: _BenAIbre‘ch’r‘,'HPE
“June 4,2021

/

w

MOTIVATION

e Coordinating many monolithic applications is a challenge for the HPC user community

e This impacts scientists across many domains such as astronomy, computational chemistry, and bioinformatics
e These workflows often begin as a simple shell script or collection of scripts

« Depending on the complexity of the workflow, this may become unwieldy

« Users can adopt a workflow framework or code their workflow in a more advanced programming language
 This talk will explore Chapel as a language to write HPC workflows

2

BACKGROUND: CRAY HPO

e The patterns explored in this talk are motivated by those found in Cray HPO
e They are not a comprehensive list of workflow patterns

e Cray HPO is a hyperparameter optimization framework developed at HPE

e Background on hyperparameter optimization (HPO):

In data science, a model is trained on a dataset
Parameters are internal values in the model that are used to make predictions, e.g. slope and offset in y=mx+b

Hyperparameters are external values that impact how the model is trained, e.g. learning rate in SGD
Hyperparameter optimization is a process of tuning hyperparameters to minimize a metric, e.g. 1-accuracy

There is a wide breadth of HPO strategies: grid, random, genetic, bayesian, and more advanced variations

SELECTING MODEL

FEATURES ENSEMBLES

Which features should be used Which ensemble of AlI/ML models will
for accurate predictions? be more performant?

DATA HYPER M ODEL

1 EXPLORATION PARAMETERS RATIONALE |

Do | fully understand my data? Does it What are the correct values to set the Do | trust my model? Why
need to be cleaned? variables to before training? does it predict that way?

e Cray HPO essentially acts as a distributed workflow manager for tuning the hyperparameters
from crayai import hpo # crayaihpoimplementation is written in Chapel

Specify training kernel and the resources on which to execute HPO training

evaluator = hpo.Evaluator ('python3 source/train.py’, workload manager=‘slurm’, nodes=16)

Specify hyperparameter search space

params = hpo.Params([['--1r', 0.001, (le-5, 0.1)1],
['--optimizer', 'Adam', ['Adam', 'Adadelta', 'Nadam']]])

Specify optimizer and its metaparameters

optimizer = hpo.GeneticOptimizer (evaluator,
generations=10,
pop size=1l6,
mutation rate=0.15)

Optimize hyperparameters, results are stored in a csv file

optimizer.optimize (params)

—

WORKFLOW BUILDING
BLOCKS

LAUNCHING A SUBPROCESS

e Running other programs and interacting with their outputs is the basic building block of workflows
e In Chapel, running other programs can be done with the Spawn module:

. # Chapel D i
u s e S p awn 14 ~re s # » Standard Modules » Spawn View page source
version 1.24 ¥
1 : : v Spawn <
var process = spawn(['./run-simulation']); [
Usage
Quickstart Instructions
Using Chapel
use Spawn;
Platform-Specific Notes
Technical Notes
or

Tools

| HAPEL PF import Spawn;

Quick Reference

Hello World Variants Support launching and interacting with other programs.

Primers
Using functions in this module, one can create a subprocess and possibly capture its output. It is

Language Specification also possible to provide input to a subprocess.

Built-in Types and Functions
© Standard Modules To start a subprocess, use spawn or spawnshell . To wait for the subprocess process to finish,

) use the subprocess.wait Or subprocess.communicate functions.
Automatic Modules

Data Structures
This example program produces a listing of files in the current directory with names that begin

Diagnostics with test. by usingthe 1s command. The output will be mixed in with the Chapel program’s

LAUNCHING A SUBPROCESS

e Spawning a subprocess is a non-blocking operation.

« Blocking on the completion of the program can be done with a ‘wait’ or ‘communicate’ call:

use Spawn;

var process = spawn(['./run-simulation’],
stdout=PIPE) ;
process.wait () ;
for line in process.stdout.readlines () {
writeln (line) ;

LAUNCHING A DISTRIBUTED SUBPROCESS

For interacting with HPC workload managers and launchers, one can capture interface into a function:

use Slurm;
const jobid = salloc (numNodes=32, timeout=120);

var process = srun('./run-simulation', numNodes=32, id=jobid);
process.wait () ;

Abstracting away workload manager specifics enables portability across HPC systems:

use Jobs;

var job = new Job (workloadManager=Launchers.pbs, launcher=Launchers.aprun);
job.alloc (numNodes=32, timeout=120);

var process = job.run('./run-simulation', numNodes=32);

process.wait () ;

—

LAUNCHING SUBPROCESSES IN PARALLEL

e Launching subprocesses in parallel is necessary for many workloads

e The forall loop is the ideal construct for this functionality:
» Creates a concurrent task mapped to available resources, such as cores, gpus, nodes, etc.

var simulationCommands: [l..n] string = getCommands (n) ;

forall simulationCommand in simulationCommands {
var process = spawn(simulationCommand, stdout=PIPE, stderr=PIPE);

process.wait (),

« Each task will block on the process.waitQ call, allowing the subprocess to complete before starting a new one
 This forall maps to the local available resources, i.e. number of cores on the machine

LAUNCHING DISTRIBUTED SUBPROCESSES IN PARALLEL

To map the number of concurrent tasks to the available distributed resources, use the iterator explicitly:

use Jobs;

config const nodesPerSim = 8§;

config const numNodes = 128;

var job = new Job (workloadManager=Launchers.slurm);
var 1nputs: [0..<n] string = readInputs('inputs.txt');
const numParallelTasks = (numNodes / nodesPerSim) :int;

job.alloc (numNodes, timeout=240);

forall i in simulationCommands. value.these (tasksPerLocale=numParallelTasks) {
var process = Job.run(simulationCommand, numNodes=nodesPerSim) ;
process.wait (),

This will allocate 128 nodes and run 16 concurrent tasks that each launch a process with 8 nodes

— |

10

VARIABLE NUMBER OF NODES PER DISTRIBUTED APPLICATION

Varying the number of nodes in the distributed application requires tracking the available node pool

use ChapelLocks;
var nodesAvailable = numNodes;
var lock: chpl LocalSpinlock;

{

forall i in simulationCommands. value.these (tasksPerLocale=numParallelTasks)

localNumNodes = randStream.getNext (1l,8);

walitForNodes (localNumNodes) ;

var process = Job.run (simulationCommand,

numNodes=1localNumNodes) ;

process.wait () ;

11

VARIABLE NUMBER OF NODES PER DISTRIBUTED APPLICATION

proc waitForNodes (localNumNodes) {
// Wait until nodes are available

while true {

lock.lock () ;

if nodesAvailable >= localNumNodes {
// Remove nodes from node pool
nodesAvailable -= localNumNodes;
lock.unlock;
break;

} else {
lock.unlock () ;
Time.sleep(1l);

}

}
// Add nodes back to node pool when done

lock.lock () ;

nodesAvailable += localNumNodes;
lock.unlock;

—

12

PARSING OUTPUT

e |/O is an important component of any workflow application
e The output generated by the subprocess can be accessed through various mechanismes:
» Parsing subprocess stdout
 Parsing files generated by subprocess
e Connecting with the subprocess and communicating in memory, e.g. over ZMQ
« Writing results to a database from the subprocess

— .

ADVANTAGES AND DISADVANTAGES OF CHAPEL

Advantages
e Modern programming language with modern features and productivity
» Generics, type inference, native C/python interop, etc.
e Parallel constructs built into the language
« Parallel loops, atomics, tasks, etc.
e Performance
« Not always important in workflow space, but can be important for sufficiently large workflow programs
« Some workflow tools use complex algorithms in their feedback loops, e.g. Bayesian optimization in HPO
e Compiling and statically linking produces a dependency-free binary
Disadvantages
e Compilation is time consuming

e Standard library and module ecosystem not as mature as other languages such as Python

— -

ALTERNATIVE OPTIONS FOR BUILDING WORKFLOWS

e Shell scripting
e Other modern programming languages: Python, Julia, Go, Rust, etc.

o Workflow frameworks, such as Apache Airflow
e Domain-specific workflow frameworks, such as Bioclipse

e Domain-specific languages for workflow automation, such as swift scripting language

— .

SUMMARY

e Developing HPC workflows is a challenged faced by many scientists and engineers

e Chapel has many appealing features making it a competitive choice for developing workflows
e Modern PL features
 Parallel constructs

e Performance
» Portability

— .

