Towards Ultra-scale Exact Optimization Using
Chapel

T. Carneiro, N. Melab

Inria Lille — Nord Europe, CNRS - CRIStAL
Parallel Computing & Optimisation Group (PCOG) — University of

Luxembourg

Goeia NN



Context: tree-based search algorithms

e e.g., Backtracking and B&B

Active Set * 4 operators
@ @ @ @ @ — Branching, Bounding, Pruning, and
@I Selection (DFS, BFS, ...)
@ —> @ * Major properties of the search tree
— Very large
@ @ X — Billions of tree nodes

— @ X — Highly dynamic (pruning+branching)

Branch  Evaluation - Unpredictable

— Highly irregular tree (pruning)

— ... in shape and size
—  95% of tree nodes are pruned



Overall objectives

= Revisit the design and implementation of parallel tree-based search for
solving big permutation-based COP to optimality on “ultra-scale”
supercomputers dealing with ...

* Dboth scalability and heterogeneity ...

e ... with productivity-awareness.
B&B applied to BOPs
e.g. FSP (50§,20m) Supercomputer (e.g. Jean-Zay (IDRIS)

10°* sub-problems 85.000+ CPU cores, 2.696 V100 GPUs

estg

Branching Bounding  Pruning

kT @ O>i=>%

Selection: returns next node to process,
e.g. depth-first




Research questions

e Research questions:

o Which HPC programing language/environment favors both productivity
and performance?

o How to address scalability and heterogeneity while keeping
productivity?



What do we expect from high-productivity lang.?

* Performance
—  Competitive to both C-OpenMP and MPI+X

e Interoperability with C
— Legacy code (e.g, instance generator)
—  Complex code (e.g., bounding function)

—  Using accelerators (e.g., CUDA)

e Distributed programming features
—  One-sided communication
—  Hide the communication aspects (PGAS)
—  Work distribution



Prototype multi-locale tree search in Chapel

e Is Chapel feasible for irregular tree search?
—  Prototype application.
—  Incrementally conceived from a multicore one
—  Chapel high-level features for distributed programming
— Load balancing, using distributed iterators

—  The simplest permutation-based: N-Queens problem

* Objectives:

—  Performance vs. MPI+OpenMP

—  Programming cost vs. MPI+OpenMP

—  Scalability vs. MPI+OpenMP

—  Extend it for solving a more difficult problem




A PGAS-based tree search algorithm

Partial search generates an initial load (pool data structure)

—  Then, the parallel search takes place

Algorithm 1: The Master-worker scheme.

P

N < get_problem( )
2 cutoff < get_cutof f_depth( )
3 second_cutof f < get_scnd_cutof f_depth( )

4 P « {} Node
5 metrics < (0,0)
6 metrics + = initial_search(N, cutof f, P)

7 Size < {0..(|P|—1)} // Domain
8 D <« Size mapped onto locales to a standard distribution
9 P; < [D] : Node

10 Pj = P // Using implicit bulk-transfer

11 forall node in P, following a distributed iterator with(+ reduce

metrics) do
12 metrics + = Search(N,node, cutof f,
13 second_cutof f)
14 end

15 present_results(metrics)




A PGAS-based tree search algorithm

Partial search generates an initial load (pool data structure)

—  Then, the parallel search takes place

Algorithm 1: The Master-worker scheme.

P

N < get_problem( )
2 cutoff < get_cutof f_depth( )
3 second_cutof f < get_scnd_cutof f_depth( )

4 P « {} Node
5 |metrics < (0,0)
6 \metrics + = initial_search(N, cutof f, P)

7 Size < {0..(|P|—1)} // Domain
8 D <« Size mapped onto locales to a standard distribution
9 P; < [D] : Node

10 Pj = P // Using implicit bulk-transfer

11 forall node in P, following a distributed iterator with(+ reduce

metrics) do
12 metrics + = Search(N, node, cutof f,
13 second_cutof f)
14 end

15 present_results(metrics)




A PGAS-based tree search algorithm

Partial (initial) search:

—  From depth 1 until the cutoff depth (cutoff <= N)

Task O

(locale 0)§

([1-2-3] [1-2-4] [1-2-5] |1-5-2|J

Pool of nodes (P)




‘A PGAS-based tree search algorithm

Partial (initial) search:

—  From depth 1 until the cutoff depth (cutoff <= N)

Task O Serial, on locale O - task O
(locale 0)

([1-2-3] [1-2-4] [1-2-5] |1-5-2|J

Pool of nodes (P)




A PGAS-based tree search algorithm

Partial (initial) search:

—  From depth 1 until the cutoff depth (cutoff <= N)

Task O Serial, on locale O - task 0
(locale 0)§
: e Stores all feasible, valid

and incomplete
solutions of size cutoff.

Cutoff = 3

[[1-2-3] [1-2-4] [1-2-5] |1-5-2|J
Pool of nodes (P)




A PGAS-based tree search algorithm

Then, parallelism is added though a forall statement

— Noneed for explicit communication for work distribution and metrics
reduction.

Algorithm 1: The Master-worker scheme.

P

N < get_problem( )
2 cutoff <« get_cutof f_depth()
3 second_cutof f < get_scnd_cutof f_depth( )

4 P < {} Node

5 metrics < (0,0)

6 metrics + = initial_search(N, cutof f, P)
7 Size < {0..(|P|—1)} // Domain

8 D < Size mapped onto locales to a standard distribution
9 P; < [D] : Node

10 Pj = P // Using implicit bulk-transfer

11 forall node in P, following a distributed iterator with(+ reduce
metrics) do

12 metrics + = Search(N, node, cutof f,

13 second_cutof f)

14 lend

15 present_results(metrics)




A PGAS-based tree search algorithm

Distributed

level

Task O, Locale O

PGAS-based Pool

B New requests

Task 1, locale 0
Local pool

\&‘@‘:W
N

ew requests

Metrics/Solutions

Task 2
Local Active Set

eSS

L@%J

N

(Task n-1

Local Active Set

XTI

L.{;J

Metrics/Solutions

&

B\

Intra-node level

Locale L-1 (1.ck 0, locale L-1
Local pool
o
g

2 O
< 0
X
o
> o@//Metﬂcs/Soluﬂons
New requests

EN

Task 1 )
Local Active Set

G%J

S

Task n-1

Local Active Set

SSS

N\

ﬂégq

Centralized pool of nodes




First multi-locale implementation: N-Queens

PGAS approach is close to its high-level representation

Méi Init(NULL, NULL); const Space = {0..(number_nodes-1)};
MPI_Comm_rank (MPI_COMM_WORLD, &proc_id); const D: domain(1) dmapped Block(boundingBox=Space) = Space;
MPI_Comm_size (MPI_COMM_WORLD, &num_procs); var A_d: [D] queens_node;

MPI_Get_processor_name(processor_name, &name_len);
. metrics += queens_initial_search(size,initial_depth,A);
int r_start = range_start(proc_id,survivors,num_procs);
int r_end = range_end(proc_id,survivors, num_procs);
int chunk = get_mpi_chunk(proc_id,survivors,num_procs);

forall idx in distributedDynamic(c=Space, chunkSize=chunk) with (+
< reduce metrics) do
metrics += queens_node_exporer(size,initial_depth,A_d[idx]);

local_metrics += queens_initial_search(....);

#pragma omp parallel for ... schedule(dynamic) reduction(+...)
for(int idx = r_start; idx<r_end ;++idx)

. PGAS Model (Chpl)
MPI_Reduce(...);

MPI_Reduce(...);

MPI_Finalize();

Distributed memory
(MPI1+OpenMP)



N-Queens

First multi-locale implementation

cores/24 threads). Infiniband network.

44444444

AP ..U . . s s s

19

32 locales: 384 cores/768 threads. two Intel Xeon X5670 @ 2.93 GHz (total of 12
35

N . (00)
- —
B N~
—
BOOOET
i —
ool
SIEc® O
© -5 m
c
| L LN
594 :
=L 8.5
o <
=0
@)
| | | | | |
o LN o LN o LN o
M AN Q] — —
(sowin) dnpaads

Instance



N-Queens

First multi-locale implementation

cores/24 threads). Infiniband network.

1%

XX

32 locales: 384 cores/768 threads. two Intel Xeon X5670 @ 2.93 GHz (total of 12
35

m — m — DO |
s
i SRS
SIEc® O
©-5i-E
B B RO Te!
AL 2 —
=L 8.5
o <
=0
@)
| | | | | |
o LN o LN o LN o
M AN Q] — —
(sowin) dnpaads

Instance



Improving intra-node parallelism

= Compiler-generated intra-node code is efficient for regular/weakly
irregular applications.

= e.g. Backtracking applied to NQueens [Carneiro and Melab, HPCS'2019]

= ... butnot for highly irregular applications (e.g. B&B applied to FSP)
] Work units are coarse-grained (highly irregular)

] Intra-node parallelism should be hand-defined



Improving intra-node parallelism

= Bi-level intra-node parallelism

* The task chunk is decomposed (2"¢ cutoff depth)
"] Local task pool distributed according to Dynamic WP

PGAS-based Pool

Task 0, Locale 0

Localex L aax

-----
Task 0, locale x

Local pool
o ==

Nested parallelism
implemented by hand




Improving intra-node parallelism

» Compiler-generated intra-node code is efficient for regular/weakly
irregular applications.

= e.g. Backtracking applied to NQueens [Carneiro and Melab, HPCS'2019]

= ... butnot for highly irregular applications (e.g. B&B applied to FSP)
] Work units are coarse-grained (highly irregular)

] Intra-node parallelism should be hand-defined

6 I ' ' ' '
Default8 Defaultx: Built-in
[— i
5 _l Improved |

~

N

L8

ta22 ta23 ta25 ta27 ta30
Instance

Normalized Time
W

=

o



Problem Instances

= FSP Instances
* 9 Taillard’s instances, N=20 jobs on M=20 machines
* Ranked according to their complexity (#decomposed sub-problems)
* Vs. an MPI+Pthreads state of the art B&B [Gmys et al. 2019]

Solution=(3,4,2,1) ~ Min Makespan
Instance-# 22 23 24 25 26 27 28 29 30
NN.p; (10%) 711 37200 71876 5208 11392 1854 12285 3018 111
Trp: (sec) 120 6400 11460 970 1750 320 2100 490 20




Chapel-BB vs. MPI-PBB: execution time

= For big instances, Chapel-BB is slightly faster/equivalent than/to MPPI-PBB
with 32 locales (1024 cores)

1 . 2 X3 4 mam 8 71 16 32 XX MPl —
4.5 | | | | | | | | |
4 ................... -
g 35 L -
_F 3 L -
T 25+ -
N =
= 15 % § ]
=2 1 2 ) =
0.5 | s % % % |
O <]

ta30 ta22 ta27 ta29 ta2b ta26|ta28 ta23 ta24
Instance




Chapel-BB vs. MPI-PBB: scalability

= Speed-ups from 24.5% to 85% of the linear one on 32 locales

= For small instances, not enough work to feed the locales

2 Zl 4 W 8 X3 16mm 32 &X& Lin — MPI x
| | | | | | | | |
100 ' ‘ —

’% %) XX, ><><><><>< ><>°<><>< 5x><><>< XX XX >/<><><><x fxxxx ;XXXX
GCJ 80 B ><>< & q % d | |
= X P [] d q g
ke 1 % L d % } d .:
= N g Y 1 ’ q 0 |
5 60 d % ) 0 |
2 L/ B
c X q 1 a |
= . — % <
- 40 L/ i g |
5 V1 ) I
o) < 9
O i B o |
o 20 q %
ok B o |
3 B

) 4

% s |

O < J /

ta30 |ta22 ta27 ta29 ta25 ta26 ta28 ta23 ta24

Instance



Built-in load balancing should be improved

= Small instances are highly irregular

— ... in decomposition activity (#decomposed tree nodes)
— WS implemented in MPI-PBB (state-of-the-art) but not in Chapel-BB

2EHE 4 KX] 8§ EE 16 1 32 X

'—I
(@)
T

VaYeYe%

FeYe%e%eYe%e%

o % %% %%

|
NeYeYeYeYe %Y

F0% %66 % % Y6 %

PaVava%a%%Y%

Fo%0%) 1767 %76 %% %Y % %

OO

Ratio (biggest / smallest)

AN 8 1N 0 AN

ta30 ta22 ta27 ta29 ta25 ta26 ta28 ta23 ta24
Instance




A Productivity-oriented evaluation: cost

* Implementation cost:

Segment of the code Chapel-BB MPI-PBB

Initialization 23 37
Incumbent solution 12 44
Metrics reduction 4 9
Load balancing 5 176
Second level of parallelism 12 72
Termination criteria 2 36

Total SLOC 53 300




A Productivity-oriented evaluation: cost

* Implementation cost:

Segment of the code Chapel-BB  MPI-PBB

Initialization 23 37
Incumbent solution 12 | 35.2x | 44
Metrics reduction 4 /'A’\ 9

Load balancing 5‘, 176

Second level of varallelism 12 72

e Load balancing: part of the MPI-PBB’s code that
amounts for the majority of SLOC.

e Pays-off: scales much better than Chapel-BB.

e Chapel-BB uses built-in iterators.



Extending the implementation for GPUs

e GPUs:

—  Crucial nowadays in exact optimization

—  Allow one to solve instances with prohibitive execution time on CPUs
[Gmys et al. 2020, 2021]

—  Energy-efficient — power wall

—  Chapel does not officially support GPUs

* Implementation:
—  We can not use the GPUlterator module: lack of load balancing
— Adapted the improved intra-node scheme for GPUs
—  Communication in Chapel + intra-node in CUDA + Chpl
—  Prototype: N-Queens



Extending the implementation for GPUs

= Extension for GPUs: combining high-level and CUDA kernels

e (ollaboration with Habanero Extreme Scale Software Research Lab,
Georgia Tech (A. Hayashi and V. Sarkar).

Locale O (master) - . .
N Built in distributed load
istributed pool (Pd)

[@ = & 9 — bal_anc-inglyvork

distribution
/ Metrics/Solutions \\
B new requests

(Locale 1 (Locale L ) Intra-node:
/+\ /*\ é===m Chapel + CUDA
local pool (P7) local pool (Py)
GPUO -+ GPUY-1 GPUO -+ GPUYy-1 Work distribution by hand
. . — intra-node productivity
+reduce metrics +reduce metrics
(__+reduce solutions b (__+reduce solutions ) lost




Extending the implementation for GPUs

= Extension for GPUs: combining high-level and CUDA kernels

e (ollaboration with Habanero Extreme Scale Software Research Lab,
Georgia Tech (A. Hayashi and V. Sarkar).

Locale O (master) o .

2(4) ——

4(8) B2 P

8(16) =3
10(20) m——
12(24) ——
Baseline(2) —

=
N

Distributed pool (Pqg)

eee®

/ Metrics/Solutions \\
. New requests

2| |
-
Locale 1 Locale L ) 0

=
o

Speedup over the baseline
H [e)} [e0)

AL

]
o P

HEN
BER
17 18 1 20 21
/*\ /*\ Instance
local pool (P7) local pool (Py)
0 1 2 3 4 5 6 7
SS-3S |..... S0 -9 LT T
= w
GPUO - GPUY-1 GPUO «- GPUY-1 . » .
; . ~ w
+reduce metrics +reduce metrics & v
(__+reduce solutions b (__treduce solutions ) oW
~ W

T. Carneiro, N. Melab, A. Hayashi. V. Sarkar, Towards Chapel-based Exascale Tree Search Algorithms: dealing with
multiple GPU accelerators HPCS 2020 (2021).



Extending the implementation for GPUs

= Proposed implementation vs. GPUlterator-based

e The GPUlterator-based implementation cannot scale due to its lack of load

balancing.

3 5 1. 1(2) w— ' ' ' | I 1(2) m— ' ' ' ]
g 12 2(4) —— g12 2(4)
o 4(8) B = ¥ ] 4(8) EXRRZA
glo— 8(16) =y - glo— 8(16) ==Y .
o 10(20) m— ] o 10(20) —
v g 12(24) == | o gl 12(24) == |
5 Baseline(2) =— S Baseline(2) =—
o i | QL) i |
s & 3
S 4} 1 £ 4t .
S 3
o 2F 1 o 2¢f .
L | I | I & :I% it i

0 ; i I 0 -

17 18 19 20 21 17 18 21
Instance Instance
(a) ChplGPU vs. Baseline (CUDA-C) (b) GPUiterator vs. Baseline (CUDA-C)

T. Carneiro, N. Melab, A. Hayashi. V. Sarkar, Towards Chapel-based Exascale Tree Search Algorithms: dealing with
multiple GPU accelerators HPCS 2020 (2021).



Extending the implementation for GPUs

= First large-scale experiments: 20-Queens (39,029,188,884 solutions)
e Up to 288 GPUs
* 6 GPUs per node, 48 nodes used

Linear —  vsSingleLoc & vsBaseline —&—

45 - .
20 | | | 5
35 - :
30 b . i
25 |- | .
50 b . i
15 - .
oL , | . | _

Speed-up

6 24 48 96 192 288
#GPUs



Extending the implementation for GPUs

= First large-scale experiments: 20-Queens (39,029,188,834 solutions)

45
40
35
30
25
20
15
10

Speed-up

Up to 288 GPUs

6 GPUs per node, 48 nodes used

#GPUs

Linear — | vsSingleLoc —&- vsBaseline —&—
| | |
i - 86% of
B Al the linear
\ speedup
| | |
24 48 96 192 288



Extending the implementation for GPUs

= First large-scale experiments: 20-Queens (39,029,188,884 solutions)
e Up to 288 GPUs
* 6 GPUs per node, 48 nodes used

Linear —  vsSingleLoc & vsBaseline —&—

45 - -

40 | . . . —
74% of

35 L4 the linear
30 [Fe-= . _ speedup

55 || _ -
20 b v _ -
15 - .
10 - o v L _ _ S _ S -

Speed-up

6 24 48 96 192 288
#GPUs



Conclusions

» Chapel for the design and implementation of heterogeneous
distributed tree search for solving BOPs

* Need to hand-redefine some features (hierarchical parallelism)

* Use C-Interoperability layer

= Programming “cost”
* 5.7x “less costly” than MPI+X (X=PThreads)
* Built-in load balancing

* Thanks to the global view: implicit termination and reduction, no
additional library, transparent communication, etc.

= Efficiency and scalability

* Competitive efficiency and scalability compared to MPI+X for big
instances on 1.024 cores ... but can be up to 3.8x slower

e Limitations: PGAS-based data distribution, communication, LB, etc.



Future Works

= Investigating the Work Stealing-based load balancing
* Inspired by the WS of the state-of-the-art of MPI-PBB

e Provide it as an iterator

= Heterogeneity and productivity: the GPUIterator module
* How to harness both the CPUs and GPUs of the system?
* Error-prone details implemented by hand (CUDA + Chpl)
* Incorporate WS into the GPUlterator module

= Fault tolerance using checkpointing

* Rarely addressed in parallel optimization although critical (Mean Time
Between Failures - MTBF < 1h)

* Issues: recovery strategy (what, when and where?), restart strategy (with
consistent global state)? GPU?



Thank you!

https://github.com/tcarneirop/ChOp



