 E—

Hewlett Packard
Enterprise

PE

K~ -ZZ- £
e 7

: 1 " . U S S e 5 5 7
= T S LS - z J - .
- g . o N e =3 P o O
- - - ; ey 3 - &
o~ ¥ T, Al i .
- P’ 29 v : :
5 T & o
g ’f ,;' ' b
’ ¥
N

PR y
7 R
’\

COMPILER

Mlchael Ferguson HP
June 4, 2021

COMPILER IMPROVEMEN"S
OUTLINE

» Where We Are
. Missihg Features

'« Proposed Direction
e Progress Report

PROBLEMS WITH THE CURRENT COMPILER

e Speed
o The current compiler is generally slow, and extremely so for large programs (~7s to 15 minutes)

e Structure and Program Representation

o The compiler is structured only for whole-program analysis, preventing separate/incremental compilation
« Unclear how to integrate an interpreter, provide IDE support, or ‘eval’ Chapel snippets

e Development
e The modularity of the compiler implementation needs improvement
o There is a steep learning curve to become familiar with the compiler implementation

4

WHAT IS WORKING WELL

e The current compiler code base has enabled the design and evolution of Chapel to date

e The compiler includes key optimizations that support program performance

e The compiler is relatively fast to build and very portable

e Chapel’s internal and library modules are extensive and largely independent of the compiler
e The runtime libraries are well-architected and not in need of major changes

5

SUMMARY OF CURRENT COMPILER PASSES

pass time for Hello World time for Arkouda approx lines of .cpp
parse+ 0.5s 0.8s 10,000 lines
scopeResolve O.4s 0.7s 4,500 lines
normalize+ 0.9s 2.2s 9,000 lines

resolve 2.0s 165s 35,000 lines
post-resolve 0.3s 16s 16,000 lines
lowerlterators 0.1s 7.1s 6,000 lines

parallel 0.1s 17s 2,000 lines
optimization 0.5s Lbs 7,000 lines
insertWideRefs+ 0.1s 15s 6,000 lines

codegen 0.5s 48s 20,000 lines
makeBinary 1.1s 422s -

TOTAL OF ABOVE 6.0s 724s 114,000 lines
TOTAL 6.4s 743s 170,000 lines in ‘compiler/*

MISSING FEATURES

e Some commonly requested features:
 IDE support (beyond syntax highlighting)
» Separate and/or incremental compilation

e Good IDE integration requires the compiler to
» behave more like a server

« respond quickly to limited queries (e.g. code completion or mouse-over)

» Incremental compilation and separate compilation require
« a more flexible compiler that can instantiate some generics but re-use other instantiations

o Compiler architecture improvements can make these problems easier to solve

PROPOSED DI

IMPROVED COMPILER ARCHITECTURE

/ “Responsive Compiler” \

mostly AST + maps of
source immutable type & named
AST symbol

e At a very high level, this design is similar fo other compilers
e Swift, Rust, Julia, Flang use the pattern:
e parse — AST — mid-level IR (and progressively lower)
e Earliest part of compilation is most relevant for IDE integration
50 is designed to be very incremental

—

/ “Mid Level IR” \

M

progressive lowering,
mostly function-at-a-time

IlO

CHANGES TO GET TO IMPROVED ARCHITECTURE

e Create a new AST more faithful to source code for early passes

e Develop a new pass architecture with less rigid ordering
« make passes typically run per-function rather than whole-program and otherwise be idempotent

e Convert the new AST into the old AST to enable incremental development

e Gradually port later passes over to a new IR more suited for optimization

— .

RESPONSIVE COMPILERS

o Matsakis’ talk, Responsive Compilers?, presents a vision for good IDE support:

 highly incremental and demand-driven—just process enough to answer a query
—e.g., how to complete newBlock<tab>
—fast response times are key for a satisfying experience

e The strategy relies on:
structuring compilation in terms of many fine-grained queries

—e.g., what is the type of this variable?
framework uses these queries to manage dependencies among results

each query saves its result and is re-run when necessary

query results are represented separately from the input—which tends to mean a lot of maps
AST elements are given IDs to support these maps

: 1 - Responsive Compilers, Nicholas Matsakis, PLISS 2019 | 12

RESPONSIVE COMPILER QUERIES

e parse(filePath) — AST for file (which also establishes IDs)
e locate(AST) — (line number, column number)

e getDefinedIn(Expr, name) — Symbols defined in ‘Expr’ named ‘name’

e getVisible(Expr, name) — Symbols visible from ‘Expr’ named ‘name’

e types(Expr) — map from Symbols to Types for Symbols defined in ‘Expr
e resolve(Expr) — map from Identifiers to Symbols they refer to

’

— .

FUTURE COMPILER ARCHITECTURE

“Responswe Compiler”

=~“~

uAST + maps
of type &

named symbol

/ “Mid Level IR” \

oAST
(future: MLIR)

progressive lowering,
mostly function-at-a-time

|14

COMPILER LIBRARY

_ Compllerinternals = Chapel £ X

c [3fiIe:///Users/mferguson/w/master/buiId/doc/html/compiIer-internals/index.html E o O v oINn @ ©. =

e Developing new code as a library €

e New UAST nodes have
documentation!

e These features will enable
community members to
contribute Chapel tools

e Library Use Cases:
e Linter
« Documentation tools
 IDE integrations

—

Search docs

APILING AND RUNNING CHAPEL
Quickstart Instructions
Using Chapel
Platform-Specific Notes
Technical Notes

Tools

WRITING CHAPEL PROGR
Quick Reference

Hello World Variants
Primers

Language Specification
Built-in Types and Functions
Standard Modules

Package Modules

Standard Layouts and Distributions

Mason Packages

Chapel Users Guide (WIP)

LANGUAGE HISTOR
Chapel Evolution

Documentation Archives

IPILER INTERNALS

class While: public chpl::uast::Loop

#include <While.h>
This class represents a while loop. For example:

// Example 1:

var i = 0;

while i < 5 {
writeln(i);
i+=1;

}

Public Functions

~While() override = default

inline const Expression *condition() const

Return the condition of this while loop.

Public Static Functions

static owned<While> build(Builder *builder, Location loc, owned<Expression> condition,
ASTList stmts, bool usesImplicitBlock)

Create and return a while loop.

class WithClause : public chpl::uast:Expression

#include <WithClause.h>

This class represents a with clause. For example:

// Example 1:
forall myRange with (var x = 0) {
writeln(x);

}

X | Qinherited A | v | Highlight All

Match Case Match Diacritics Whole Words 17 of 29 matches

IMPLEMENTATION PROGRESS

e Part-way through implementing the new uAST, parsing it, and franslating it into the old AST
» Have demonstrated incremental re-compilation with simple examples

// mymodule.chpl prompt % testInteractive mymodule.chpl
module M { mymodule.chpl:3: error: 'writeln' undeclared (first use t
proc f£ () { Module M:
writeln () ; Module 0x7fc962406250 M
} Function M 0x7fc962406140 £
} FnCall M.f@1 0x7fc9624060a0

ITdentifier M.f@0 0x7fc9624006020 writeln

Would you like to incrementally parse again? [Y]:

QUESTIONS?

“Responswe Compiler”

=~“~

uAST + maps
of type &

named symbol

/ “Mid Level IR” \

oAST
(future: MLIR)

progressive lowering,
mostly function-at-a-time

|18

.'.

THANKYOU

A : o P
| A P

h’r’rps;//chape|'|an9-0ri |
@ChapelLanguage

