
© 2020 Cray, a Hewlett Packard Enterprise company

chapel-lang.org

Squeezing Performance out of 

Arkouda
Elliot Ronaghan

CHIUW 2020
May 22, 2020

@ChapelLanguage

elliot.ronaghan@hpe.com



© 2020 Cray, a Hewlett Packard Enterprise company

• Achieved more than a 1000x speedup for sorting on InfiniBand systems

Teaser

2

0
1
2
3
4
5
6

1 2 4 8 16 32

G
iB
/s

Locales (x 36 cores / locale)

Arkouda Argsort Performance
(3/4 GiB per Locale)

Cray CS (May 2020)
Cray CS (Nov 2019)

be
tte
r



© 2020 Cray, a Hewlett Packard Enterprise company

Testing Hardware

3

• Most performance results will be shown for Cray CS and Cray XC systems
• 32-node Cray CS with 56 Gb/s InfiniBand network (1,152 cores) 
• 512-node Cray XC with Aries network (18,432 cores) 

• Per-node hardware is similar for both systems
• 36-core (72-thread) 2.1 GHz Broadwell processors
• 128 GiB RAM

• Results for other networks will be shown at the end
• Cray CS with 100 and 200 Gb/s InfiniBand networks
• AWS clusters with 25 and 100 Gb/s Ethernet networks



© 2020 Cray, a Hewlett Packard Enterprise company

• NumPy vs Arkouda Performance
• Sorting Background
• Small Message Performance
• Message Aggregation
• Aggregated Sort Performance
• Future work

Outline



© 2020 Cray, a Hewlett Packard Enterprise company

• See Bill Reus’s CHIUW 2020 keynote on Arkouda for details

• At a high level: Arkouda provides NumPy-like arrays at HPC scale
• A NumPy/Pandas Python interface, backed by Chapel
• Chapel provides performance and scalability

Arkouda Background

5



© 2020 Cray, a Hewlett Packard Enterprise company

• Performance normalized to NumPy on a Cray XC

NumPy vs Arkouda Performance

6

benchmark numpy ak (serial)

argsort 1.0 2.0

coargsort 1.0 2.3

gather 1.0 0.4

reduce 1.0 1.2

scan 1.0 0.8

scatter 1.0 1.0

stream 1.0 0.7

benchmark numpy ak (serial) ak (36-core)

argsort 1.0 2.0 16.7

coargsort 1.0 2.3 16.7

gather 1.0 0.4 11.7

reduce 1.0 1.2 12.0

scan 1.0 0.8 3.2

scatter 1.0 1.0 11.8

stream 1.0 0.7 6.2

benchmark numpy ak (serial) ak (36-core) ak (512-node)

argsort 1.0 2.0 16.7 1837.3

coargsort 1.0 2.3 16.7 984.7

gather 1.0 0.4 11.7 469.1

reduce 1.0 1.2 12.0 4412.4

scan 1.0 0.8 3.2 266.6

scatter 1.0 1.0 11.8 781.8

stream 1.0 0.7 6.2 1590.4



© 2020 Cray, a Hewlett Packard Enterprise company

• Argsort has excellent performance and scalability on a Cray XC 
• 110 GiB/s at 512 nodes, sorting 8TiB of data in ~75 seconds

Current Argsort Performance

7

0
20
40
60
80
100
120

16 64 128 256 512

G
iB
/s

Locales (x 36 cores / locale)

Arkouda Argsort Performance
(16 GiB per Locale)

Cray XC (May 2020)

be
tte
r



© 2020 Cray, a Hewlett Packard Enterprise company

• Argsort performance is portable to InfiniBand networks
• Similar performance up to 32 nodes 

Current Argsort Performance

8

0
1
2
3
4
5
6
7

1 2 4 8 16 32

G
iB
/s

Locales (x 36 cores / locale)

Arkouda Argsort Performance
(3/4 GiB per Locale)

Cray XC (May 2020)
Cray CS (May 2020)

be
tte
r



© 2020 Cray, a Hewlett Packard Enterprise company

• Performance 6 months ago was a very different story
• Respectable XC performance, unusable CS performance

Original Argsort Performance

9

0
1
2
3
4
5
6
7

1 2 4 8 16 32

G
iB
/s

Locales (x 36 cores / locale)

Arkouda Argsort Performance
(3/4 GiB per Locale)

Cray XC (May 2020)
Cray CS (May 2020)
Cray XC (Nov 2019)
Cray CS (Nov 2019)

be
tte
r



© 2020 Cray, a Hewlett Packard Enterprise company

• Arkouda uses a simple 100 line least-significant-digit radix sort
• Easy to parallelize, but lots of communication 𝑂(𝑤𝑛)

• 𝑤 is the number of digits (16-bit digits), 𝑛 is the number of elements
• 50B element array of 32-bit values has 100B 8-byte network transactions

• Want to optimize without sacrificing maintainability and simplicity

Sorting Implementation

10

https://www.growingwiththeweb.com/sorting/radix-sort-lsd/

https://www.growingwiththeweb.com/sorting/radix-sort-lsd/


© 2020 Cray, a Hewlett Packard Enterprise company

• Previously, Arkouda used 'unorderedCopy()' for these 8-byte messages
• Optimized copy for when no overlap will occur

• Sample performance for copying a 32 MiB local array to a remote array

Small Message Performance

11

// bulk
rArr = lArr;

// unordered
forall (r, l) in zip(rArr, lArr) do
unorderedCopy(r, l);

Performance (MiB/s)

config bulk

Cray XC 8000.0

Cray CS 6000.0

Performance (MiB/s)

config bulk unordered

Cray XC 8000.0 510.0

Cray CS 6000.0 2.0



© 2020 Cray, a Hewlett Packard Enterprise company

• Added copy aggregators to Arkouda
• Created for each task, must specify whether source or destination is remote

Message Aggregation

12

// bulk
rArr = lArr;

// unordered
forall (r, l) in zip(rArr, lArr) do
unorderedCopy(r, l);

// aggregated
forall (r, l) in zip(rArr, lArr) with (var agg = new DstAggregator(int)) do
agg.copy(r, l);

Performance (MiB/s)

config bulk unordered aggregated

Cray XC 8000.0 510.0 2275.0

Cray CS 6000.0 2.0 1850.0



© 2020 Cray, a Hewlett Packard Enterprise company

Message Aggregation Implementation

13

config const bufferSize = 4096;

/*
* Aggregates copy(ref dst, src). Optimized for when src is local.
* Not parallel safe and is expected to be created on a per-task basis
* High memory usage since there are per-destination buffers
*/

record DstAggregator {

type elemType;
var buffer: [LocaleSpace][0..#bufferSize] (addr, elemType);
var bufferIdxs: [LocaleSpace] int;



© 2020 Cray, a Hewlett Packard Enterprise company

Message Aggregation Implementation

14

inline proc copy(ref dst: elemType, srcVal: elemType) {
// Get the locale of dst and the local address on that locale
const loc = dst.locale.id;
const dstAddr = getLocalAddr(dst);

// Get our current index into the buffer for dst's locale
ref bufferIdx = bufferIdxs[loc];

// Buffer the address and desired value
buffer[loc][bufferIdx] = (dstAddr, srcVal);
bufferIdx += 1;

// If full, flush
if bufferIdx == bufferSize then

flushBuffer(loc, bufferIdx);
}



© 2020 Cray, a Hewlett Packard Enterprise company

Message Aggregation Implementation

15

proc flushBuffer(loc: int, ref bufferIdx) {

// Migrate execution to the remote node
on Locales[loc] {
// GET the buffered dst addrs and src values, and assign
var localBuffer = buffer[loc][0..#bufferIdx];
for (dstAddr, srcVal) in localBuffer do
dstAddr.deref() = srcVal;

}
bufferIdx = 0;

}



© 2020 Cray, a Hewlett Packard Enterprise company

• Aggregation improved performance by more than 2x on XC and 1000x on CS

Aggregated Argsort Performance

16

0
1
2
3
4
5
6
7

1 2 4 8 16 32

G
iB
/s

Locales (x 36 cores / locale)

Arkouda Argsort Performance
(3/4 GiB per Locale)

Cray XC (w/ agg)
Cray CS (w/ agg)
Cray XC (w/o agg)
Cray CS (w/o agg)

be
tte
r



© 2020 Cray, a Hewlett Packard Enterprise company

• Aggregation has good scalability despite simple design

Aggregated Argsort Performance

17

0
20
40
60
80
100
120

16 64 128 256 512

G
iB
/s

Locales (x 36 cores / locale)

Arkouda Argsort Performance
(16 GiB per Locale)

Cray XC (w/ agg)
Cray XC (w/o agg)

be
tte
r



© 2020 Cray, a Hewlett Packard Enterprise company

• Cray CS performance with 56, 100, and 200 Gb/s InfiniBand networks
• Collected using 36-cores (200 Gb/s has 48 cores, but only 36 used)

InfiniBand Performance

18

0
1
2
3
4
5
6
7
8

1 2 4 8 16 32

G
iB
/s

Locales (x 36 cores / locale)

Arkouda Argsort Performance
(3/4 GiB per Locale)

200 Gb/s IB (8K buffer)
100 Gb/s IB (8K buffer)
56 Gb/s IB (4K buffer)

be
tte
r



© 2020 Cray, a Hewlett Packard Enterprise company

• AWS performance with 25 and 100 Gb/s Ethernet networks
• Collected on 36-core c5.18xlarge and c5n.18xlarge w/ Elastic Fabric Adapter

Ethernet Performance

19

0
1
2
3
4
5
6
7

1 2 4 8 16 32

G
iB
/s

Locales (x 36 cores / locale)

Arkouda Argsort Performance
(3/4 GiB per Locale)

Cray XC (4K buffer)
c5n.18xlarge (64K buffer)
c5.18xlarge (32K buffer)

be
tte
r



© 2020 Cray, a Hewlett Packard Enterprise company

• For more information about other Arkouda optimizations see:
• https://chapel-lang.org/releaseNotes/1.21/05-user-opt.pdf

• For more information about recent Chapel performance optimizations see:
• https://chapel-lang.org/releaseNotes/1.21/04-perf-opt.pdf

• For general information about Chapel’s performance and tuning tips see:
• https://chapel-lang.org/performance.html

More Information

20

https://chapel-lang.org/releaseNotes/1.21/05-user-opt.pdf
https://chapel-lang.org/releaseNotes/1.21/04-perf-opt.pdf
https://chapel-lang.org/performance.html


© 2020 Cray, a Hewlett Packard Enterprise company

• Collect Dask performance results
• We have only anecdotal evidence that Arkouda is much faster

• Optimize aggregation performance and reduce memory footprint
• Autotune buffer size on startup
• Aggregate within a node before sending over the network

• Tune performance more for commodity networks and newer HPC networks
• Ethernet and modern InfiniBand performance seem low

• Add aggregation to Chapel’s standard library
• Enable arbitrary message aggregation, not just copy aggregation

Future Work

21



© 2020 Cray, a Hewlett Packard Enterprise company

• Message aggregation enables a portable high performance sort in Arkouda
• Significant performance optimization opportunities remain

Summary

22

0
1
2
3
4
5
6
7
8

1 2 4 8 16 32

G
iB
/s

Locales (x 36 cores / locale)

Arkouda Argsort Performance
(3/4 GiB per Locale)

200 Gb/s IB
Cray Aries

100 Gb/s EFA
25 Gb/s E

be
tte
r



© 2020 Cray, a Hewlett Packard Enterprise company

FORWARD LOOKING 
STATEMENTS

23

This presentation may contain forward-looking statements that involve risks, uncertainties 
and assumptions. If the risks or uncertainties ever materialize or the assumptions prove 
incorrect, the results of Hewlett Packard Enterprise Company and its consolidated 
subsidiaries ("Hewlett Packard Enterprise") may differ materially from those expressed or 
implied by such forward-looking statements and assumptions. All statements other than 
statements of historical fact are statements that could be deemed forward-looking 
statements, including but not limited to any statements regarding the expected benefits and 
costs of the transaction contemplated by this presentation; the expected timing of the 
completion of the transaction; the ability of HPE, its subsidiaries and Cray to complete the 
transaction considering the various conditions to the transaction, some of which are outside 
the parties’ control, including those conditions related to regulatory approvals; projections of 
revenue, margins, expenses, net earnings, net earnings per share, cash flows, or other 
financial items; any statements concerning the expected development, performance, market 
share or competitive performance relating to products or services; any statements regarding 
current or future macroeconomic trends or events and the impact of those trends and events 
on Hewlett Packard Enterprise and its financial performance; any statements of expectation 
or belief; and any statements of assumptions underlying any of the foregoing. Risks, 
uncertainties and assumptions include the possibility that expected benefits of the transaction 
described in this presentation may not materialize as expected; that the transaction may not 
be timely completed, if at all; that, prior to the completion of the transaction, Cray’s business 
may not perform as expected due to transaction-related uncertainty or other factors; that the 
parties are unable to successfully implement integration strategies; the need to address the 
many challenges facing Hewlett Packard Enterprise's businesses; the competitive pressures 
faced by Hewlett Packard Enterprise's businesses; risks associated with executing Hewlett 
Packard Enterprise's strategy; the impact of macroeconomic and geopolitical trends and 
events; the development and transition of new products and services and the enhancement 
of existing products and services to meet customer needs and respond to emerging 
technological trends; and other risks that are described in our Fiscal Year 2018 Annual 
Report on Form 10-K, and that are otherwise described or updated from time to time in 
Hewlett Packard Enterprise's other filings with the Securities and Exchange Commission, 
including but not limited to our subsequent Quarterly Reports on Form 10-Q. Hewlett Packard 
Enterprise assumes no obligation and does not intend to update these forward-looking 
statements.


