementation of the first line of the algebra in
Eq.5 for every i rotations within one iteration pass during the
iterative diagonalisation stage is shown in Fig. 1. It demands
that every Gc(θ i) associated with that iteration has been
captured in acomplex(2w)1D array called (say)gt[j . . k].

for i in j .. k - 1 do
{

constgti = gt[i];

for r in rowsdo
{

constug = cmplx(U[r, i+1], U[r, i]) * gti;

(U[r, i+1], U[r, i]) = (ug.re, ug.im);
}

}

Figure 1. Serial Givens Rotation - Simple Version

With a recursive relationship between successive columns
beyond the second in Fig.1, there is no independence between
the columns at the outer loop making its parallelisation
impossible. Theoverheads of working with the inner loop in
parallel is horrendous so its parallelisation is impractical from
any perspective. Deeper inspection shows that the operations
within each row are independent of the operations of any
other rows. Thoserows are now obvious candidates for
parallelisation and there are certainly more than enough
computations per row to make that parallelisation worthwhile.

Pacific ESI - 3 - March 2021

CHIUW-2021 Parallelisation of the SVD in Chapel Version 1.1

Reversing the order of thefor loops in Fig.1 reveals an
algorithm variant with the elements of each inner loop
independent of each other which can be parallelised. Each of
these can run in parallel by just replacing the outside loop
with a forall . The (now) parallel Chapel implementation of
the algebra of that first line in Eq.5 is shown in Fig.2.

forall r in rowsdo // feasible as each row is independent
{

for i in j .. k-1 do
{

constugt = cmplx(U[r, i+1], U[r, i]) * gt[i];

(U[r, i+1], U[r, i]) = (ugt.re, ugt.im);
}

}

Figure 2. Parallel Givens Rotation - Simple Version

Testing showed that the complex number arithmetic ran much
slower than a longhand version using real number arithmetic,
probably caused by the Chapel compiler being understandably
conscious about its accuracy. It would handle complex
arithmetic by subroutine calls that do complex number range
reduction to avoid overflow and underflow. These two
floating point exceptions are most unlikely because the sum of
the squares of the elements ofGc(θ i) will always equate to
1.0. On that basis, a longhand version of the complex
arithmetic of Fig.2 was used in the production algorithm.

Further testing revealed a register stall in the (recursive)
inner loop of Fig.2. The loop was unrolled to force more
computations into each pass through this loop.This seemed
to minimise the impact of this stall on the performance of the
code. Thismeant that rows had to be processed in tiles,
suitably handling any remainder when the number of rows
was not an exact multiple of the tile size.Tiling two rows at a
time reduced the impact of the stall, four rows at a time more
so, but tiling of more than four rows at a time resulted in too
many cache misses for even medium sized matrices.So, the
production version uses four row tiles.

The code in Fig.2 was programmed as a generic Chapel
inline proc with longhand arithmetic. This was then able to
be re-used for the second line in Eq.5 which applies a related
(but different) complex compact Givens rotations, namely
Gc(ψ), to submatrices ofV.

6.4 Miscellaneous

In the classical SVD implementation, one loop follows an
index from n down to 1 and executes the loop only if the
element of an arraye[1..n] at that index is not negligible
when compared to the norm of the bi-diagonal matrix.It
relies on asentinel value of e[1] always being zero (0.0) so
that it never executes (but instead exits) the loop when that
index is one (1). The Chapel code does not rely on the
sentinel value and explicitly tests the index at each iteration.
The impact on the run time was shown to be negligible.

Within the classical SVD, there are two places during
the iterative diagonalisation where there is a risk of afloating
point exception occurring during the computations of the
explicitly-calculated initial shift or the implicitly-calculated
Givens rotation matrices.This is due to some elements ofΣ′
being almost zero. Some simple scaling techniques that help
avoid such problems have been included within this Chapel
implementation. Itshould be noted that the approach used is
only an interim measure awaiting a solution using techniques

and methods from an updated BLAS approach [7] and the
Chapel IEEE754 module [8].

7. Performance Measurement

The ideal parallelisation halves the run-time if the number of
central processor unit (CPU) coresC on which to run the
algorithm are doubled; and halves that run-time again if the
number of CPU cores are doubled for a second time.This
direct proportionalityspeedupcan be expressed as:

(7)
R1

RC
= C

where the run-time of the code in parallel mode whenC cores
are used isRC, and the run-time of the code in serial mode
when only one core is used isR1.

Any parallelisation is unlikely to be the ideal of Eq.7.
The real world relationship is better expressed as a function
along the lines of

(8)
R1

RC
= S(C)

The termS(C) is thespeedup. When it is a damped variant of
a linear function, its most common form, it is a measure of
how closely a parallel algorithm delivers on that ideal of
direct proportionality.

8. Numerical Experiments

To ensure consistency with the original reference [2],
numerical experiments were run on the two most extreme of
its three (explicitly chosen difficult) validation cases.Further
experiments were run on one of these test cases to provide
performance data to measure the effectiveness of the
parallelisation. Allof the experiments quoted herein were run
on a dual Intel Xeon E5-2650v4 system with 8 memory
channels and 24 computational cores so that no more than
three cores shared one such channel at peak core usage.

The first test case is the specific (small) 8× 5 matrix A
defined as:

(9)A =













+22

+14

−1

−3

+9

+9

+2

+4

+10

+7

+13

−2

+8

+1

−6

+5

+2

+10

−1

+13

+1

−7

+6

+0

+3

+0

−11

−2

−2

+5

+5

−2

+7

+8

+3

+4

+4

−1

+1

+2













The second test case is the genericN × N matrix A whose
elementsaij are defined as:

(10)aij =







0 if i > j

+1 if i ≡ j

−1 if i < j

Performance data from experiments with Eq.10 run for a mix
of matrix sizesN ∈ [2400, 3200, 4000]and active cores C
where C∈ [4, 8, . . ,Cmax] and Cmax is the total number of
cores on the system was used to evaluate the speedup.The
independent and dependent experimental variables during
these performance tests were respectively the number of cores
on which each experiment was run and the elapsed time of

Pacific ESI - 4 - March 2021

CHIUW-2021 Parallelisation of the SVD in Chapel Version 1.1

each experiment. Thevalue of N was chosen large enough
that the run-time start-up overhead was an insignificant part of
the elapsed (or run) time of each experiment in the sequence.

To ensure that onlyC cores would be used for data
parallelisation, theconfigconstant definition

--dataParTasksPerLocale=C

was giv en as a command-line option to the Chapel executable
to control the number of tasks used for data parallelisation.

The serial performance of the algorithm was needed to
provide a baseline elapsed running time for when each test
case was not parallelised. Such serialisation was achieved by
calling the algorithm from within aserial block and using

--dataParTasksPerLocale=1

on the command line for consistency becauseC ≡ 1.

8.1 Software Platform

All numerical experiments were run with version 1.22.0 of the
Chapel compiler, chpl, with a gcc (version 4.8.5) back-end.
The Chapel compiler options used were:

chpl --fast --ieee-float

The second option wisely demands that the compiler not
violate the IEEE 754 Standard [9] in the code it produced.

8.2 AccuracyVerification

The SVD decomposition of them × n matrix A of Eq.1a can
be verified by comparing that sameA against them × n matrix
productA′ of those decomposed parts, i.e.

(11)A′ = U Σ VT

From Eq.11, the worst relative error in any element of A′ is
the scaled worst case in the∞-norm δ A of the matrix of
relative errors between elements ofA′ andA, a′ij andaij , i.e.

(12)δ A =
1

N
×




1 −

a′ij
aij





∀i , j ∈ 1. .N, 1. .N

Where someaij was zero, the relative error δ A in Eq.12 was
replaced by its absolute counterpart. The scaling by the
reciprocal ofN tries to remove the effect of the error from the
computation of Eq.11 itself which has an error ofN × ε
(whereε is the machine precision).

9. Discussion

The real (or elapsed or run) timesRC for the various
experimental cases atreal(64) precision are given in Table 1.

Cores N= 2400 N= 3200 N= 4000

C RC(secs) RC(secs) RC(secs)

1 50.6480 125.4140 247.4930
4 15.8240 40.3940 79.8760
8 11.3730 31.2230 62.9920

12 10.5180 30.0970 61.2090
16 7.3890 22.5310 47.9370
20 6.9630 18.1110 38.5160
24 7.0750 17.0310 32.2210

TABLE 1. Elapsed Times on a Xeon E5-2650-v4

The speedupS(C) seen in those experiments could then be
computed from eachRC using Eq.7. The results are plotted in

an un-smoothed fashion in Fig.3.

Figure 3. Speedup (S(C)) Against Cores (C) Used

The plot shows that the results parallelised well and that they
scaled consistently with the matrix size. The speedup curve is
largely a damped linear curve between one and eight cores.
Beyond eight cores, the system no longer has one dedicated
memory channel for each task (or core) and those tasks have
to compete for communication (or memory) bandwidth, the
speedupcurve would be expected to exhibit some change in
behaviour at this point. For the Xeon E5-2650v4 on which
the experiments have been run, this scenario occurs after eight
cores and that explains the kink seen above just after eight
cores. Beyond that, the performance goes back to being a
damped linear curve again.

A simple and robust verification of the correctness and
accuracy of the Chapel implementation looked at the singular
values of Eq.9 and Eq.10 from the numerical experiments and
compared them against that from the original reference [2].
For Eq.9, these actually have exact values of:

Σ = [√1248 , 20 ,√384 , 0 , 0]

Using absolute errors in the case of the last two values, and
relative errors for the rest, the reference case shows
calculation errors for these of:

∆Σ = [23ε , 13ε , 13ε , 6ε , 13ε]

For thereal(32) case in the Chapel implementation:

∆Σ = [1ε , 2ε , 2ε , 12ε , 12ε]

and forreal(64) case:

∆Σ = [< 1ε , < 1ε , 3ε , 8ε , 3ε]

The relative errors are even smaller while the absolute errors
are comparable.For Eq.10 and the case ofN = 30 from the
original reference, the 29 relative errors (and one absolute
error for the smallest singular value which was close to zero)
showed a similar to that just seen for Eq.9.So it was accepted
that at least in the calculation of singular values, correctness
was verified and accuracy goals were met.

A more detailed verification of correctness and
accuracy looked at the results of Eq.12 with the numerical
experiments done with Eq.9 and Eq.10. In these test cases,
the scaled worst error∞-norm δ A of Eq.12 never exceeded
O(kNε), wherek was a small integer, and often fractional.
This was better that the theoretical error and on this basis, it
was accepted that correctness was verified and accuracy goals
were met. For the size of matrices used in the original

Pacific ESI - 5 - March 2021

CHIUW-2021 Parallelisation of the SVD in Chapel Version 1.1

reference [2], such accuracy is quite acceptable even for
real(32) data. But for the size of the matrices involved in the
numerical experiments seen earlier, it is only an acceptable
accuracy with real(64) data, being unreliable forreal(32)
data. Thatinaccuracy for even medium-sized matrces is a
problem with the underlying algorithm, not the Chapel
implementation, and is one of the reasons why more accurate
alternatives are used today such as those in (say) the
LAPACK [4] toolkit.

The curves of Fig.3 used the elapsed run-time,RC of
Fig.1, to calculate the speedup for the SVD, a time which
includes some start-up overheadH , where H was 0.3±0.03
seconds depending on the experiment. Recalculatingthe
speedup usingRC − H (to remove that overhead) produced
plots which looked identical to those in Fig.3, and on that
basis, they are not reproduced here.

10. Comparison Against Fortran

For completeness, the SVD of a 1603× 1603 test matrix
computed by the serialdsvdc.f routine from the LINPACK [3]
toolkit was compared against that computed by the Chapel
implementation. Thenumerical results matched and the
av eraged run times showed that

a. thisFortran LINPACK [3] toolkit implementation took
about 14.03 seconds, and

b. the Chapel implementation as discussed herein in
serial mode took about 13.36 seconds.

Those numbers clearly show that the un-vectorised Chapel
code code is just as fast as the Fortran code, at least to an
engineering level of accuracy. These figures highlight that
when it gives itself, or is given, a level playing field, Chapel
now competes with Fortran in terms of performance.Further,
nothing needs to change in the Chapel code to allow it to run
many times faster, in parallel.

For the record, the compiler used was gfortran at the
same revision as that of the back-endgcc, i.e. version 4.8.5.It
was used as

gfortran -O3 -mfma -msse4.2 -fno-math-errno ...

to ensure that the comparison was as fair as possible. In fact,
Fortran was given a slight edge as those options achieve some
small level of vectorisation in the code.Chapel on the other
hand, has no vectorisation capability currently although some
manual loop unrolling has been done in inner products and
Givens rotation computations.The numerical experiments
were run on the same Intel Xeon E5-2650v4s used for the
speedup experiments.

11. Conclusion

This paper has discussed in detail the parallelised Chapel
implementation of the classical SVD.Only matrices made up
of what Chapel callsreal(w) floating point numbers were
considered,complex(w) were ignored. Not a better SVD, but
the same SVD except that it was parallelised, albeit with the
restriction that it is not a distributed implementation. It runs
on a single Chapellocale. All numerical experiments were
made with the same test cases as the original reference to
ensure that the same rigorous validation standards used in the
original paper applied to the Chapel implementation that
came out of this exercise.

The numerical experiments showed both consistent
parallelisation and good performance.Rewriting the classical
SVD to suit Chapel’s row-major ordering dominated the work
load in the redesign of the floating point operations.The
original objectives and constraints of the exercise were met by
Chapel, especially that of the code being a readable exposition
of the underlying computational mathematics. That code
contained no obtrusive parallelisation hints orpragmas seen
in some other parallel programming languages.It also
avoided the complexity of having to revert to Fortran-like
column-major matrix ordering that Chapel’s own dmapped
feature can provide, or the confusion and overhead of working
with matrix transpose temporary arrays and the copying back
and forth associated with their use.

Chapel’s ease of expression of classical programming
concepts made implementation straightforward and its high
level of abstraction avoided the need to use obscure low-level
features to extract performance. Chapel certainly delivered on
its promise of programmer productivity with most of the
effort for the implementation being spent on the development
of the algorithm mathematics rather than on language or
interface issues. The 1-based indexing used in the classical
SVD (and every reputable linear algebra text) easily mapped
to the same within Chapel.With Chapel storing arrays in
row-major ordering, the classical SVD needed some redesign
to obtain good data locality access patterns and maximise
cache hits during memory access. Once the application of
Givens rotations moved to complex space, the performance
problems in the iterative diagonalisation resolved themselves.

During any Giv ens rotation and the more accurate
Householder reflection of the LAPACK [4] toolkit, safe
scaling techniques [7] should in the future be incorporated
into this Chapel implementation.They would improve the
robustness of the computation across the board, not just in
extreme cases. It may even make it more effective for
real(32) data. The floating point operations that would have
to be done as part of such a task would demand the use of
something like the Chapelieee754module [8].

As of the time of writing, Chapel is on the brink of
being able to vectorise code. Once that situation happens, the
vectorisation of the algorithm for the operations in both Eq.2
and Eq.5 should improve both the parallel and serial run-times
well beyond the limited super-scalar performance delivered
by the loop unrolling done currently. Rather than make the
compiler take all the responsibility for vectorisation, that task
would be simpler if Chapel has a true shortvector type that
maps closely to Single Instruction Multiple Data (SIMD)
instructions. Ona more general note, once Chapel supports
vectorisation in some shape or form, it may effectively
preclude the need for the huge effort that goes into the
development of production gradebasic (or low-level) linear
algebra toolkits such as GotoBLAS [10] or BLIS [11].

Aside from the vectorisation and Householder reflection
just mentioned, future should look at all those things that were
out of scope for this exercise. Anative SVD implementation
in Chapel could consider alternative algorithms [12] for better
performance or accuracy or both. Thelatest releases of the
EIGEN [13] C++ template library, LAPACK [4] toolkit, the
GSL (GNU Scientific Library) [14], orlibflame[15,16] would
be ideal sources of inspiration. These alternatives might
include the Jacobi SVD for matrices of a small to medium
size such as were used in the earlier numerical experiments,

Pacific ESI - 6 - March 2021

CHIUW-2021 Parallelisation of the SVD in Chapel Version 1.1

or the more complex divide-and-conquer algorithms that have
appeared in the 1990s for larger matrices.Multi- locale (or
distributed) implementations also need to be considered
especially for larger matrices. And then there is also the need
to handle sparse matrices which might need a different
algorithm altogether!

The use of the 4.8.5 release of the GNU compilers is
suboptimal, but conservative. For those chasing superior
performance, not really one of the goals of this exercise,
newer releases of those compilers or even better, the use of
the LLVM back-end in Chapel would be more likely to help
achieve their goal.

The experience of this exercise, and that of others who
re-factor numerical algorithms with Chapel with a view to
their parallelisation should be collated into a single document.
Having such a reference might help to ensure that others will
not have to go through the same, sometimes painful and time-
consuming, learning process.

12. Acknowledgments

The authors are highly appreciative of the assistance from the
entire Chapel development team, especially the support from
Brad Chamberlain and Michael Ferguson.

The first author is particularly grateful for some
insightful emails on zero-based array subscripts from Dr
Martin Richards, several invaluable discussions on Chapel
with Emeritus Professor Jan Hext, and a few probing and
perceptive comments from Jeff Hammond that were crucial to
exposing the final performance hurdle within the iterative
diagonalisation stage.

Finally, the authors thank the anonymous reviewers
who picked up on some areas where tighter language or better
explanations were needed.

13. REFERENCES

[1] ChamberlainBL (2015), Chapel, In: Programming
Models for Parallel Computing, eds. Pavan Balaji,
MIT Press, ISBN 978-0-262-52881-8.

[2] Golub GH, Reinsch C (1970),Singular Value
Decomposition and Least Squares Solutions, Numer.
Math. 14, pp403-420.

[3] Dongarra JJ, Bunch JR, Moler CB, Stewart GW
(1979),LINPACK User’s Guide, SIAM: Philadelphia,
PA. ISBN 0-89871-172-X.

[4] AndersonE, Bai Z, Bischof C, Blackford S, Demmel
J, Dongarra J, Du Croz J, Greenbaum A, Hammarling
S, McKenney A, Sorensen D (1999),LAPACK Users’
Guide (3rd ed.), SIAM: Philadelphia, PA. ISBN
0-89871-447-8.

[5] Beyls K, D’Hollander E (2009),Refactoring for Data
Locality, IEEE Computer42(2), pp62-71.

[6] Van Zee FG, van de Geijn RA, Quintana-Orti G
(2014),Restructuring the Tridiagonal and Bidiagonal
QR Algorithms for Performance, ACM Transactions
on Mathematical Software40(3), pp1-34.

[7] AndersonE (2017), Algorithm 978: Safe Scaling in
the Level 1 BLAS, ACM Transactions on
Mathematical Software441, pp1-28.

[8] McGuckin D, Harding P (2019),I3 - an IEEE754
Introspection Toolkit Overview, Internal Report
19-CH-002, Pacific ESI 2019.

[9] IEEE Standard for Floating Point Arithmetic:
ANSI/IEEE Std 754-2019 (2019), The Latest Revision
of the IEEE Std 754.

[10] GotoKJ, van de Geijn RA (2008),High Performance
Implementation of the Level3 BLAS, ACM
Transactions on Mathematical Software35(1), pp1-14.

[11] Low TM, Igual F, Smith T, Quintana E (2016),
Analytical Modeling is Enough for High-Performance
BLIS, ACM Transactions on Mathematical Software
43(2), pp1-18.

[12] Berry MW, Mezher D, Philippe B, Sameh A (2005),
Parallel Algorithms for the Singular Value
Decomposition, In: Handbook of Parallel Computing
and Statistics, eds. Errisos John Kontoghiorghes.
Chapman and Hall (CRC Press) 2005.ISBN
978-0824740672.

[13] JacobB, Guennebaud G (2020),EIGEN - a C++
Library, Seehttp://eigen.tuxfamily.org.

[14] GalassiM, Davies J, Theiler J, Gough B, Jungman G,
Alken P, Booth M Rossi F, Ulerich R (2019),The
GNU Scientific Library Reference Manual, See
https://www.gnu.org/software/gsl/doc/latex/gsl-ref.pdf.

[15] Van Zee FG, Chan E, van de Geijn RA, Quintana-Orti
ES, Quintana-Orti G (2009),The libflame Library for
Dense Matrix Computations, IEEE Computing in
Science and Engineering11(6), pp56-63.

[16] Van Zee FG, Chan E, van de Geijn RA (2011),
libflame, In: Encyclopedia of Parallel Computing, eds.
David Padua. Springer, Boston, MA. ISBN
978-0-387-09765-7.

Pacific ESI - 7 - March 2021

