
Towards Ultra-scale Exact Optimization Using
Chapel

T. Carneiro, N. Melab

Inria Lille – Nord Europe, CNRS - CRIStAL
Parallel Computing & Optimisation Group (PCOG) – University of

Luxembourg

• e.g., Backtracking and B&B
• 4 operators
− Branching, Bounding, Pruning, and

Selection (DFS, BFS, …)

• Major properties of the search tree

− Very large
− Billions of tree nodes

− Highly dynamic (pruning+branching)
− Unpredictable

− Highly irregular tree (pruning)
− … in shape and size
− 95% of tree nodes are pruned

Context: tree-based search algorithms

Overall objectives

▪ Revisit the design and implementation of parallel tree-based search for
solving big permutation-based COP to optimality on “ultra-scale”
supercomputers dealing with …

• both scalability and heterogeneity …
• … with productivity-awareness.

B&B applied to BOPs
e.g. FSP (50j,20m)
1064 sub-problems

Supercomputer (e.g. Jean-Zay (IDRIS)
85.000+ CPU cores, 2.696 V100 GPUs

● Research questions:
○ Which HPC programing language/environment favors both productivity

and performance?

○ How to address scalability and heterogeneity while keeping
productivity?

Research questions

What do we expect from high-productivity lang.?

• Performance
− Competitive to both C-OpenMP and MPI+X

• Interoperability with C
− Legacy code (e.g, instance generator)
− Complex code (e.g., bounding function)
− Using accelerators (e.g., CUDA)

• Distributed programming features
− One-sided communication
− Hide the communication aspects (PGAS)
− Work distribution

Prototype multi-locale tree search in Chapel

• Is Chapel feasible for irregular tree search?
− Prototype application.
− Incrementally conceived from a multicore one
− Chapel high-level features for distributed programming
− Load balancing, using distributed iterators
− The simplest permutation-based: N-Queens problem

• Objectives:
− Performance vs. MPI+OpenMP
− Programming cost vs. MPI+OpenMP
− Scalability vs. MPI+OpenMP
− Extend it for solving a more difficult problem

Partial search generates an initial load (pool data structure)

− Then, the parallel search takes place

A PGAS-based tree search algorithm

Partial search generates an initial load (pool data structure)

− Then, the parallel search takes place

A PGAS-based tree search algorithm

Partial (initial) search:

− From depth 1 until the cutoff depth (cutoff <= N)

A PGAS-based tree search algorithm

Partial (initial) search:

− From depth 1 until the cutoff depth (cutoff <= N)

Serial, on locale 0 - task 0

A PGAS-based tree search algorithm ●

Partial (initial) search:

− From depth 1 until the cutoff depth (cutoff <= N)

Serial, on locale 0 - task 0

● Stores all feasible, valid
and incomplete
solutions of size cutoff.

A PGAS-based tree search algorithm

Then, parallelism is added though a forall statement

− No need for explicit communication for work distribution and metrics
reduction.

A PGAS-based tree search algorithm

Centralized pool of nodes

Distributed
level

Intra-node level

A PGAS-based tree search algorithm

PGAS approach is close to its high-level representation

PGAS Model (Chpl)

Distributed memory
(MPI+OpenMP)

First multi-locale implementation: N-Queens

32 locales: 384 cores/768 threads. two Intel Xeon X5670 @ 2.93 GHz (total of 12
cores/24 threads). Infiniband network.

First multi-locale implementation: N-Queens

32 locales: 384 cores/768 threads. two Intel Xeon X5670 @ 2.93 GHz (total of 12
cores/24 threads). Infiniband network.

First multi-locale implementation: N-Queens

Improving intra-node parallelism

▪ Compiler-generated intra-node code is efficient for regular/weakly
irregular applications.
▪ e.g. Backtracking applied to NQueens [Carneiro and Melab, HPCS’2019]

▪ … but not for highly irregular applications (e.g. B&B applied to FSP)
🡺 Work units are coarse-grained (highly irregular)
🡺 Intra-node parallelism should be hand-defined

▪ Bi-level intra-node parallelism
• The task chunk is decomposed (2nd cutoff depth)
 🡺 Local task pool distributed according to Dynamic WP

Nested parallelism
implemented by hand

Improving intra-node parallelism

Improving intra-node parallelism

Defaultx: Built-in

▪ Compiler-generated intra-node code is efficient for regular/weakly
irregular applications.
▪ e.g. Backtracking applied to NQueens [Carneiro and Melab, HPCS’2019]

▪ … but not for highly irregular applications (e.g. B&B applied to FSP)
🡺 Work units are coarse-grained (highly irregular)
🡺 Intra-node parallelism should be hand-defined

Problem Instances

▪ FSP Instances
• 9 Taillard’s instances, N=20 jobs on M=20 machines
• Ranked according to their complexity (#decomposed sub-problems)
• Vs. an MPI+Pthreads state of the art B&B [Gmys et al. 2019]

Min Makespan

Chapel-BB vs. MPI-PBB: execution time

▪ For big instances, Chapel-BB is slightly faster/equivalent than/to MPI-PBB
with 32 locales (1024 cores)

Productivity-oriented evaluation Chapel-BB vs. MPI-PBB: scalability

▪ Speed-ups from 24.5% to 85% of the linear one on 32 locales
▪ For small instances, not enough work to feed the locales

Built-in load balancing should be improved

▪ Small instances are highly irregular
− … in decomposition activity (#decomposed tree nodes)
− WS implemented in MPI-PBB (state-of-the-art) but not in Chapel-BB

A Productivity-oriented evaluation: cost

• Implementation cost:

● Load balancing: part of the MPI-PBB’s code that
amounts for the majority of SLOC.

● Pays-off: scales much better than Chapel-BB.
● Chapel-BB uses built-in iterators.

35.2x

A Productivity-oriented evaluation: cost

• Implementation cost:

• GPUs:
− Crucial nowadays in exact optimization
− Allow one to solve instances with prohibitive execution time on CPUs

[Gmys et al. 2020, 2021]
− Energy-efficient → power wall
− Chapel does not officially support GPUs

• Implementation:
− We can not use the GPUIterator module: lack of load balancing
− Adapted the improved intra-node scheme for GPUs
− Communication in Chapel + intra-node in CUDA + Chpl
− Prototype: N-Queens

Extending the implementation for GPUs

Built in distributed load
balancing/work

distribution

Intra-node:
Chapel + CUDA

Work distribution by hand
→ intra-node productivity

lost

▪ Extension for GPUs: combining high-level and CUDA kernels
• Collaboration with Habanero Extreme Scale Software Research Lab,

Georgia Tech (A. Hayashi and V. Sarkar).

Extending the implementation for GPUs

T. Carneiro, N. Melab, A. Hayashi. V. Sarkar, Towards Chapel-based Exascale Tree Search Algorithms: dealing with
multiple GPU accelerators HPCS 2020 (2021).

Extending the implementation for GPUs

▪ Extension for GPUs: combining high-level and CUDA kernels
• Collaboration with Habanero Extreme Scale Software Research Lab,

Georgia Tech (A. Hayashi and V. Sarkar).

T. Carneiro, N. Melab, A. Hayashi. V. Sarkar, Towards Chapel-based Exascale Tree Search Algorithms: dealing with
multiple GPU accelerators HPCS 2020 (2021).

Extending the implementation for GPUs
▪ Proposed implementation vs. GPUIterator-based

• The GPUIterator-based implementation cannot scale due to its lack of load
balancing.

▪ First large-scale experiments: 20-Queens (39,029,188,884 solutions)

• Up to 288 GPUs
• 6 GPUs per node, 48 nodes used

Extending the implementation for GPUs

Extending the implementation for GPUs

86% of
the linear
speedup

▪ First large-scale experiments: 20-Queens (39,029,188,884 solutions)

• Up to 288 GPUs
• 6 GPUs per node, 48 nodes used

Extending the implementation for GPUs

74% of
the linear
speedup

▪ First large-scale experiments: 20-Queens (39,029,188,884 solutions)

• Up to 288 GPUs
• 6 GPUs per node, 48 nodes used

Conclusions

▪ Chapel for the design and implementation of heterogeneous
distributed tree search for solving BOPs
• Need to hand-redefine some features (hierarchical parallelism)
• Use C-Interoperability layer

▪ Programming “cost”
• 5.7x “less costly” than MPI+X (X=PThreads)
• Built-in load balancing
• Thanks to the global view: implicit termination and reduction, no

additional library, transparent communication, etc.

▪ Efficiency and scalability
• Competitive efficiency and scalability compared to MPI+X for big

instances on 1.024 cores … but can be up to 3.8x slower
• Limitations: PGAS-based data distribution, communication, LB, etc.

Future Works

▪ Investigating the Work Stealing-based load balancing
• Inspired by the WS of the state-of-the-art of MPI-PBB
• Provide it as an iterator

▪ Heterogeneity and productivity: the GPUIterator module
• How to harness both the CPUs and GPUs of the system?
• Error-prone details implemented by hand (CUDA + Chpl)
• Incorporate WS into the GPUIterator module

▪ Fault tolerance using checkpointing
• Rarely addressed in parallel optimization although critical (Mean Time

Between Failures - MTBF < 1h)
• Issues: recovery strategy (what, when and where?), restart strategy (with

consistent global state)? GPU?

Thank you!

https://github.com/tcarneirop/ChOp

