
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Planned Improvements to the Chapel Compiler
Michael P. Ferguson

Hewlett Packard Enterprise
USA

michaelferguson@acm.org

ABSTRACT
The current architecture of the Chapel compiler makes it difficult to
add new features such as separate compilation and IDE integration
that are frequently requested by Chapel users. This talk will discuss
plans for an improved compiler architecture that can better support
these features.

KEYWORDS
compiler architecture, chapel, parallel programming

1 INTRODUCTION
The Chapel compiler has supported the development of the Chapel
language and enables high performance applications. However it
can be difficult to work with due to long compile times, limited
error reporting, lack of Integrated Development Environment (IDE)
integration, and missing support for separate compilation. Addi-
tionally, there is a steep learning curve to become familiar with the
compiler implementation.

One cause of these problems is the structure of the Chapel com-
piler itself. Both the program representation and the pass structure
need improvement.

The compiler uses an Abstract Syntax Tree (AST) representation
to represent programs throughout compilation. It uses this AST
representation until LLVM Intermediate Representation (LLVM IR)
[3] or C source code is generated. Since the same AST classes need
to represent programs at many different points in compilation, these
AST nodes have different constraints at different moments during
compilation. This fact makes it difficult to understand all of the
assumptions embedded in the AST or even to document them. This
AST representation is not particularly well suited for traditional
analyses needed for optimization such as alias analysis. In addition,
this AST representation is only really intended to aid the compiler
and it isn’t suitable for tools such as a linter or semantic highlighter.

In terms of pass structure, the compiler divides the task of compi-
lation into 41 passes. Each of these passes operates in order across
the whole program and mutates the AST in-place to achieve its
goals. This pass structure makes it difficult to extend the compiler
into other use cases such as IDE integration.

2 IDE INTEGRATION
Integrated Development Environment (IDE) integration is a fre-
quently requested feature from Chapel users. The Jupyter system
[1] and the Language Server Protocol [2] are two example systems
that enable compilers to support IDE integration across many ed-
itors. When combined with an appropriate program editor, these
systems enable productivity-enhancing operations such as seman-
tic highlighting, code completion, and explaining some program
context on mouse-over.

To support IDE integration, the Chapel compiler will have to
become more like a server than a program that processes some
input files and produces some output files. While this server is
running, it will need to have the ability to respond to small queries
from the user as quickly as possible.

3 SEPARATE COMPILATION
Separate compilation for Chapel is challenging because there are
generic functions and no equivalent to header files. However, it is
possible to still have a form of separate compilation by redefining
compile and link from what they historically mean in C-like lan-
guages. In particular, compile can include generic code in a library
and link can instantiate this generic code.

Implementing such a separate compilation strategy is difficult in
the current compiler because:

• the compile step needs to be able to compile a library without
also compiling its dependencies, but currently the compiler
can only operate as a whole-program compiler.

• the link step should not go through the entire compilation
process; rather it should focus on instantiating any newly
needed generics, connecting function calls to their concrete
implementations, and generating dispatch tables.

Improving the compiler architecture can help to make adding
these features easier.

4 PLANNED ARCHITECTURE
IMPROVEMENTS

To improve the situation, we are planning to migrate the compiler
to a new architecture. The new architecture will divide compilation
into three phases:

• a Responsive Compiler phase
• a mid-level IR phase
• a low-level IR phase

The Responsive Compiler phase is focused on interactivity and
incremental compilation. It is based on a talk describing elements
of the Rust compiler [4]. In this phase, compilation proceeds by
computing the results of side-effect-free queries. These queries will
depend on other queries and a framework will manage re-using
query results when possible. This strategy will be new to the Chapel
compiler.

A mid-level IR is a program representation that is not as high-
level as ASTs but still higher level than something like LLVM. Swift,
Rust, and Julia compilers use mid-level or high-level IRs [5]. At the
same time, most of the passes within the existing Chapel compiler
could be considered operating on a mid-level IR. However in the
future we hope to improve the program representation and pass
structure by migrating this portion of the compiler to MLIR [5].

1



Michael P. Ferguson

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Even before we do that, we will need to adjust these passes to
process a function at a time.

Finally, the compiler will generate a low-level IR and perform
optimizations on it as it does now. Using [3] as this low-level IR has
the benefit of the compiler being able to use and control a variety
of optimizations.

5 BUILDING A COMMUNITY OF COMPILER
DEVELOPERS

As it stands now, the Chapel compiler is difficult enough to get
familiar with that it is rare that a new contributor to the Chapel
project will be able to do something with the compiler.

While improving the compiler architecture, this project aims to
improve this situation in three ways.

First, the new development for the first part of the Chapel com-
piler will focus on creating a library for Chapel compilation. That
way, community members can use this library to implement their
own tools that work with Chapel source code, such as linters, code
refactoring tools, and IDE integrations.

Second, the library for Chapel compilation will include API doc-
umentation that is generated from source code comments. That
way, this documentation is less likely to go out of date. The aim is
to include this compiler API documentation on the main Chapel
documentation page.

Third, the other phases of compilation will rely more on MLIR
and LLVM. These are technologies that community members in-
terested in compilers may already be familiar with. By using them
more in the construction of the Chapel compiler, we can reduce
the barrier to entry for compiler developers in the community to
contribute to the Chapel compiler.

6 CONCLUSION
We are beginning a focused effort towards improving the archi-
tecture of the Chapel compiler. We are expecting the improved
compiler to be more equipped to address feature requests of IDE in-
tegration and separate compilation. Additionally, we hope that this
improved compiler will form a good foundation for future efforts
and support a growing community of compiler developers.

REFERENCES
[1] 2021. Jupyter Client 6.2. https://jupyter-client.readthedocs.io/
[2] 2021. Language Server Protocol. https://microsoft.github.io/language-server-

protocol/
[3] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for

Lifelong Program Analysis and Transformation. San Jose, CA, USA, 75–88.
[4] Nicholas Matsakis. 2019. Responsive Compilers talk at PLISS 2019. https://www.

youtube.com/watch?v=N6b44kMS6OM
[5] Tatiana Shpeisman and Chris Lattner. 2019. MLIR: Multi-Level Intermediate

Representation Compiler Infrastructure. https://llvm.org/devmtg/2019-04/slides/
Keynote-ShpeismanLattner-MLIR.pdf

2

https://jupyter-client.readthedocs.io/
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://www.youtube.com/watch?v=N6b44kMS6OM
https://www.youtube.com/watch?v=N6b44kMS6OM
https://llvm.org/devmtg/2019-04/slides/Keynote-ShpeismanLattner-MLIR.pdf
https://llvm.org/devmtg/2019-04/slides/Keynote-ShpeismanLattner-MLIR.pdf

	Abstract
	1 Introduction
	2 IDE Integration
	3 Separate Compilation
	4 Planned Architecture Improvements
	5 Building a Community of Compiler Developers
	6 Conclusion
	References

