
HPC WORKFLOW MANAGEMENT WITH CHAPEL

Ben Albrecht, HPE
June 4, 2021

• Coordinating many monolithic applications is a challenge for the HPC user community
• This impacts scientists across many domains such as astronomy, computational chemistry, and bioinformatics

• These workflows often begin as a simple shell script or collection of scripts
• Depending on the complexity of the workflow, this may become unwieldy
• Users can adopt a workflow framework or code their workflow in a more advanced programming language

• This talk will explore Chapel as a language to write HPC workflows

2

MOTIVATION

• The patterns explored in this talk are motivated by those found in Cray HPO
• They are not a comprehensive list of workflow patterns

• Cray HPO is a hyperparameter optimization framework developed at HPE
• Background on hyperparameter optimization (HPO):
• In data science, a model is trained on a dataset
• Parameters are internal values in the model that are used to make predictions, e.g. slope and offset in y=mx+b
• Hyperparameters are external values that impact how the model is trained, e.g. learning rate in SGD
• Hyperparameter optimization is a process of tuning hyperparameters to minimize a metric, e.g. 1-accuracy
• There is a wide breadth of HPO strategies: grid, random, genetic, bayesian, and more advanced variations

3

BACKGROUND: CRAY HPO

Do I fully understand my data? Does it
need to be cleaned?

D A T A

E X P L O R A T I O N

Which features should be used
for accurate predictions?

S E L E C T I N G

F E A T U R E S

What are the correct values to set the
variables to before training?

H Y P E R

P A R A M E T E R S

Which ensemble of AI/ML models will
be more performant?

M O D E L

E N S E M B L E S

Do I trust my model? Why
does it predict that way?

M O D E L

R A T I O N A L E

• Cray HPO essentially acts as a distributed workflow manager for tuning the hyperparameters
from crayai import hpo # crayai.hpo implementation is written in Chapel

Specify training kernel and the resources on which to execute HPO training

evaluator = hpo.Evaluator('python3 source/train.py’, workload_manager=‘slurm’, nodes=16)

Specify hyperparameter search space

params = hpo.Params([['--lr', 0.001, (1e-5, 0.1)],
['--optimizer', 'Adam', ['Adam', 'Adadelta', 'Nadam']]])

Specify optimizer and its metaparameters

optimizer = hpo.GeneticOptimizer(evaluator,
generations=10,
pop_size=16,
mutation_rate=0.15)

Optimize hyperparameters, results are stored in a csv file

optimizer.optimize(params)

4

WORKFLOW BUILDING
BLOCKS

5

• Running other programs and interacting with their outputs is the basic building block of workflows
• In Chapel, running other programs can be done with the Spawn module:

use Spawn;

var process = spawn(['./run-simulation']);

6

LAUNCHING A SUBPROCESS

• Spawning a subprocess is a non-blocking operation.
• Blocking on the completion of the program can be done with a ‘wait’ or ‘communicate’ call:

use Spawn;

var process = spawn(['./run-simulation’],
stdout=PIPE);

process.wait();
for line in process.stdout.readlines() {

writeln(line);
}

7

LAUNCHING A SUBPROCESS

For interacting with HPC workload managers and launchers, one can capture interface into a function:

use Slurm;

const jobid = salloc(numNodes=32, timeout=120);
var process = srun('./run-simulation', numNodes=32, id=jobid);
process.wait();

Abstracting away workload manager specifics enables portability across HPC systems:

use Jobs;

var job = new Job(workloadManager=Launchers.pbs, launcher=Launchers.aprun);
job.alloc(numNodes=32, timeout=120);
var process = job.run('./run-simulation', numNodes=32);
process.wait();

8

LAUNCHING A DISTRIBUTED SUBPROCESS

• Launching subprocesses in parallel is necessary for many workloads
• The forall loop is the ideal construct for this functionality:
• Creates a concurrent task mapped to available resources, such as cores, gpus, nodes, etc.

var simulationCommands: [1..n] string = getCommands(n);

forall simulationCommand in simulationCommands {
var process = spawn(simulationCommand, stdout=PIPE, stderr=PIPE);
process.wait();

}

• Each task will block on the process.wait() call, allowing the subprocess to complete before starting a new one
• This forall maps to the local available resources, i.e. number of cores on the machine

9

LAUNCHING SUBPROCESSES IN PARALLEL

To map the number of concurrent tasks to the available distributed resources, use the iterator explicitly:
use Jobs;

config const nodesPerSim = 8;
config const numNodes = 128;

var job = new Job(workloadManager=Launchers.slurm);
var inputs: [0..<n] string = readInputs('inputs.txt');
const numParallelTasks = (numNodes / nodesPerSim):int;

job.alloc(numNodes, timeout=240);
forall i in simulationCommands._value.these(tasksPerLocale=numParallelTasks) {

var process = job.run(simulationCommand, numNodes=nodesPerSim);
process.wait();

}

This will allocate 128 nodes and run 16 concurrent tasks that each launch a process with 8 nodes

10

LAUNCHING DISTRIBUTED SUBPROCESSES IN PARALLEL

Varying the number of nodes in the distributed application requires tracking the available node pool
use ChapelLocks;
var nodesAvailable = numNodes;
var lock: chpl_LocalSpinlock;
...
forall i in simulationCommands._value.these(tasksPerLocale=numParallelTasks) {

localNumNodes = randStream.getNext(1,8);
waitForNodes(localNumNodes);
var process = job.run(simulationCommand, numNodes=localNumNodes);
process.wait();

}

11

VARIABLE NUMBER OF NODES PER DISTRIBUTED APPLICATION

proc waitForNodes(localNumNodes) {
// Wait until nodes are available

while true {
lock.lock();
if nodesAvailable >= localNumNodes {

// Remove nodes from node pool
nodesAvailable -= localNumNodes;
lock.unlock;
break;

} else {
lock.unlock();
Time.sleep(1);

}
}
// Add nodes back to node pool when done

lock.lock();
nodesAvailable += localNumNodes;
lock.unlock;

}

12

VARIABLE NUMBER OF NODES PER DISTRIBUTED APPLICATION

• I/O is an important component of any workflow application
• The output generated by the subprocess can be accessed through various mechanisms:
• Parsing subprocess stdout
• Parsing files generated by subprocess
• Connecting with the subprocess and communicating in memory, e.g. over ZMQ
• Writing results to a database from the subprocess

13

PARSING OUTPUT

Advantages
• Modern programming language with modern features and productivity
• Generics, type inference, native C/python interop, etc.

• Parallel constructs built into the language
• Parallel loops, atomics, tasks, etc.

• Performance
• Not always important in workflow space, but can be important for sufficiently large workflow programs
• Some workflow tools use complex algorithms in their feedback loops, e.g. Bayesian optimization in HPO

• Compiling and statically linking produces a dependency-free binary
Disadvantages
• Compilation is time consuming
• Standard library and module ecosystem not as mature as other languages such as Python

14

ADVANTAGES AND DISADVANTAGES OF CHAPEL

• Shell scripting
• Other modern programming languages: Python, Julia, Go, Rust, etc.
• Workflow frameworks, such as Apache Airflow
• Domain-specific workflow frameworks, such as Bioclipse
• Domain-specific languages for workflow automation, such as swift scripting language

15

ALTERNATIVE OPTIONS FOR BUILDING WORKFLOWS

• Developing HPC workflows is a challenged faced by many scientists and engineers
• Chapel has many appealing features making it a competitive choice for developing workflows
• Modern PL features
• Parallel constructs
• Performance
• Portability

16

SUMMARY

THANK YOU

