—

Hewlett Packard
Enterprise

LOCALITY-BASED
OPTIMIZATIONS IN THE
CHAPEL COMPILER

Engin Kayraklioglu, Elliot Ronaghan
CHIUW 2021 - June 4, 2021



LOCALITY-BASED OPTIMIZATIONS IN THE CHAPEL COMPILER

e Chapel’s high-level features enable the compiler to argue about locality
e Versions 1.23 and 1.24 added two new optimizations

Added in 1.23: Automatic Local Access
e Faster distributed array access in forall bodies

Added in 1.24: Automatic Copy Aggregation
e (Some) Remote array accesses in forall bodies use aggregated communication

2



"Perilous to us all are the devices
of an art deeper than we possess
ourselves."

Gandalf*

*The Lord of the Rings: The Two Towers, J.R.R. Tolkien

—

3



AUTOMATICLOCAL ACCESS




AUTOMATICLOCAL ACCESS

Introduction

var D = newBlockDom({1l..N});

var A: [D] int;

forall i in D do
A[l] = calculate (1) ;

With optimization

Access to A with index i is strength-reduced

Before: if Ali] is a local is checked during execution

e After: that check is avoided

—

Potential workarounds without the optimization

forall (a, 1) in zip (A, A.domain) do

a = calculate(1i);

forall i in A.domain do
A.localAccess (1)

= calculate (1) ;

5



AUTOMATICLOCAL ACCESS

Examples

var D = newBlockDom({1l..N});
var A: [D] int, B: [D] int;

forall i in D do the array is indexed using the loop index

| L optimized!
A[1] = 1;

the array has the same domain as the loop

forall 1 in D do

. . the arrays are indexed using the loop index
ALil = BT optimized!

e arrays have the same domain as the loop

forall 1 in A.domain do a 'he arrays are indexed using the loop index
optimized! L 9 P

AlL]l = Bl1l; loop is run over a domain query
the arrays have the same domain as the loop




AUTOMATIC LOCAL ACCESS
Dynamic Checks

e [f the compiler cannot determine the domain of an array:
e Equality of domains will be checked at execution time
e Depending on that, an optimized or unoptimized version of the loop will be run

var A = newBlockArr ({1..N}, int);
var B = newBlockArr ({1..N}, int); //wecan'tinfer'B' hasthe same domain as'A'
forall i in A.domain do
A[i] = calculate(B[i]),; //Blilislocalif A.domain == B.domain
// that can only be confirmed at execution time

e The compiler will clone loops if there are one or more dynamic candidates
e This might increase compilation time
« We have not observed noticeable compilation slowdowns in real use cases

—

7



AUTOMATICLOCAL ACCESS
Pitfalls

’ int ing ‘on’ stat 1]
There’s an infervening “on " statemen Array index is not the loop index

forall i in A.domain do
on lLocales[X] do forall i in A.domain {

A[l1] = calculate(1i); const k = 1i;
A[k] = calculate (i),

Zippered forall that uses packed index

Array is a forall intent
forall idx in zip (D, E) { }

forall (x, y) in zip(D, E) { } forall i in D with (ref A) do

= calculate(1);

8



AUTOMATICLOCAL ACCESS

Performance Impact 10 STREAM
: u = —
. . . 0.8
e Global STREAM with array indexing: 506 - —¢
g
O
forall i in ProblemSpace do 50-4 B
A[i] = B[i]+ alpha * C[i]; 02 —#— Automatic Local Access
' —— 1.22
OO 1 1 1 1 ]
32 64 128 256 512
. . . e Number of Locales(x 36 cores/locale)
now essentially performs like other idioms:
STREAM
forall (a, b, c¢) in zip (A, B, C) do =40 —#— Automatic Local Access
a = Db + alpha * c; o) —— 1.22
|_
—30 .
= £
or: 2 20 &
©
c
= 10
A = B + alpha * C;

32 64 128 256 512
Number of Locales(x 36 cores/locale)

— |

o




AUTOMATIC COPY AGGREGATION




AUTOMATIC COPY AGGREGATION

Introduction

var D = newBlockDom({1l..N}); With optimization
var B: [D] int; « Before: each remote access is a message
forall 1 in D do « After: data is buffered locally, moved in bulk

A[1l] = Blcalculate(1)];

Potential application-specific solution

forall i in D with (var agg = newSrcAggregator (A.eltType) {

S erhewdoymesmettident “aggregatr?
}

— |

11



AUTOMATIC COPY AGGREGATION

Examples

var D = newBlockDom({1l..N});
var A: [D] int, B: [D] int;

forall i in D do aggregafed! destination of copy is local

A[i] = BlcomputeIndex(1i)]; source of copy is likely not local

forall (a, i) in zip(A, 0..) do source is yielded by the first iterand, must be local

B[computeIndex(i)] = a; aggregafed! destination is likely not local

source is yielded by the second iterand
forall (i,a) in zip (A.domain, A) do

AlcomputelIndex(i)] = a;

but it is aligned with the first one

aggregated! destination is likely not local
— | =



AUTOMATIC COPY AGGREGATION
Pitfalls

Arbitrary operations are not aggregated

forall 1 in A.domain do

= Blcalculate (i) ] 3; -
Fully-local aggregation can hurt performance

forall 1 in A.domain do
A[i] = B[getALocallndex (i) ];

Only the last statement in the body is analyzed either don’t use --auto-aggregation,

. . or "trick” the locality analysis:
forall in A.domain {

A[i] = B[calculate(1i)]; forall i in A.domain {
D[calculate (1) ]; const k = i:

= Bl[getALocalIndex (i) ];




AUTOMATIC COPY AGGREGATION
Impact

» Bale indexgather benefits greatly from
aggregation

e ‘--auto-aggregation’ reaches the same
performance as the manual version

e No user effort is needed

indexgather

-9 Manual
600 _ =¥ Auto

- Benchmark kernel:

forall 1 in D2 do
tmp[i] = A[rindex[i]];

3264 128 256 512
Number of Locales

Aggregate Throughput
(GB/s)
N
3

—Benchmark kernel with manual aggregation:

forall 1 in D with (var agg = new SrcAggregator (int)) doj
agg.copy (tmp[i], Alrindex[i]]); |

— -



SUMMARY

Automatic Local Access

« Improves indexed access to distributed arrays in forall bodies
e On-by-default
— Some control flags: --no-auto-local-access, --report-auto-local-access, --no-dynamic-auto-local-access

Automatic Copy Aggregation
« Aggregates fine-grained copies in the last statements of forall bodies

o Off-by-default
- Some control flags: --auto-aggregation, --report-auto-aggregation

Future work
« Automatic atomic operation aggregation
« Improve worst-case performance of automatic copy aggregation
« Investigate extending support to arbitrary statements in forall bodies

—

15



THANK YOU

engin@hpe.com



