
LOCALITY-BASED
OPTIMIZATIONS IN THE
CHAPEL COMPILER
Engin Kayraklioglu, Elliot Ronaghan
CHIUW 2021 – June 4, 2021

• Chapel’s high-level features enable the compiler to argue about locality
• Versions 1.23 and 1.24 added two new optimizations

Added in 1.23: Automatic Local Access
• Faster distributed array access in forall bodies

Added in 1.24: Automatic Copy Aggregation
• (Some) Remote array accesses in forall bodies use aggregated communication

2

LOCALITY-BASED OPTIMIZATIONS IN THE CHAPEL COMPILER

3

"Perilous to us all are the devices
of an art deeper than we possess
ourselves."

Gandalf*

*The Lord of the Rings: The Two Towers, J.R.R. Tolkien

AUTOMATIC LOCAL ACCESS

With optimization

• Before: if A[i] is a local is checked during execution
• After: that check is avoided

Introduction

5

AUTOMATIC LOCAL ACCESS

var D = newBlockDom({1..N});
var A: [D] int;

forall i in D do
A[i] = calculate(i);

Access to A with index i is strength-reduced

Potential workarounds without the optimization

forall (a, i) in zip(A, A.domain) do
a = calculate(i);

forall i in A.domain do
A.localAccess(i) = calculate(i);

‘zip’ may not be intuitive

clunky way to access an array

distributed array access overheads

var D = newBlockDom({1..N});
var A: [D] int, B: [D] int;

forall i in D do
A[i] = i;

forall i in D do
A[i] = B[i];

forall i in A.domain do
A[i] = B[i];

6

AUTOMATIC LOCAL ACCESS

the array is indexed using the loop index

Examples

the array has the same domain as the loop

the arrays are indexed using the loop index

the arrays have the same domain as the loop

loop is run over a domain query

the arrays are indexed using the loop index

the arrays have the same domain as the loop

optimized!

optimized!

optimized!

Dynamic Checks

• If the compiler cannot determine the domain of an array:
• Equality of domains will be checked at execution time
• Depending on that, an optimized or unoptimized version of the loop will be run

var A = newBlockArr({1..N}, int);
var B = newBlockArr({1..N}, int); // we can't infer 'B' has the same domain as 'A'
forall i in A.domain do
A[i] = calculate(B[i]); // B[i] is local if A.domain == B.domain

// that can only be confirmed at execution time

• The compiler will clone loops if there are one or more dynamic candidates
• This might increase compilation time
• We have not observed noticeable compilation slowdowns in real use cases

7

AUTOMATIC LOCAL ACCESS

Pitfalls

8

AUTOMATIC LOCAL ACCESS

There’s an intervening `on` statement

forall i in A.domain do
on Locales[X] do
A[i] = calculate(i);

Array index is not the loop index

forall i in A.domain {
const k = i;
A[k] = calculate(i);

}

Array is a forall intent

forall i in D with (ref A) do
A[i] = calculate(i);

Zippered forall that uses packed index

forall idx in zip(D, E) { }

forall (x, y) in zip(D, E) { }

Performance Impact

• Global STREAM with array indexing:

forall i in ProblemSpace do
A[i] = B[i]+ alpha * C[i];

now essentially performs like other idioms:

forall (a, b, c) in zip(A, B, C) do
a = b + alpha * c;

or:

A = B + alpha * C;

9

AUTOMATIC LOCAL ACCESS

AUTOMATIC COPY AGGREGATION

With optimization

• Before: each remote access is a message
• After: data is buffered locally, moved in bulk

Introduction

11

AUTOMATIC COPY AGGREGATION

var D = newBlockDom({1..N});
var A: [D] int;
var B: [D] int;
forall i in D do
A[i] = B[calculate(i)];

Irregular access to B is copy-aggregated

Potential application-specific solution
forall i in D with (var agg = newSrcAggregator(A.eltType){
agg.copy(A[i], B[computeIndex(i)]);

}

fine-grained remote access causes overheads

but how do you write an efficient “aggregator”?

less expressive code

var D = newBlockDom({1..N});
var A: [D] int, B: [D] int;

forall i in D do
A[i] = B[computeIndex(i)];

forall (a, i) in zip(A, 0..) do
B[computeIndex(i)] = a;

forall (i,a) in zip(A.domain, A) do
A[computeIndex(i)] = a;

12

AUTOMATIC COPY AGGREGATION

destination of copy is local

Examples

source of copy is likely not local
aggregated!

source is yielded by the first iterand, must be local

destination is likely not localaggregated!

source is yielded by the second iterand

but it is aligned with the first one

destination is likely not localaggregated!

Pitfalls

13

AUTOMATIC COPY AGGREGATION

Arbitrary operations are not aggregated

forall i in A.domain do
A[i] = B[calculate(i)] + 3;

Only the last statement in the body is analyzed

forall i in A.domain {
A[i] = B[calculate(i)];
C[i] = D[calculate(i)];

}

Fully-local aggregation can hurt performance

either don’t use --auto-aggregation,
or ”trick” the locality analysis:

forall i in A.domain do
A[i] = B[getALocalIndex(i)];

forall i in A.domain {
const k = i;
A[k] = B[getALocalIndex(i)];

}

Impact

• Bale indexgather benefits greatly from
aggregation

• ‘--auto-aggregation’ reaches the same
performance as the manual version
• No user effort is needed

– Benchmark kernel:

– Benchmark kernel with manual aggregation:

14

AUTOMATIC COPY AGGREGATION

forall i in D2 do
tmp[i] = A[rindex[i]];

forall i in D with (var agg = new SrcAggregator(int)) do
agg.copy(tmp[i], A[rindex[i]]);

Automatic Local Access
• Improves indexed access to distributed arrays in forall bodies
• On-by-default

– Some control flags: --no-auto-local-access, --report-auto-local-access, --no-dynamic-auto-local-access

Automatic Copy Aggregation
• Aggregates fine-grained copies in the last statements of forall bodies
• Off-by-default

– Some control flags: --auto-aggregation, --report-auto-aggregation

Future work
• Automatic atomic operation aggregation
• Improve worst-case performance of automatic copy aggregation
• Investigate extending support to arbitrary statements in forall bodies

15

SUMMARY

THANK YOU
engin@hpe.com

