
PLANNED IMPROVEMENTS TO THE CHAPEL 
COMPILER

Michael Ferguson, HPE
June 4, 2021



COMPILER IMPROVEMENTS: 
OUTLINE

• Where We Are
• Missing Features
• Proposed Direction
• Progress Report



WHERE WE ARE



• Speed
• The current compiler is generally slow, and extremely so for large programs (~7s to 15 minutes)

• Structure and Program Representation
• The compiler is structured only for whole-program analysis, preventing separate/incremental compilation
• Unclear how to integrate an interpreter, provide IDE support, or ‘eval’ Chapel snippets

• Development
• The modularity of the compiler implementation needs improvement
• There is a steep learning curve to become familiar with the compiler implementation

4

PROBLEMS WITH THE CURRENT COMPILER



• The current compiler code base has enabled the design and evolution of Chapel to date
• The compiler includes key optimizations that support program performance
• The compiler is relatively fast to build and very portable
• Chapel’s internal and library modules are extensive and largely independent of the compiler
• The runtime libraries are well-architected and not in need of major changes

5

WHAT IS WORKING WELL



6

SUMMARY OF CURRENT COMPILER PASSES

pass time for Hello World time for Arkouda approx lines of .cpp

parse+ 0.5s 0.8s 10,000 lines

scopeResolve 0.4s 0.7s 4,500 lines

normalize+ 0.9s 2.2s 9,000 lines

resolve 2.0s 165s 35,000 lines

post-resolve 0.3s 16s 16,000 lines

lowerIterators 0.1s 7.1s 6,000 lines

parallel 0.1s 17s 2,000 lines

optimization 0.5s 46s 7,000 lines

insertWideRefs+ 0.1s 15s 6,000 lines

codegen 0.5s 48s 20,000 lines

makeBinary 1.1s 422s -

TOTAL OF ABOVE 6.0s 724s 114,000 lines

TOTAL 6.4s 743s 170,000 lines in ‘compiler/*’



MISSING FEATURES



• Some commonly requested features:
• IDE support (beyond syntax highlighting)
• Separate and/or incremental compilation

• Good IDE integration requires the compiler to
• behave more like a server
• respond quickly to limited queries (e.g. code completion or mouse-over)

• Incremental compilation and separate compilation require
• a more flexible compiler that can instantiate some generics but re-use other instantiations

• Compiler architecture improvements can make these problems easier to solve

8

MISSING FEATURES



PROPOSED DIRECTION



10

IMPROVED COMPILER ARCHITECTURE

source
mostly 

immutable 
AST

parse resolve
AST + maps of 
type & named 

symbol
lower mutable IR

progressive lowering,
mostly function-at-a-time

“Responsive Compiler”

• At a very high level, this design is similar to other compilers
• Swift, Rust, Julia, Flang use the pattern:

• parse → AST → mid-level IR (and progressively lower)
• Earliest part of compilation is most relevant for IDE integration

• so is designed to be very incremental

“Mid Level IR”



• Create a new AST more faithful to source code for early passes

• Develop a new pass architecture with less rigid ordering
• make passes typically run per-function rather than whole-program and otherwise be idempotent

• Convert the new AST into the old AST to enable incremental development

• Gradually port later passes over to a new IR more suited for optimization

11

CHANGES TO GET TO IMPROVED ARCHITECTURE 



• Matsakis’ talk, Responsive Compilers1, presents a vision for good IDE support:
• highly incremental and demand-driven—just process enough to answer a query

– e.g., how to complete newBlock<tab>
– fast response times are key for a satisfying experience

• The strategy relies on:
• structuring compilation in terms of many fine-grained queries

– e.g., what is the type of this variable?
• framework uses these queries to manage dependencies among results
• each query saves its result and is re-run when necessary
• query results are represented separately from the input—which tends to mean a lot of maps
• AST elements are given IDs to support these maps

12

RESPONSIVE COMPILERS

1 – Responsive Compilers, Nicholas Matsakis, PLISS 2019



• parse(filePath) → AST for file (which also establishes IDs)
• locate(AST) → (line number, column number)

• getDefinedIn(Expr, name) → Symbols defined in ‘Expr’ named ‘name’
• getVisible(Expr, name) → Symbols visible from ‘Expr’ named ‘name’
• types(Expr) → map from Symbols to Types for Symbols defined in ‘Expr’
• resolve(Expr) → map from Identifiers to Symbols they refer to

13

RESPONSIVE COMPILER QUERIES



14

FUTURE COMPILER ARCHITECTURE

source uAST
parse resolve

uAST + maps 
of type & 

named symbol
lower

oAST
(future: MLIR)

progressive lowering,
mostly function-at-a-time

“Responsive Compiler” “Mid Level IR”



PROGRESS REPORT



• Developing new code as a library

• New uAST nodes have 
documentation!

• These features will enable 
community members to 
contribute Chapel tools

• Library Use Cases:
• Linter
• Documentation tools
• IDE integrations

16

COMPILER LIBRARY



• Part-way through implementing the new uAST, parsing it, and translating it into the old AST
• Have demonstrated incremental re-compilation with simple examples

17

IMPLEMENTATION PROGRESS

prompt % testInteractive mymodule.chpl

mymodule.chpl:3: error: 'writeln' undeclared (first use this function)
Module M:
Module 0x7fc962406250 M
Function M 0x7fc962406140 f
FnCall M.f@1 0x7fc9624060a0
Identifier M.f@0 0x7fc962406020 writeln

Would you like to incrementally parse again? [Y]:

// mymodule.chpl

module M {
proc f() {
writeln();

}
}



18

QUESTIONS?

source uAST
parse resolve

uAST + maps 
of type & 

named symbol
lower

oAST
(future: MLIR)

progressive lowering,
mostly function-at-a-time

“Responsive Compiler” “Mid Level IR”



THANK YOU
https://chapel-lang.org
@ChapelLanguage


