
Arkouda Set Operation Optimizations 

Ben McDonald 
 Gonzaga University 

 USA 
 bmcdonald3@zagmail.gonzaga.edu 

Elliot Ronaghan 
 Hewlett Packard Enterprise 

 USA 
 elliot.ronaghan@hpe.com 

ABSTRACT 
This talk discusses experiences of a summer intern in getting up 
and running on distributed memory systems using Chapel. During 
the course of the summer, the presenter learned how to use 
supercomputers thanks to the abstraction of complicated 
distributed computing concepts and high-level syntax of Chapel. 
Furthermore, this talk highlights significant contributions made to 
the performance of Arkouda, which is a NumPy-like Python 
package with a Chapel backend server that allows data scientists 
to interactively utilize supercomputers. The design of Arkouda 
will be outlined to better explain work accomplished and 
performance graphs of the improvements will be shown.  

1 Introduction 

1.1 Background 
Through the presenter’s experience, we have observed that 

Chapel’s ease-of-use can enable a programmer with no HPC 
experience to get ramped up on supercomputers fairly quickly. 
The Pythonic syntax of Chapel and it’s handling of difficult 
distributed, parallel aspects of high performance computing for 
the programmer not only make programming performant code 
more productive, but also allow programmers to learn these 
concepts through programming themselves. 

1.2 Design of Arkouda 
Arkouda is a NumPy-like Python package designed for data 

scientists to interactively utilize supercomputers. Arkouda uses a 
client-server communication model, meaning that the server can 
be run on a supercomputer and then be connected to from a 
laptop. Arkouda’s client is written in Python and implements 
portions of interfaces from popular data science packages, such as 
NumPy and Pandas, which means it has a very familiar feel to 
many data scientists. 

Arkouda is designed with a Chapel backend server that 
communicates with the Python client over ZMQ sockets and also 
stores the data as well as performs the operations. This client-to-
server communication can end up taking more time than the actual 
operation in some cases, and for common functions, this can result 
in an unnecessary, significant reduction in performance. 

Arkouda is centered around “pdarrays” (parallel, distributed 
array). The data is stored on the server, implemented in Chapel, 
while the client accesses the data by calling into the Chapel 
server. This means that a Python user can greatly improve 

performance by using pdarrays, but that each array operation, 
such as array slicing, requires a call to the server.  

2 Optimizing Set Operations in Chapel 
Set operations, such as union, intersect, etc., are used 

frequently in data science and, in Arkouda, were originally written 
purely on the client-side in Python. These operations require many 
slices, among other array operations. Due to the design of 
Arkouda and the implementation of the operations, this resulted in 
10-15 server calls per operation with the design of Arkouda. 
While this demonstrates part of Arkouda’s power, being able to 
quickly compose complex set operation on the client side,  the 
large amount of use the set operations were seeing warranted 
additional optimizations. 

By writing the set operations natively in Chapel the set 
operations were able to be optimized, reducing the number of 
server calls to only a single call, as opposed to the aforementioned 
10-15 calls that were happening previously. Also, with the 
operations written in Chapel, we were able to further optimize the 
operations by eliminating unnecessary work that could not be 
avoided, given the limitations of Python. 

3 Performance Results 
Figure 1 shows set operation performance from Arkouda’s 

nightly benchmarking collected using 16-nodes of a Cray-XC. 
Table 1 shows the set operation performance before and 

after our optimizations.  
 

 

 

Figure 1: Set operations performance improvements 

  



 

 

 

Set Operation Before (GiB/s) After (GiB/s) Speedup 
intersect 1.07 2.01 88% 

union 1.12 1.95 74% 
exclusive or 1.05 1.90 81% 

set difference 0.45 0.49 8.9% 

Table 1: Set Operations on 16-nodes of a Cray-XC 

4 Conclusion 
The high-level, Pythonic syntax and abstraction of 

complicated concepts provided by Chapel enable programmers to 
quickly become productive using supercomputers and understand 
parallel and distributed concepts.  

The performance improvements from the translation of set 
operations in Arkouda to server side operations show the value of 
limiting server calls in Arkouda when possible and help pave the 
way for future work on Arkouda. 
 


