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Context: tree-based search algorithms

e e.g., Backtracking and B&B

Active Set * 4 operators
@ @ @ @ @ — Branching, Bounding, Pruning, and
@I Selection (DFS, BFS, ...)
@ —> @ * Major properties of the search tree
— Very large
@ @ X — Billions of tree nodes

— @ X — Highly dynamic (pruning+branching)

Branch  Evaluation - Unpredictable

— Highly irregular tree (pruning)

— ... in shape and size
—  95% of tree nodes are pruned



Overall objectives

= Revisit the design and implementation of parallel tree-based search for
solving big permutation-based COP to optimality on “ultra-scale”
supercomputers dealing with ...

* Dboth scalability and heterogeneity ...

e ... with productivity-awareness.
B&B applied to BOPs
e.g. FSP (50§,20m) Supercomputer (e.g. Jean-Zay (IDRIS)

10°* sub-problems 85.000+ CPU cores, 2.696 V100 GPUs

estg

Branching Bounding  Pruning

kT @ O>i=>%

Selection: returns next node to process,
e.g. depth-first




Research questions

e Research questions:

o Which HPC programing language/environment favors both productivity
and performance?

o How to address scalability and heterogeneity while keeping
productivity?



What do we expect from high-productivity lang.?

* Performance
—  Competitive to both C-OpenMP and MPI+X

e Interoperability with C
— Legacy code (e.g, instance generator)
—  Complex code (e.g., bounding function)

—  Using accelerators (e.g., CUDA)

e Distributed programming features
—  One-sided communication
—  Hide the communication aspects (PGAS)
—  Work distribution



Prototype multi-locale tree search in Chapel

e Is Chapel feasible for irregular tree search?
—  Prototype application.
—  Incrementally conceived from a multicore one
—  Chapel high-level features for distributed programming
— Load balancing, using distributed iterators

—  The simplest permutation-based: N-Queens problem

* Objectives:

—  Performance vs. MPI+OpenMP

—  Programming cost vs. MPI+OpenMP

—  Scalability vs. MPI+OpenMP

—  Extend it for solving a more difficult problem




A PGAS-based tree search algorithm

Partial search generates an initial load (pool data structure)

—  Then, the parallel search takes place

Algorithm 1: The Master-worker scheme.

P

N < get_problem( )
2 cutoff < get_cutof f_depth( )
3 second_cutof f < get_scnd_cutof f_depth( )

4 P « {} Node
5 metrics < (0,0)
6 metrics + = initial_search(N, cutof f, P)

7 Size < {0..(|P|—1)} // Domain
8 D <« Size mapped onto locales to a standard distribution
9 P; < [D] : Node

10 Pj = P // Using implicit bulk-transfer

11 forall node in P, following a distributed iterator with(+ reduce

metrics) do
12 metrics + = Search(N,node, cutof f,
13 second_cutof f)
14 end

15 present_results(metrics)
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A PGAS-based tree search algorithm

Partial (initial) search:

—  From depth 1 until the cutoff depth (cutoff <= N)

Task O

(locale 0)§

([1-2-3] [1-2-4] [1-2-5] |1-5-2|J

Pool of nodes (P)
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A PGAS-based tree search algorithm

Partial (initial) search:

—  From depth 1 until the cutoff depth (cutoff <= N)

Task O Serial, on locale O - task 0
(locale 0)§
: e Stores all feasible, valid

and incomplete
solutions of size cutoff.

Cutoff = 3

[[1-2-3] [1-2-4] [1-2-5] |1-5-2|J
Pool of nodes (P)




A PGAS-based tree search algorithm

Then, parallelism is added though a forall statement

— Noneed for explicit communication for work distribution and metrics
reduction.

Algorithm 1: The Master-worker scheme.

P

N < get_problem( )
2 cutoff <« get_cutof f_depth()
3 second_cutof f < get_scnd_cutof f_depth( )

4 P < {} Node

5 metrics < (0,0)

6 metrics + = initial_search(N, cutof f, P)
7 Size < {0..(|P|—1)} // Domain

8 D < Size mapped onto locales to a standard distribution
9 P; < [D] : Node

10 Pj = P // Using implicit bulk-transfer

11 forall node in P, following a distributed iterator with(+ reduce
metrics) do

12 metrics + = Search(N, node, cutof f,

13 second_cutof f)

14 lend

15 present_results(metrics)




A PGAS-based tree search algorithm

Distributed

level
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First multi-locale implementation: N-Queens

PGAS approach is close to its high-level representation

Méi Init(NULL, NULL); const Space = {0..(number_nodes-1)};
MPI_Comm_rank (MPI_COMM_WORLD, &proc_id); const D: domain(1) dmapped Block(boundingBox=Space) = Space;
MPI_Comm_size (MPI_COMM_WORLD, &num_procs); var A_d: [D] queens_node;

MPI_Get_processor_name(processor_name, &name_len);
. metrics += queens_initial_search(size,initial_depth,A);
int r_start = range_start(proc_id,survivors,num_procs);
int r_end = range_end(proc_id,survivors, num_procs);
int chunk = get_mpi_chunk(proc_id,survivors,num_procs);

forall idx in distributedDynamic(c=Space, chunkSize=chunk) with (+
< reduce metrics) do
metrics += queens_node_exporer(size,initial_depth,A_d[idx]);

local_metrics += queens_initial_search(....);

#pragma omp parallel for ... schedule(dynamic) reduction(+...)
for(int idx = r_start; idx<r_end ;++idx)

. PGAS Model (Chpl)
MPI_Reduce(...);

MPI_Reduce(...);

MPI_Finalize();

Distributed memory
(MPI1+OpenMP)



N-Queens

First multi-locale implementation

cores/24 threads). Infiniband network.
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N-Queens

First multi-locale implementation

cores/24 threads). Infiniband network.
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Improving intra-node parallelism

= Compiler-generated intra-node code is efficient for regular/weakly
irregular applications.

= e.g. Backtracking applied to NQueens [Carneiro and Melab, HPCS'2019]

= ... butnot for highly irregular applications (e.g. B&B applied to FSP)
] Work units are coarse-grained (highly irregular)

] Intra-node parallelism should be hand-defined



Improving intra-node parallelism

= Bi-level intra-node parallelism

* The task chunk is decomposed (2"¢ cutoff depth)
"] Local task pool distributed according to Dynamic WP

PGAS-based Pool

Task 0, Locale 0

Localex L aax

-----
Task 0, locale x

Local pool
o ==

Nested parallelism
implemented by hand




Improving intra-node parallelism

» Compiler-generated intra-node code is efficient for regular/weakly
irregular applications.

= e.g. Backtracking applied to NQueens [Carneiro and Melab, HPCS'2019]

= ... butnot for highly irregular applications (e.g. B&B applied to FSP)
] Work units are coarse-grained (highly irregular)

] Intra-node parallelism should be hand-defined
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Problem Instances

= FSP Instances
* 9 Taillard’s instances, N=20 jobs on M=20 machines
* Ranked according to their complexity (#decomposed sub-problems)
* Vs. an MPI+Pthreads state of the art B&B [Gmys et al. 2019]

Solution=(3,4,2,1) ~ Min Makespan
Instance-# 22 23 24 25 26 27 28 29 30
NN.p; (10%) 711 37200 71876 5208 11392 1854 12285 3018 111
Trp: (sec) 120 6400 11460 970 1750 320 2100 490 20




Chapel-BB vs. MPI-PBB: execution time

= For big instances, Chapel-BB is slightly faster/equivalent than/to MPPI-PBB
with 32 locales (1024 cores)
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Chapel-BB vs. MPI-PBB: scalability

= Speed-ups from 24.5% to 85% of the linear one on 32 locales

= For small instances, not enough work to feed the locales
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Built-in load balancing should be improved

= Small instances are highly irregular

— ... in decomposition activity (#decomposed tree nodes)
— WS implemented in MPI-PBB (state-of-the-art) but not in Chapel-BB
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A Productivity-oriented evaluation: cost

* Implementation cost:

Segment of the code Chapel-BB MPI-PBB

Initialization 23 37
Incumbent solution 12 44
Metrics reduction 4 9
Load balancing 5 176
Second level of parallelism 12 72
Termination criteria 2 36

Total SLOC 53 300




A Productivity-oriented evaluation: cost

* Implementation cost:

Segment of the code Chapel-BB  MPI-PBB

Initialization 23 37
Incumbent solution 12 | 35.2x | 44
Metrics reduction 4 /'A’\ 9

Load balancing 5‘, 176

Second level of varallelism 12 72

e Load balancing: part of the MPI-PBB’s code that
amounts for the majority of SLOC.

e Pays-off: scales much better than Chapel-BB.

e Chapel-BB uses built-in iterators.



Extending the implementation for GPUs

e GPUs:

—  Crucial nowadays in exact optimization

—  Allow one to solve instances with prohibitive execution time on CPUs
[Gmys et al. 2020, 2021]

—  Energy-efficient — power wall

—  Chapel does not officially support GPUs

* Implementation:
—  We can not use the GPUlterator module: lack of load balancing
— Adapted the improved intra-node scheme for GPUs
—  Communication in Chapel + intra-node in CUDA + Chpl
—  Prototype: N-Queens



Extending the implementation for GPUs

= Extension for GPUs: combining high-level and CUDA kernels

e (ollaboration with Habanero Extreme Scale Software Research Lab,
Georgia Tech (A. Hayashi and V. Sarkar).
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Extending the implementation for GPUs

= Extension for GPUs: combining high-level and CUDA kernels

e (ollaboration with Habanero Extreme Scale Software Research Lab,
Georgia Tech (A. Hayashi and V. Sarkar).
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Extending the implementation for GPUs

= Proposed implementation vs. GPUlterator-based

e The GPUlterator-based implementation cannot scale due to its lack of load

balancing.
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Extending the implementation for GPUs

= First large-scale experiments: 20-Queens (39,029,188,884 solutions)
e Up to 288 GPUs
* 6 GPUs per node, 48 nodes used
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Conclusions

» Chapel for the design and implementation of heterogeneous
distributed tree search for solving BOPs

* Need to hand-redefine some features (hierarchical parallelism)

* Use C-Interoperability layer

= Programming “cost”
* 5.7x “less costly” than MPI+X (X=PThreads)
* Built-in load balancing

* Thanks to the global view: implicit termination and reduction, no
additional library, transparent communication, etc.

= Efficiency and scalability

* Competitive efficiency and scalability compared to MPI+X for big
instances on 1.024 cores ... but can be up to 3.8x slower

e Limitations: PGAS-based data distribution, communication, LB, etc.



Future Works

= Investigating the Work Stealing-based load balancing
* Inspired by the WS of the state-of-the-art of MPI-PBB

e Provide it as an iterator

= Heterogeneity and productivity: the GPUIterator module
* How to harness both the CPUs and GPUs of the system?
* Error-prone details implemented by hand (CUDA + Chpl)
* Incorporate WS into the GPUlterator module

= Fault tolerance using checkpointing

* Rarely addressed in parallel optimization although critical (Mean Time
Between Failures - MTBF < 1h)

* Issues: recovery strategy (what, when and where?), restart strategy (with
consistent global state)? GPU?



Thank you!

https://github.com/tcarneirop/ChOp



