Toward a Multi-GPU Implementation of a GMRES Solver in
CHAMPS

Anthony Bouchard"
Matthieu Parenteau”

Eric Laurendeau
anthony.bouchard@polymtl.ca
matthieu.parenteau@polymtl.ca
eric.laurendeau@polymtl.ca
Polytechnique Montréal
Montréal, Québec, Canada

ABSTRACT

The Computational Fluid Dynamics (CFD) community has success-
fully leveraged GPUs for their solvers. In the industry, low-order
solvers are often used because only engineering levels of accuracy
are needed. Unlike high-order methods, these solvers don’t have
high ratios of floating point operations per memory fetches but
can still make good use of GPUs because of the high number of
elements computed and higher memory bandwidth of those types
of hardware. These solvers often use solvers that were designed
to be optimal for CPUs with sequential parts like the Symmetric
Gauss Seidel (SGS) solver. In an attempt to adapt to the hardware
architecture and to better utilize the computational power of the
GPU, a Jacobian-free Newton-Krylov (JENK) type of solver is envi-
sioned. The JFNK solver makes use of the fact that only the effect
of the Jacobian on a vector is needed, hence removing the need to
store and inverse the Jacobian matrix. Instead, a finite-difference
approximation is computed. This paper discusses the early imple-
mentation of such a solver by showing the performance on the
GPU of a GMRES solver (with Jacobian) developed in CHAMPS, a
3D unstructured RANS solver written in Chapel. The performance
is evaluated by presenting speedups and a strong scaling analysis
of the method.

CCS CONCEPTS

« Computing methodologies — Massively parallel algorithms;
Distributed algorithms; Parallel programming languages; « Applied
computing — Computer-aided design.

KEYWORDS
GMRES, GPU, RANS, CHAPEL

“Ph.D. Candidate, Department of Mechanical Engineering
T Professor, Department of Mechanical Engineering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CHIUW 2021, June 04, 2021, Online

© 2021 Association for Computing Machinery.

ACM Reference Format:

Anthony Bouchard, Matthieu Parenteau, and Eric Laurendeau. 2021. Toward
a Multi-GPU Implementation of a GMRES Solver in CHAMPS. In Chapel
Implementers and Users Workshop 2021, June 04, 2021, Virtual format. 8 pages.

1 INTRODUCTION

Many researchers have studied and successfully leveraged GPUs
within CFD codes. These types of hardware are particularly at-
tractive for high-order methods, which are well suited for GPUs
because of their high ratios of floating point operations to memory
fetches [2, 19-22]. However, low-order methods are often used in
the industry, where only engineering level of accuracy is needed.
Fortunately, GPUs can also be of interest for these methods due to
the high number of grid points needed, allowing for massive paral-
lelism. Moreover, the higher memory bandwidth of GPUs compared
to CPUs can benefit these low-order solvers, that are often limited
by the memory subsystem. In fact, many research projects were
able to leverage GPUs with low-order CFD codes [4, 5, 7, 10, 12, 13].
However, production codes mostly make use of the most efficient
solvers, which often consist of sequential algorithms such as Sym-
metric Gauss-Seidel (SGS), which are not well suited for GPUs,
forcing the use of less efficient solvers on GPUs. In an attempt to
find a parallel version of the SGS solver, Nguyen, Castonguay and
Laurendeau [13] used a red-black pattern with Jacobi iterations and
were able to reach speedups of 2.4x when comparing a 1 GPU (Tesla
K20 with 208 Gb/s memory bandwidth) configuration with a 2 CPU
(Xeon E5-2670 with 102.4 Gb/s combined memory bandwidth) con-
figuration using their respective best solver, which is close to the
memory bandwidth ratio of the hardware.

In an effort to leverage the computational power of GPUs even
more, one can make use of a Jacobian-Free Newton-Krylov (JENK)
solver [3, 8] as the linear system solver where the Krylov solver is
the Globalized Minimal Residual (GMRES) method [17]. GMRES is
well known for its fast convergence when given a suitable initial
solution. Among others, unsteady simulations can benefit from this
kind of solver because such an initial solution is provided by the
previous time step. Usually, the Jacobian matrix is approximated
using a first-order approximation, which negatively impacts the
convergence of the solver. However, the Jacobian-Free version of the
GMRES solver exploits the fact that only the effect of the Jacobian on
a vector is needed, thus preventing the need of explicitly assembling
the true Jacobian. Instead, a Jacobian-vector product is calculated
using a finite difference approximation, which requires another

CHIUW 2021, June 04, 2021, Online

evaluation of the residuals that can be efficiently computed on
GPUs. This product accurately sees the true Jacobian, enhancing
the convergence properties compared to a regular GMRES solver.
The use of a JENK solver solved on GPU could potentially allow for
unsteady RANS simulations, which are costly compared to RANS
simulations, to become a standard in the industry.

Although the work is not fully completed for the JENK solver,
and hence the work in this paper does not provide much novelty to
the community, the authors make a first step toward having a JENK
solver fully on GPUs by presenting early implementation of such
solver. A regular GMRES solver (with Jacobian) is developed inside
CHAMPS [15], a 3D unstructured RANS/URANS solver written
in Chapel, and then completely ported over GPU using NVIDIA’s
parallel programming CUDA. The work in this paper will focus on
assessing the performance of the GMRES solver on multi GPUs by
comparing it to the CPU version.

2 CHAMPS

CHAMPS is a multi-physics CFD code developed by the research
team of Professor Eric Laurendeau and is written in Chapel. Ap-
plication of CFD codes to external aerodynamic problems, such as
aircraft configurations, requires significant computing resources
since the size of the computational grid is often very large and
the equations highly non-linear. Consequently, high-performance
computing over large distributed systems is critical. However, de-
velopment of efficient algorithm over distributed memory is not
particularly simple. The Chapel programming language offers an
interesting alternative compared to the more traditional languages
used in CFD with MPI/OpenMP (C, C++ and Fortran). With Chapel,
native parallelism for both shared and distributed memory is pro-
vided using the Partitioned Global Address Space (PGAS) parallel
model, which facilitates the implementation of parallel algorithms
over distributed memory. In CHAMPS, the initial problem is parti-
tioned into several zones and the coarse-grain parallelism is imple-
mented in a way that each grid zone is assigned to a task using the
coforall statement. Large problems are therefore easily distributed
over several compute nodes, such as the one presented in Figure 1.

Figure 1: Computed flow solution with CHAMPS around a
high-lift configuration aircraft.

Among other things, CHAMPS solves the RANS/URANS equa-
tions using an unstructured mesh-based second-order cell centered

Anthony Bouchard, Matthieu Parenteau, and Eric Laurendeau

finite volume method. The governing equation can be expressed as

oZe = _RW) o
Where Q is the volume, W is the conservative variables and R(W)
is the residuals containing the convective and viscous fluxes. Mul-
tiple discretization schemes are implemented for the convective
fluxes like the Roe [16], AUSM [9], JST [6], and others. The steady
solution is reached solving iteratively using inexact Newton itera-

tions as follows
n

Q R
I+ AW = _R(W") (2)
At W,

where % is a first-order approximation of the Jacobian matrix

using the Thin Shear Layer (TSL) approximation [1] for the viscous
fluxes. Note that the Jacobian matrix is a sparse matrix. To accelerate
the convergence, local time-stepping with a Courant-Friedrichs-Lewy
(CFL) number ramping up and residual smoothing are used.

Equation 2 is solved using a linear solver. In CHAMPS, the five
stage hybrid Runge-Kutta and the Symmetric Gauss-Seidel (SGS)
[1] schemes are implemented. Recently, the Generalized Minimal
Residual (GMRES) method is also implemented both on CPU and
GPU. This work focuses on the GMRES method and will be de-
scribed more in detail in Section 3.

There are also multiple different turbulence models implemented
in CHAMPS, the most commonly used being Sparlart-Allmaras [18]
and kw Menter SST [11]. The turbulence model is solved iteratively
in a loosely coupled manner after every iteration of the flow.

3 GMRES SOLVER

GMRES is a Krylov-subspace solver, which is a general projection
method that solves a linear system submitted to the Petrov-Galrkin
condition

b-Axpy L L ®3)
where L, is a subspace of dimension m, A the Jacobian matrix
and x,, an approximate solution € K, the Krylov subspace of
dimension m

Ko (A, ro) = span{ro, Arg, AZry, .., A™ rg} (4)

ro = b — Axp and x is an initial guess. The initial guess is usually
xo = 0, giving

A7b = xm ~ gm-1(A)b ()
where g1 is a polynomial of degree m — 1 based on %;,. GMRES,
which is based on the Minimal-Residual (MINRES) method [14],
uses Ly = AKpy. Algorithm 1 describes the basic algorithm of the
GMRES method.

There exist many variations of this method. One variation that is
particularly of interest is the restarted GMRES (also called GMRES(rm)).
As the number of Krylov iterations (m) increases, the memory and
computational cost also increase. To remedy this situation, one
can set a limit to the number of iterations and restart the GMRES
with xo = x,,, once this limit is reached. This way, the memory and
computational cost don’t go too high. In CHAMPS, the restarted
GMRES is implemented. However, for the sake of this article, the
restarted GMRES is not used. In practical implementations, the
orthogonal projection is usually performed using Arnoldi-Modified
Gram-Schmidt method, which is represented in Algorithm 2. The

I N

Toward a Multi-GPU Implementation of a GMRES Solver in CHAMPS

Algorithm 1: GMRES

xo = 0;

o1 =ro/llroll2;

Define Hessenberg matrix Hpy, = {hij}1<i<m+1,1<j<m;

}Iﬂ =0;

for j=1,2,...,mdo

wj ZAZ)]';

fori=1,..jdo
hijj = (wj,0:);
wj = wj — hy joj;

end

hjeij = [willy:

0j+1 = Wir1/hji1,js

end
Ym = argmin, [|Bex - Hmy||2;
Xm = X0 +'L9nynﬁ

Hessenberg matrix, represented by h; j, is then formed and the
least-square problem, || Per — Hmy”Z, is solved for y from which the
final solution of x is retrieved. Solving the least-square problem is
usually inexpensive since the number of Krylov iterations (m) is
relatively small. Additionally, givens rotations are applied to the
Hessenberg matrix to obtain a triangular matrix that can be solved
efficiently. Most of the computational cost is incurred by the sparse
Matrix-Vector multiplication (w; = Av;) and the Arnoldi process,
which consist mainly of linear algebra operations. Note that the
sparse matrix A is the Jacobian matrix of the flow as described pre-
viously. The time distribution of the GMRES algorithm is further
discussed in Section 5.

The tolerance of the GMRES solver is another subject of interest.
In our tests, we found that a tolerance between 107! and 1072 is
most efficient for converging a steady solution. On one hand, if the
tolerance is too high, one can undersolve the linear system, resulting
in the stagnation of the convergence or even divergence. On the
other hand, if the tolerance is too low, one can find themselves in a
situation where the linear system is oversolved, resulting in minimal
gains on the convergence properties while greatly increasing the
time of each iteration.

4 GPUIMPLEMENTATION

The GPU version of GMRES is programmed using NVIDIA’s pro-
gramming language CUDA. The original CPU algorithm in CHAMPS
is unchanged and only the linear algebra operations are transferred
to the GPU. These operations are rewritten in CUDA and linked as
an external library to CHAMPS using Chapel’s C-interoperability.
The GPU operations are wrapped inside the sparse matrix and dis-
tributed vector objects of CHAMPS. Below, we see an example of
the norm function defined inside the DistributedVectorGPU_c object
in Chapel. The cublas_Dot function is a CUDA-c function (in this
case, from the cuBLAS library).

class DistributedVectorGPU_c Vector_c

{

/%% Number of local elements xx*/
const nilLocal_ int;

© ® ~w o o

o o osw o =

CHIUW 2021, June 04, 2021, Online

/** Local task id x%*/
const localTaskId_ int;
/x* Domain for the local values *x/

const localDomain_ domain(1) = {0..#nilLocal_};
proc init(ni int = @, niLocal int = 0,
localTaskId int = 0)
{
super.init(ni);
nilLocal_ = nilLocal;
localTaskId_ = localTaskId;
}
/**
Computes the norm
*xx/
override proc norm(param comm bool = true) real_t
{
var res real;
local
{
if (updateGPU_)
this.GPUcopy (0);
¥
res = cublas_Dot(cublasHandle_, nilLocal_,
d_values_, d_values_); // CUDA function
}
if (comm)
{
var val = globalReduction.reduceValues(
localTaskId_, [res], REDUCE_OPERATION_t.SUM);
res = val[o];
3
return sqrt(res);
}

As a result, GPU matrix and vector objects are instantiated and
the original CPU algorithm is used directly, avoiding unnecessary
code duplication in CUDA. Thanks to Chapel’s inheritance feature,
the GPU functions are therefore seamlessly integrated alongside
the CPU code as we can see with the small code portion below. that
can execute both the CPU and GPU versions of GMRES.

/**

Main procedure to solve the linear system
lhs: The LHS of the linear system to solve
rhs: The RHS of the linear system to solve
buildPreconditioner: If the LHS has changed,
is updated

rarg

rarg

rarg

the preconditioner
*%x/

proc solve(lhs

buildPreconditioner

{

rhs
true)

Vector_c,
int

BSRmatrix_c,
bool =

var totallteration int = 0;

var b_norm real = rhs.norm();

x_.reset();

if (buildPreconditioner) then preconditioner_.
buildPreconditioner();

while (totallteration < maxIterations_)
{
ref Q0 = krylovVectors_[0].Q_;
Q0.set(rhs);

if (totallteration > @)
{

25

26
27
28

CHIUW 2021, June 04, 2021, Online

Xx_.exchangeAuxValues(
interfaceCommunicator_);
lhs.dot(x_, workingArray_);
Q0.addScale(workingArray_,-1.0);
3

In GMRES, there are two types of operations: vector and matrix
operations. For simple vector operations like the memset operation
(ex.xo = 0orog =ro/||rol|5 in Algorithm 1), fine-grain parallelism is
implemented by associating one CUDA thread per dimension of the
array. For more complex operations like the norm, the dot product
and the add scale operation, the cuBLAS library is used. There is
also a sparse Matrix-Vector multiplication for which the cuSPARSE
library is used. Finally, all operations on the Hessenberg matrix are
done on the CPU. The latter is a small matrix on which the givens
rotation is applied sequentially. Since this operation represents less
than 1% of the overall algorithm (see Figure 7), it is more efficient
to use the CPU and avoid costly data transfer between the GPU
and the CPU.

For the coarse-grain parallelism, each zone in the partitioned grid
is assigned to a task by CHAMPS and distributed over the available
Locales. Each of these tasks is assigned to an asynchronous CUDA
stream, allowing for overlapping of the computations. However,
the GPU allows only one process to make calls. Therefore, the
CUDA Multi-Process Service (MPS) is required to enable concurrent
calls between various threads on the same GPU. Although splitting
the grid works well on GPU, this creates more interfaces, which
increases the time spent for communication and synchronization
between tasks. As a result, assigning one zone or one task per
GPU is recommended to achieve maximum efficiency and avoid
over-subscription of the GPU.

When using multiple GPUs, every process is evenly split between
the available GPUs which is easily done with CUDA’s library. In this
work, the grid is partitioned into multiple zones and each zone is
assigned to a GPU. The grid partitioning is accomplished using the
external library METIS and a Reverse Cuthill-Mckee (RCM) reorder-
ing scheme is applied afterward to reduce the overall bandwidth of
the sparse matrix. Consequently, the linear problem is distributed
as illustrated in Figure 2 where the red values represent local blocks
that interact only with values stored locally. Off-diagonal blocks,
represented in blue, interacts with values belonging to a different
task and possibly stored on a different Locale. It creates communica-
tion points for the sparse Matrix-Vector multiplication and within
the orthogonalization process as shown in Algorithm 2.

Algorithm 2: Arnoldi-Modified Gram-Schmidt

wj = Avj [communication point];
fori=1,..jdo
hij = (wj,v;) [communication point];
wj =w;j — hj joi;
end
hjt1,j = ||wj||2 [communication point];

Uj+1 =Wj+1/hj+1,j;

For the sparse Matrix-Vector operation, each task computes in
parallel the operation on their attributed rows. The values of the
vector corresponding to off-diagonal blocks are exchanged, see

Anthony Bouchard, Matthieu Parenteau, and Eric Laurendeau

Figure 2, and every task computes the local part only of the result-
ing vector. For the Vector-Vector dot product, the dot product is
computed on the local part and a reduction, involving communi-
cation, is performed afterward to sum the contribution of every
task to obtain the final value. The communication involved in these
operations are performed on the CPU with Chapel using the dedi-
cated communication objects of CHAMPS. The overall process is
illustrated in Figure 3. The dot operation is executed in parallel
on the various GPUs on local data only. The resulting value for
every GPU is copied to the CPU for the global reduction and the
final value is returned to every task. Note that the same process is
involved for the Matrix-Vector dot product with the exception that
multiple values, corresponding to off-diagonal blocks, are copied
from the GPU to the CPU to be exchanged and copied back to GPU
to obtain the updated vector on the GPU. This process involves
the use of dedicated buffer arrays to maximize efficiency when
communicating values to the other task.

201 40 |

task: 0 0315 | 0 8 3

_ 02| 50] 81 2
task: 1 101011 60 X 3 5
task:2< [0 4 | 70 | 11 4

(12] 06 | 0 3] 9

Figure 2: Illustration of a distributed matrix and vector for
multiple GPUs (one task per GPU).

5 RESULTS

In this section, different test cases are presented to assess the perfor-
mance of the GPU version of GMRES. In all those cases, a Cartesian
grid with 2 million elements is used, see Figure 4, where the Euler
equation is solved for the five unknowns (density, velocity and
energy). Consequently, the linear system solved by GMRES has
10 million unknowns. Cases are run on Béluga which is a general-
purpose cluster from Compute Canada. Table 1 shows a summary of
the CPUs and GPUs on a node and the environment configuration
of Chapel is described in Table 2. Chapel 1.23 is used for this work.

In the first test case, the GPU version of GMRES is run on 1, 2
and 4 GPUs for 1, 10, 25 and 50 Krylov iterations. Figure 5 shows
the time per iteration of each run.

For this figure, we can see that when the number of Krylov iter-
ations is increased, the time per iteration is also increasing. This is
due to the Arnoldi method, where a Krylov vector is orthogonalized
against all the previous vectors. It is therefore important to keep
the number of Krylov iterations as low as possible to guarantee an
efficient solver. To compare the CPU and GPU implementations,
the CPU version is run on 2 CPUs (40 cores) for the same number
of Krylov iterations. Speedups are shown in Figure 6.

Toward a Multi-GPU Implementation of a GMRES Solver in CHAMPS

on GPU

A

CHIUW 2021, June 04, 2021, Online

on CPU

A

Task: 0

N
N)

24 —P[Memcopy device2host

Redicion—» o:

Task: 1 1 2 P Xy =P 117 *—D[Memcopy device2host

N =

24 —D[Memcopy device2host

—

Task: 2
5 3
Figure 3: Illustration of a parallel dot product with multiple GPUs (one task per GPU).
Table 1: Summary of the CPUs and GPUs on one Beluga node.
Intel Xeon Gold 6148 Skylake NVidia V100SXM2
Number of CPUs/GPUs 2 4
CPU/GPU performance 2.4 GHz, 20 cores, 40 threads 1.53GHz, 80 SMs, 32 DP CUDA cores/SM
Peak performance per CPU/GPU 0.704 TFLOPS (DP) 7.8 TFLOPS (DP)
Peak memory bandwidth per CPU/GPU 128 GB/s 900 GB/s

Power per CPU/GPU 150W 300 W

z

'S

Figure 4: Cartesian grid with 2 million elements partitioned
into four zones.

As stated a bit earlier, most of the functions are limited by the
memory subsystem. Therefore, for that test case, we expect to have
a speedup close to the ratio of the maximum memory bandwidth,
which should be around 3.5 if we compare 1 GPU to 2 CPUs. For
up to 50 Krylov iterations on one GPU, we have a speedup in line
with the expected value. When increasing the number of GPUs,

Table 2: Chapel 1.23 environment configuration.

Variable Value
CHPL_COMM gasnet
CHPL_COMM_SUBSTRATE ibv
CHPL_GASNET_SEGMENT large
CHPL_TASKS qthreads

CHPL_LAUNCHER gasnetrun_ibv

the speedup is around 6 and 9 for 2 and 4 GPUs respectively. It is
normal to see a degradation in performance when running on more
than one GPU, because the computation is slowed down by com-
munication and synchronization between the GPUs. When the grid
is partitioned, it creates more interfaces, which in turn increases
the amount of data that is transferred between the different tasks.
However, this represents a potential advantage for GPU implemen-
tations, since the number of GPU is usually much lower than the
number of CPU, thereby reducing the number of partitions and
interfaces.

The next test compares, in Figure 7, the distribution of the total
time spent in the different functions of GMRES for 10 and 50 Krylov
iterations. In this comparison, the Matrix-Vector multiplication is
evaluated outside the Arnoldi part. Ten non-linear iterations are
done for a total of 100 and 500 Krylov iterations respectively. This
test is run on two GPUs and two CPUs.

CHIUW 2021, June 04, 2021, Online

1 krylov it.
0.0175 mm 10 krylov it.
B 25 krylov it.
= 0.0150 B 50 krylov it.
5 0.0125
)
©
—
3 0.0100
—
)
2 0.0075
()
£
F~ 0.0050
0.0025
0.0000

2
Number of GPU (4 gpus/node)

Figure 5: Real time per iteration in seconds for the GMRES
algorithm on the GPU for different number of Krylov itera-
tions.

10
1 krylov it.
B 10 krylov it.
8 B 25 krylov it.
50 krylov it.

Speedup (cpu with 40 cores as reference)

1 2 4
Number of GPU (4 gpus/node)

Figure 6: Speedup of the GPU version of GMRES compared
to 1 CPU.

In the GMRES algorithm, the Matrix-Vector multiplication is
only done one time per Krylov iteration. The Arnoldi orthogonal-
ization is also done one time but loops over the previous Krylov
vectors. Therefore, as the Krylov iteration is increased, the num-
ber of operations is also increased for the Arnoldi method. As a
result, around 31% of the total time is consumed by Arnoldi for
10 Krylov iterations, while 64% is taken for 50 iterations. As for
the communication, while it could be expected that the percent-
age increases with the number of Krylov iterations since there is a
synchronization point in the Arnoldi orthogonalization, the most
costly communication is in fact the one outside the Arnoldi orthog-
onalization for the Matrix-Vector operation. Indeed, the test case
is run on a single node, making the global reductions inside the

Anthony Bouchard, Matthieu Parenteau, and Eric Laurendeau

Sparse Matrix-Vector dot product - 56.7%
Arnoldi - 30.9%

Givens rotation - < 1.0%

Communication and synchronization - 12.4%

(@)

Sparse Matrix-Vector dot product - 26.7%
Arnoldi - 64.0%

Givens rotation - < 1.0%

Communication and synchronization - 9.3%

(b)

Figure 7: Comparison of the time distribution for (a) 10
Krylov iterations and (b) 50 Krylov iterations with 2 CPUs
and GPUs

Arnoldi orthogonalization efficient when compared to the exchange
of values needed for the Matrix-Vector multiplication.

The final test is a strong scalability analysis over 8 GPUs on 2
nodes. Figure 8 shows the speedup and efficiency when increasing
the number of GPUs for the GPU version of GMRES with (global)
and without (local) communication.

From these figures it is evident that there is a communication or
synchronization problem between the Locales, which ruins the scal-
ability of the algorithm. If all communication and synchronization
points are removed, the GMRES solver maintains a relatively good
scaling efficient above 80%. The communication and synchroniza-
tion part of the algorithm represents roughly 65% of the total time
when using two compute nodes, see Figure 9. This problem comes
from the use of network atomics, which are working properly on
Cray systems, but not on infiniband systems. Note that the same
issue is also present with the CPU implementation.

6 CONCLUSION AND FUTURE WORK

In this article, a GPU version of GMRES is developed and compared
with the CPU version already implemented in CHAMPS. The results
show that the number of Krylov iterations increases the computa-
tional time of the algorithm exponentially. When compared to the

Toward a Multi-GPU Implementation of a GMRES Solver in CHAMPS

—6— global solver PR
—©— local solver /z/
5 ——- ideal g
S8
—
o
-~
[
2
)
K
[9)
—
s
34
Q
)
o
)
2
1
1 2 4 8
Number of GPU (4 gpus/node)
(@)
100 Qe
90
> 80
[}
@
G 70
&=
2 60
o
£
© 50
0]
40
—6— global solver
304 —©— local solver
—=- ideal
20
1 2

4 8
Number of GPU (4 gpus/node)
(b)

Figure 8: Strong scaling analysis of the GPU version of GM-
RES showing (a) the speedup and (b) the efficiency up to 8
GPUs.

CPU, speedups relatively close to the ratio of memory bandwidth
are obtained with the GPU, which demonstrates that our imple-
mentation is efficient. It is also shown that when the number of
Krylov iterations is higher, the relative time passed in the Arnoldi
orthogonalization is also more important when compared to the
other operations. Finally, the strong scaling analysis shows that a
synchronization problem, due to the use of network atomics on
infiniband systems, is preventing efficient scaling with more than
one compute node.

For future work, the first step will be to investigate and fix the
issue regarding the inter-nodes communication/synchronization.
Then, like previously stated, the GMRES solver needs to be precondi-
tioned. In CHAMPS, some preconditioners are already implemented
on the CPU side. Block Jacobi and ILU(0) are good candidates to
be ported over GPU. Finally, to have the JFNK solver fully on the

CHIUW 2021, June 04, 2021, Online

I Sparse Matrix-Vector dot product - 17.1%
3 Arnoldi - 18.2%

Il Givens rotation - < 1.0%

I Communication and synchronization - 64.7%

Figure 9: Time distribution with 8 GPUs distributed over two
compute nodes for 10 Krylov iterations.

GPU, there will be a need to port all functions related to the flow
computation (fluxes, gradients, etc.).

ACKNOWLEDGMENTS

This work is supported by the National Science and Engineer-
ing Research Council (NSERC) of Canada, the Consortium for Re-
search and Innovition in Aerospace in Québec (CRIAQ), Bombardier
Aerospace and Cray Canada. Computations were made on the su-
percomputer Béluga from Ecole de Technologie Supérieur, managed
by Calcul Québec and Compute Canada.

REFERENCES

[1] Jiri Blazek. 2005. Computational Fluid Dynamics: Principles and Applications:(Book

with accompanying CD). Elsevier.

Patrice Castonguay, David Williams, Peter Vincent, Manuel Lopez, and Antony

Jameson. 2011. On the development of a high-order, multi-GPU enabled, com-

pressible viscous flow solver for mixed unstructured grids. In 20th AIAA Compu-

tational Fluid Dynamics Conference. 3229. https://doi.org/10.2514/6.2011-3229

[3] Todd T Chisholm and David W Zingg. 2009. A Jacobian-free Newton-Krylov

algorithm for compressible turbulent fluid flows. J. Comput. Phys. 228, 9 (2009),

3490-3507. https://doi.org/10.1016/j.jcp.2009.02.004

Zachary DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley, Montserrat

Medina, Mike Barrientos, Erich Elsen, Frank Ham, Alex Aiken, Karthik Duraisamy,

et al. 2011. Liszt: a domain specific language for building portable mesh-based

PDE solvers. In Proceedings of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis. 1-12. https://doi.org/10.1145/

2063384.2063396

[5] Dana Jacobsen, Julien Thibault, and Inanc Senocak. 2010. An MPI-CUDA imple-
mentation for massively parallel incompressible flow computations on multi-GPU
clusters. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons
Forum and Aerospace Exposition. 522. https://doi.org/10.2514/6.2010-522

[6] Antony Jameson, Wolfgang Schmidt, and Eli Turkel. 1981. Numerical solution of
the Euler equations by finite volume methods using Runge Kutta time stepping
schemes. In 14th fluid and plasma dynamics conference. 1259. https://doi.org/10.
2514/6.1981-1259

[7] IC Kampolis, XS Trompoukis, VG Asouti, and KC Giannakoglou. 2010. CFD-
based analysis and two-level aerodynamic optimization on graphics processing
units. Computer Methods in Applied Mechanics and Engineering 199, 9-12 (2010),
712-722. https://doi.org/10.1016/j.cma.2009.11.001

[8] Dana A Knoll and David E Keyes. 2004. Jacobian-free Newton-Krylov methods:
a survey of approaches and applications. J. Comput. Phys. 193, 2 (2004), 357-397.
https://doi.org/10.1016/].jcp.2003.08.010

[9] Meng-Sing Liou and Christopher J Steffen Jr. 1993. A new flux splitting scheme.

Journal of Computational physics 107, 1 (1993), 23-39. https://doi.org/10.1006/

jeph.1993.1122

Hongbin Liu, Xinrong Su, and Xin Yuan. 2018. Accelerating unstructured large

eddy simulation solver with GPU. Engineering Computations (2018). https:

//doi.org/10.1108/EC-01-2018-0043

[2

—_
=)

[10

https://doi.org/10.2514/6.2011-3229
https://doi.org/10.1016/j.jcp.2009.02.004
https://doi.org/10.1145/2063384.2063396
https://doi.org/10.1145/2063384.2063396
https://doi.org/10.2514/6.2010-522
https://doi.org/10.2514/6.1981-1259
https://doi.org/10.2514/6.1981-1259
https://doi.org/10.1016/j.cma.2009.11.001
https://doi.org/10.1016/j.jcp.2003.08.010
https://doi.org/10.1006/jcph.1993.1122
https://doi.org/10.1006/jcph.1993.1122
https://doi.org/10.1108/EC-01-2018-0043
https://doi.org/10.1108/EC-01-2018-0043

CHIUW 2021, June 04, 2021, Online

Florian R Menter. 1994. Two-equation eddy-viscosity turbulence models for
engineering applications. AIAA journal 32, 8 (1994), 1598-1605. https://doi.org/
10.2514/3.12149

Bahareh Mostafazadeh Davani, Ferran Marti, Behnam Pourghassemi, Feng Liu,
and Aparna Chandramowlishwaran. 2017. Unsteady Navier-Stokes Computations
on GPU Architectures. In 23rd AIAA Computational Fluid Dynamics Conference.
4508. https://doi.org/10.2514/6.2017-4508

MT Nguyen, P Castonguay, and E Laurendeau. 2018. GPU parallelization of multi-
grid RANS solver for three-dimensional aerodynamic simulations on multiblock
grids. The Journal of Supercomputing (2018), 1-22. https://doi.org/10.1007/s11227-
018-2653-6

Christopher C Paige and Michael A Saunders. 1975. Solution of sparse indefinite
systems of linear equations. SIAM journal on numerical analysis 12, 4 (1975),
617-629. https://doi.org/10.1137/0712047

Matthieu Parenteau, Simon Bourgault-Cote, Frédéric Plante, Engin Kayraklioglu,
and Eric Laurendeau. 2021. Development of Parallel CFD Applications with
the Chapel Programming Language. In AIAA Scitech 2021 Forum. 0749. https:
//doi.org/10.2514/6.2021-0749

P.L. Roe. 1981. Approximate Riemann Solvers, Parameter Vectors, and Difference
Schemes. Journal of Computational Physics 43 (1981), 357-372.

[17] Yousef Saad. 2003. Iterative methods for sparse linear systems. Vol. 82. siam.

Anthony Bouchard, Matthieu Parenteau, and Eric Laurendeau

[18] PRaA Spalart and S1 Allmaras. 1992. A one-equation turbulence model for

aerodynamic flows. In 30th aerospace sciences meeting and exhibit. 439. https:
//doi.org/10.2514/6.1992-439

Brian C Vermeire, Freddie D Witherden, and Peter E Vincent. 2017. On the
utility of GPU accelerated high-order methods for unsteady flow simulations: A
comparison with industry-standard tools. J. Comput. Phys. 334 (2017), 497-521.
https://doi.org/10.1016/].jcp.2016.12.049

Peter Vincent, Freddie D Witherden, Antony M Farrington, George Ntemos,
Brian C Vermeire, Jin S Park, and Arvind S Iyer. 2015. PyFR: next-generation
high-order computational fluid dynamics on many-core hardware. In 22nd AIAA
Computational Fluid Dynamics Conference. 3050. https://doi.org/10.2514/6.2015-
3050

Jerry E Watkins, Joshua Romero, and Antony Jameson. 2016. Multi-GPU, implicit
time stepping for high-order methods on unstructured grids. In 46th AIAA Fluid
Dynamics Conference. 3965. https://doi.org/10.2514/6.2016-3965

Chuanfu Xu, Xiaogang Deng, Lilun Zhang, Yi Jiang, Wei Cao, Jianbin Fang,
Yonggang Che, Yongxian Wang, and Wei Liu. 2013. Parallelizing a high-order CFD
software for 3D, multi-block, structural grids on the TianHe-1A supercomputer.
In International Supercomputing Conference. Springer, 26-39. https://doi.org/10.
1007/978-3-642-38750-0_3

https://doi.org/10.2514/3.12149
https://doi.org/10.2514/3.12149
https://doi.org/10.2514/6.2017-4508
https://doi.org/10.1007/s11227-018-2653-6
https://doi.org/10.1007/s11227-018-2653-6
https://doi.org/10.1137/0712047
https://doi.org/10.2514/6.2021-0749
https://doi.org/10.2514/6.2021-0749
https://doi.org/10.2514/6.1992-439
https://doi.org/10.2514/6.1992-439
https://doi.org/10.1016/j.jcp.2016.12.049
https://doi.org/10.2514/6.2015-3050
https://doi.org/10.2514/6.2015-3050
https://doi.org/10.2514/6.2016-3965
https://doi.org/10.1007/978-3-642-38750-0_3
https://doi.org/10.1007/978-3-642-38750-0_3

	Abstract
	1 Introduction
	2 CHAMPS
	3 GMRES Solver
	4 GPU Implementation
	5 Results
	6 Conclusion and Future Work
	Acknowledgments
	References

