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ABSTRACT
In the recent releases, we have added two locality-based optimiza-
tions to the Chapel compiler. These optimizations enable the com-
piler to statically determine the locality of array accesses and ag-
gregate fine-grained copy operations. In this talk, we summarize
how they are implemented, their impact on various programming
idioms, associated performance improvements and pertinent future
directions.
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1 INTRODUCTION1

Chapel is a parallel programming language that supports parti-2

tioned global address space (PGAS) memory model. The PGAS3

model allows programmers to use a single address space, which4

improves productivity by making all available system memory ac-5

cessible by every locale without explicit communication. Chapel6

combines the PGAS memory model with other high-level concepts7

such as distributed arrays and data parallel distributed loops to cre-8

ate an expressive programming language. However, this paradigm9

is prone to writing code with poor performance and scalability10

because of implicit communication.11

On the other hand, common programming idioms represented12

by Chapel’s first-class, high-level language concepts also enable the13

compiler to make automatic optimizations that would be impossible14

in low-level paradigms such as message passing. This talk focuses15

on two such optimizations that significantly mitigate common per-16

formance overheads with no programmer effort.17

Both optimizations that this talk covers are in the Chapel 1.2418

release, and can be readily used by the programmers.19

2 AUTOMATIC LOCAL ACCESS20

Accesses to Chapel arrays are implemented with a method named21

this on the array type that is automatically called by the compiler.22

A simplified implementation of this for a distributed array type is23

shown in Listing 1.24

1 proc this(idx) {25

2 if isLocalIndex(idx) then26

3 return localAccess(idx);27

4 else then28

5 return nonLocalAccess(idx);29

6 }30

Listing 1: A Simplified Implementation of Distributed Array
Access

Note that, in line 2, the implementation checks whether idx is31

local, because if that is the case, the local data can be accessed in a32

much faster manner. However, this check itself has some small but33
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noticeable overhead. Consider a STREAM-Triad implementation in34

Chapel that uses indexed access into distributed arrays, as shown35

in Listing 2.36

1 use BlockDist;37

238

3 var D = newBlockDom (1..n);39

4 var A: [D] int ,40

5 B: [D] int ,41

6 C: [D] int;42

743

8 forall i in A.domain do44

9 A[i] = B[i] + alpha * C[i];45

Listing 2: STREAM kernel with indexed access

In this snippet, the three distributed arrays are accessed by index46

in the forall loop body, and they would normally incur the locality47

checks as discussed above. However, these checks can be avoided48

because:49

• The forall loop will distribute the work in the same way50

the loop domain (A.domain) is distributed51

• All arrays are distributed the same way as the loop domain52

is distributed53

• All three distributed arrays are accessed at the ith index,54

which is the loop index55

Starting in Chapel 1.23, the compiler is able to make this analysis56

in cases like the above. Moreover, it can also transform the code to57

do a once-per-loop dynamic check to use localAccess automati-58

cally if only a subset of the requirements can be proven at compile59

time.60

Figure 1 shows how this optimization improves STREAM per-61

formance, where the kernel is implemented similarly to the one in62

Listing 2, With this optimization, indexed STREAM performs about63
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twice as fast, reaching the limits of the system. This performance64

is virtually identical to other idioms that do not use indexed access65

into distributed arrays.66

3 AUTOMATIC COPY AGGREGATION67

Another common overhead in languages with a PGAS memory68

model occurs due to fine-grained communication. In some cases69

where the fine-grained access is predictable, caching and/or prefetch-70

ing the remote data can help mitigate some of these overheads.71

However, especially in cases where the remote data is accessed72

randomly, such approaches are generally not very impactful. A73

solution for these scenarios is aggregating the communication and74

transferring data in bulk with fewer messages.75

Listing 3 shows a simplified version of the index_gather kernel76

from the bale effort [1].77

1 var cycArr = newCyclicArr (...);78

2 var blockArr = newBlockArr (...);79

380

4 fillRandom(blockArr );81

582

6 var tmp: [blockArr.domain] int;83

784

8 forall i in blockArr.domain do85

9 tmp[i] = cycArr[blockArr[i]];86

Listing 3: Simplified Sketch of the index_gather Kernel

The forall loop iterates over a block-distributed domain, while87

copying data from a cyclic-distributed array into a block-distributed88

one. This element-wise, random-access copy operation causes fine-89

grained communication. However, this operation can be done in90

an aggregated fashion because:91

• temp[i] (and blockArr[i]) are local accesses because the92

forall is over the same domain as theirs. Furthermore, this93

will be recognized as such by the automatic local access94

optimization that was discussed above,95

• Individual copy operations that will execute at each itera-96

tion of the, loop can be reordered without impacting the97

application behavior.98

Starting in Chapel 1.24, the compiler is able to perform this99

analysis and use aggregation in these scenarios. This optimization100

relies heavily on other compiler capabilities and module-level opti-101

mizations developed before. The aggregation is facilitated through102

module-level aggregation objects that were designed for this study103

and have been used in Arkouda [2] in similar scenarios. Therefore,104

the required AST transformation for this optimization is relatively105

small. On the other hand, the Chapel compiler already had some106

analysis to check for safety of unordered execution in similar cases107

that enabled unordered forall optimization. Automatic aggregation108

relies on that analysis to make aggregation decisions.109

Figure 2 shows that without any optimization, this benchmark110

does not scale (light blue). Unordered forall optimization, firing111

automatically with no user effort, improves performance by en-112

abling out-of-order communication (medium blue). Finally, manual113

aggregation (dark blue) and automatic aggregation (solid green)114
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perform very similarly and much better than the other versions,115

where the latter does not require any user effort, at all.116

4 CONCLUSION117

This work covers automatic local access and automatic aggregation118

optimizations that were implemented in the Chapel compiler in the119

recent releases. The talk gives a brief overview on how they are120

implemented and how Chapel’s high-level features enable them.121

It demonstrates different idioms where such optimizations do and122

do not fire. Finally, it concludes by discussing potential future im-123

provements.124
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