Towards Ultra-scale Exact Optimization Using Chapel

T. Carneiro, N. Melab

Inria Lille – Nord Europe, CNRS - CRIStAL
Parallel Computing & Optimisation Group (PCOG) – University of Luxembourg
• e.g., Backtracking and B&B
• 4 operators
 − Branching, Bounding, Pruning, and Selection (DFS, BFS, …)
• Major properties of the search tree
 − Very large
 − Billions of tree nodes
 − Highly dynamic (pruning+branching)
 − Unpredictable
 − Highly irregular tree (pruning)
 − … in shape and size
 − 95% of tree nodes are pruned
Overall objectives

- Revisit the design and implementation of parallel tree-based search for solving big permutation-based COP to optimality on “ultra-scale” supercomputers dealing with …
 - both scalability and heterogeneity …
 - … with productivity-awareness.

B&B applied to BOPs
e.g. FSP (50j,20m)
10^{64} sub-problems

Supercomputer (e.g. Jean-Zay (IDRIS))
85,000+ CPU cores, 2,696 V100 GPUs
Research questions

- **Research questions:**
 - Which HPC programming language/environment favors both productivity and performance?
 - How to address **scalability** and **heterogeneity** while keeping productivity?
What do we expect from high-productivity lang.?

• Performance
 – Competitive to both C-OpenMP and MPI+X

• Interoperability with C
 – Legacy code (e.g., instance generator)
 – Complex code (e.g., bounding function)
 – Using accelerators (e.g., CUDA)

• Distributed programming features
 – One-sided communication
 – Hide the communication aspects (PGAS)
 – Work distribution
Prototype multi-locale tree search in Chapel

• Is Chapel feasible for irregular tree search?
 – Prototype application.
 – Incrementally conceived from a multicore one
 – Chapel high-level features for distributed programming
 – Load balancing, using distributed iterators
 – The simplest permutation-based: N-Queens problem

• Objectives:
 – Performance vs. MPI+OpenMP
 – Programming cost vs. MPI+OpenMP
 – Scalability vs. MPI+OpenMP
 – Extend it for solving a more difficult problem
Partial search generates an initial load (pool data structure)

- Then, the parallel search takes place

Algorithm 1: The Master-worker scheme.

```plaintext
N ← get_problem()
cutoff ← get_cutoff_depth()
second_cutoff ← get_scnd_cutoff_depth()
P ← {} Node
metrics ← (0, 0)
metrics += initial_search(N, cutoff, P)
Size ← {0..(|P| - 1)}  // Domain
D ← Size mapped onto locales to a standard distribution
P_d ← [D] : Node
P_d = P  // Using implicit bulk-transfer
forall node in P_d following a distributed iterator with(+ reduce metrics) do
  metrics += Search(N, node, cutoff,
                     second_cutoff)
end
present_results(metrics)
```
Partial search generates an initial load (pool data structure)

- Then, the parallel search takes place

Algorithm 1: The Master-worker scheme.

```
N ← get_problem()
cutoff ← get_cutoff_depth()
second_cutoff ← get_scnd_cutoff_depth()
P ← {} Node
metrics ← (0, 0)
metrics + = initial_search(N, cutoff, P)

Size ← {0..(|P| − 1)} // Domain
D ← Size mapped onto locales to a standard distribution
Pd ← [D] : Node
Pd = P // Using implicit bulk-transfer

forall node in Pd following a distributed iterator with(+ reduce metrics) do
metrics + = Search(N, node, cutoff,
second_cutoff)
end

present_results(metrics)
```
A PGAS-based tree search algorithm

Partial (initial) search:

- From depth 1 until the cutoff depth ($\text{cutoff} \leq N$)
A PGAS-based tree search algorithm

Partial (initial) search:

- From depth 1 until the **cutoff** depth ($cutoff \leq N$)
A PGAS-based tree search algorithm

Partial (initial) search:

- From depth 1 until the cutoff depth \((cutoff \leq N)\)

Serial, on locale 0 - task 0

- Stores all feasible, valid and incomplete solutions of size \(cutoff\).
Then, parallelism is added through a forall statement

- No need for explicit communication for work distribution and metrics reduction.

```
Algorithm 1: The Master-worker scheme.

1. $N \leftarrow \text{get_problem()}$
2. $\text{cutoff} \leftarrow \text{get_cutoff_depth()}$
3. $\text{second_cutoff} \leftarrow \text{get_scnd_cutoff_depth()}$
4. $P \leftarrow \{\} \text{ Node}$
5. $\text{metrics} \leftarrow (0, 0)$
6. $\text{metrics} += \text{initial_search}(N, \text{cutoff}, P)$
7. $\text{Size} \leftarrow \{0..(|P| - 1)\} \text{ // Domain}$
8. $D \leftarrow \text{Size mapped onto locales to a standard distribution}$
9. $P_d \leftarrow [D] : \text{ Node}$
10. $P_d = P \text{ // Using implicit bulk-transfer}$
11. $\text{forall node in } P_d \text{ following a distributed iterator with(+ reduce metrics) do}$
   12. $\text{metrics} += \text{Search}(N, \text{node}, \text{cutoff},$
   13. $\text{second_cutoff})$
14. $\text{end}$
15. $\text{present_results}($metrics$)$
```
A PGAS-based tree search algorithm
PGAS approach is close to its high-level representation

```c
MPI_Init(NULL, NULL);
MPI_Comm_rank(MPI_COMM_WORLD, &proc_id);
MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
MPI_Get_processor_name(processor_name, &name_len);

int r_start = range_start(proc_id, survivors, num_procs);
int r_end = range_end(proc_id, survivors, num_procs);
int chunk = get_mpi_chunk(proc_id, survivors, num_procs);

local_metrics += queens_initial_search(...);

#pragma omp parallel for schedule(dynamic) reduction(+) for(int idx = r_start; idx<r_end ;++idx)
... 

MPI_Reduce(...);
MPI_Reduce(...);
MPI_Finalize();
```

First multi-locale implementation: N-Queens

```chpl
const Space = {0..(number_nodes-1)};
const D: domain(1) dmapped Block(boundingBox=Space) = Space;
var A_d: [D] queens_node;

metrics += queens_initial_search(size,initial_depth,A);

forall idx in distributedDynamic(c=Space, chunkSize=chunk) with (+
    reduce metrics) do
    metrics += queens_node_exporer(size,initial_depth,A_d[idx]);
```

Distributed memory (MPI+OpenMP)

PGAS Model (Chpl)
First multi-locale implementation: N-Queens

32 locales: 384 cores/768 threads. Two Intel Xeon X5670 @ 2.93 GHz (total of 12 cores/24 threads). Infiniband network.
First multi-locale implementation: N-Queens

32 locales: 384 cores/768 threads. Two Intel Xeon X5670 @ 2.93 GHz (total of 12 cores/24 threads). Infiniband network.
Improving intra-node parallelism

- Compiler-generated intra-node code is efficient for regular/weakly irregular applications.
 - e.g. Backtracking applied to NQueens [Carneiro and Melab, HPCS'2019]

- ... but not for highly irregular applications (e.g. B&B applied to FSP)
 - Work units are coarse-grained (highly irregular)
 - Intra-node parallelism should be hand-defined
Improving intra-node parallelism

- Bi-level intra-node parallelism
 - The task chunk is decomposed (2nd cutoff depth)
 - Local task pool distributed according to Dynamic WP

Nested parallelism implemented by hand
Improving intra-node parallelism

- Compiler-generated intra-node code is efficient for regular/weakly irregular applications.
 - e.g. Backtracking applied to NQueens [Carneiro and Melab, HPCS’2019]

- ... but not for highly irregular applications (e.g. B&B applied to FSP)
 - Work units are coarse-grained (highly irregular)
 - Intra-node parallelism should be hand-defined

Graph

- **Normalized Time**
- **Instance**
 - ta22
 - ta23
 - ta25
 - ta27
 - ta30
- **Default8**
- **Default16**
- **Improved**
- **Defaultx: Built-in**
Problem Instances

- **FSP Instances**
 - 9 Taillard’s instances, N=20 jobs on M=20 machines
 - Ranked according to their complexity (#decomposed sub-problems)
 - Vs. an MPI+Pthreads **state of the art** B&B [Gmys et al. 2019]

![Diagram showing solution and min makespan](image)

<table>
<thead>
<tr>
<th>Instance-#</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN_{LB1} (10^6)</td>
<td>711</td>
<td>37200</td>
<td>71876</td>
<td>5208</td>
<td>11392</td>
<td>1854</td>
<td>12285</td>
<td>3018</td>
<td>111</td>
</tr>
<tr>
<td>T_{LB1} (sec)</td>
<td>120</td>
<td>6400</td>
<td>11460</td>
<td>970</td>
<td>1750</td>
<td>320</td>
<td>2100</td>
<td>490</td>
<td>20</td>
</tr>
</tbody>
</table>
For big instances, Chapel-BB is slightly faster/equivalent than/to MPI-PBB with 32 locales (1024 cores)
Chapel-BB vs. MPI-PBB: scalability

- Speed-ups from 24.5% to 85% of the linear one on 32 locales
- For small instances, not enough work to feed the locales
Built-in load balancing should be improved

- Small instances are highly irregular
 - ... in decomposition activity (#decomposed tree nodes)
 - WS implemented in MPI-PBB (*state-of-the-art*) but not in Chapel-BB
A Productivity-oriented evaluation: cost

- Implementation cost:

<table>
<thead>
<tr>
<th>Segment of the code</th>
<th>Chapel-BB</th>
<th>MPI-PBB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization</td>
<td>23</td>
<td>37</td>
</tr>
<tr>
<td>Incumbent solution</td>
<td>12</td>
<td>44</td>
</tr>
<tr>
<td>Metrics reduction</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Load balancing</td>
<td>5</td>
<td>176</td>
</tr>
<tr>
<td>Second level of parallelism</td>
<td>12</td>
<td>72</td>
</tr>
<tr>
<td>Termination criteria</td>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>Total SLOC</td>
<td>53</td>
<td>300</td>
</tr>
</tbody>
</table>
A Productivity-oriented evaluation: cost

- **Implementation cost:**

<table>
<thead>
<tr>
<th>Segment of the code</th>
<th>Chapel-BB</th>
<th>MPI-PBB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization</td>
<td>23</td>
<td>37</td>
</tr>
<tr>
<td>Incumbent solution</td>
<td>12</td>
<td>44</td>
</tr>
<tr>
<td>Metrics reduction</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Load balancing</td>
<td>5</td>
<td>176</td>
</tr>
<tr>
<td>Second level of parallelism</td>
<td>12</td>
<td>72</td>
</tr>
</tbody>
</table>

- **Load balancing:** part of the MPI-PBB's code that amounts for the majority of SLOC.
- **Pays-off:** scales much better than Chapel-BB.
- Chapel-BB uses built-in iterators.
Extending the implementation for GPUs

• **GPUs:**
 - Crucial nowadays in exact optimization
 - Allow one to solve instances with prohibitive execution time on CPUs \cite{Gmys2020,Gmys2021}
 - Energy-efficient → power wall
 - Chapel does not officially support GPUs

• **Implementation:**
 - **We can not use the **GPU**Iterator module:** lack of load balancing
 - Adapted the improved intra-node scheme for GPUs
 - Communication in Chapel + intra-node in CUDA + Chpl
 - **Prototype:** N-Queens
Extending the implementation for GPUs

- **Extension for GPUs:** combining high-level and CUDA kernels
 - Collaboration with Habanero Extreme Scale Software Research Lab, Georgia Tech (A. Hayashi and V. Sarkar).

Built in **distributed** load balancing/work distribution

Intra-node: Chapel + CUDA

Work distribution by hand → **intra-node productivity lost**
Extending the implementation for GPUs

- **Extension for GPUs:** combining high-level and CUDA kernels
 - Collaboration with Habanero Extreme Scale Software Research Lab, Georgia Tech (A. Hayashi and V. Sarkar).

Extending the implementation for GPUs

- **Proposed implementation vs. GPUIterator-based**
 - The GPUIterator-based implementation cannot scale due to its lack of load balancing.

(a) ChapelGPU vs. Baseline (CUDA-C)

(b) GPUIterator vs. Baseline (CUDA-C)
Extending the implementation for GPUs

- **First large-scale experiments: 20-Queens** (39,029,188,884 solutions)
 - Up to 288 GPUs
 - 6 GPUs per node, 48 nodes used
Extending the implementation for GPUs

- First large-scale experiments: 20-Queens \((39,029,188,884\) solutions)
 - Up to 288 GPUs
 - 6 GPUs per node, 48 nodes used
Extending the implementation for GPUs

- First large-scale experiments: 20-Queens (39,029,188,884 solutions)
 - Up to 288 GPUs
 - 6 GPUs per node, 48 nodes used
Conclusions

- Chapel for the design and implementation of heterogeneous distributed tree search for solving BOPs
 - Need to hand-redefine some features (*hierarchical parallelism*)
 - Use C-Interoperability layer

- Programming “cost”
 - 5.7x “less costly” than MPI+X (X=PThreads)
 - Built-in load balancing
 - **Thanks to the global view:** implicit termination and reduction, no additional library, transparent communication, etc.

- Efficiency and scalability
 - Competitive efficiency and scalability compared to MPI+X for big instances on 1.024 cores ... **but can be up to 3.8x slower**
 - **Limitations:** PGAS-based data distribution, communication, LB, etc.
Future Works

- Investigating the **Work Stealing**-based load balancing
 - Inspired by the WS of the state-of-the-art of MPI-PBB
 - Provide it as an iterator

- Heterogeneity and productivity: the **GPUIterator** module
 - How to harness both the CPUs and GPUs of the system?
 - Error-prone details implemented by hand (CUDA + Chpl)
 - Incorporate WS into the **GPUIterator** module

- Fault tolerance using checkpointing
 - Rarely addressed in parallel optimization although critical (Mean Time Between Failures - MTBF < 1h)
 - **Issues**: recovery strategy (what, when and where?), restart strategy (with consistent global state)? GPU?
Thank you!

https://github.com/tcarneirop/ChOp