
HPCWorkflow Management with Chapel
Benjamin Albrecht

benjamin.albrecht@hpe.com
Hewlett Packard Enterprise

Abstract
Coordinating many runs of monothilic high performance
computing (HPC) applications is a challenge faced by much
of the HPC user community. This includes domains such as
datascience, bioinformatics, astronomy, and computational
chemistry. For simple cases, users tend to rely on shell scripts
that interact with the system workload manager to launch
their applications. However, more advanced workflows can
require complexity beyond what can reasonably be accom-
plished in a shell script. A more productive programming
language is needed to tackle these more complex tasks. Cray
HPO is a blackbox hyperparameter optimization framework
written in Chapel. The framework employs many advanced
workflow features, such as parallel launching, time budgets,
and variable node counts. This talk will explore some HPC
workflow design patterns encountered in the development
Cray HPO and demonstrate why Chapel works well in this
area.

To launch applications onto an HPC system, the workflow
program must call out to the system workload manager. In
Chapel, this can be done by utilizing Chapel’s Spawn module
to run the workload manager commands as spawn calls. In
Cray HPO, an internal library was created to provide a clean
interface to allocating, launching, and querying information
through the workload manager. The Chapel forall loop can
be used to drive the main loop that calls the workload man-
ager launch commands. The domain being iterated over can
represent the applications to launch, while the number of
parallel tasks can represent the available units of nodes. If
the application only runs on a single node, then the num-
ber of parallel tasks is equal to the number of nodes. By
having each task block on the spawn call that initiates the
launch, the forall loop acts as a local scheduler for the ap-
plication launches. As soon as an application completes, the
task becomes unblocked and ends, freeing up the next task
to launch. Some other patterns that will be explored in this
talk are syncronization between nodes, a time budget shared
across all launches, and launching a distributed application
with variable numbers of nodes.

Lastly, this talk will address the advantages and disadvan-
tages of using Chapel in the workflow development space.
A large advantage is having parallelism as a first class lan-
guage feature. This makes parallelizing and syncronizing
job launching straightforward. For some large scale work-
flows, performance and the ability to move to a distributed

model can become valuable. In addition, Chapel’s native C
and Python interoperability are beneficial if there is a larger
workflow framework that the Chapel application needs to
hook into. The drawback is that Chapel’s compiler speed
will not match the edit-compile-run cycle of a language with
an interpreter such as Python. Taken together, Chapel is a
strong candidate for development of HPC workflow tools.


	Abstract

