

#### Interactive Supercomputing for Data Science

Dr. William Reus US Department of Defense

https://github.com/mhmerrill/arkouda

1

#### Data Science?

Data science proper is:

- Fundamental
- Difficult
- Computationally intensive
- Underemphasized



## **Understanding Physics of Datasets**



Many names: Exploratory Data Analysis, Data Wrangling, Data Modeling, etc.

#### Data Science Demands Interactivity



- Productivity with just enough performance
  - No compilation
  - No intermediate I/O
  - No writing boilerplate code
  - *Fast enough* to stay within thought loop
- Interactive Python on a large server satisfies these criteria for datasets up to 10-100 GB

#### Python Is Not Really Python



#### Data Science Demands Scaling



- Must use the whole dataset
  - Unbiased sampling of large datasets is difficult
  - Even unbiased sampling eliminates rare and high-order effects
  - Physics of most datasets are global, not local
- Datasets have outgrown (normal) computers
  - Server memory: ~ 1 TB
  - Many datasets > 10 TB

# Dilemma: Interactivity vs. Scaling



Power

### Can We Fly an HPC?

Load Terabytes of data... ... into a familiar, interactive UI ... ... where standard data science operations ... ... execute within the human thought loop ... ... and interoperate with optimized libraries.

#### Arkouda

Load Terabytes of data... ... into a familiar, interactive UI ... ... where standard data science operations ... ... execute within the human thought loop ... ... and interoperate with optimized libraries.

Arkouda: an HPC shell for data science

- Chapel backend (server)
- Jupyter/Python frontend (client)
- NumPy-like API

#### Arkouda: NumPy for HPC



## Arkouda Design



## A Chapel Interpreter



## **Client Handles Bookkeeping**



- A, B, C are instances of pdarray class
  - attributes store metadata
    - size
    - data type (subset of NumPy dtypes)
    - server-side name
  - methods issue server commands
    - e.g. operator overloads
    - object deletion issues server command to free array data
- Client language (python) handles
  - scoping
  - garbage collection
  - reference counting
  - exceptions

# Chapel Is Unique

- Productivity
  - Parallelism and locality are first-class citizens
  - Arkouda server = 12k lines of code
- Performance
  - Single-threaded comparable to NumPy (C/Fortran)
  - Parallel, distributed comparable to C/OpenMP/MPI
- Portability
  - Develop on laptop, run on supercomputer

## Where Does Arkouda Fit In?

- Unique approach: start with performance, build towards interactivity
- Arkouda uses the HPC
  - Scales well to at least 512 nodes / 18k cores
  - Exploits features of high-speed interconnects
  - Leverages parallel filesystems
  - All without user fine-tuning
- Current drawbacks
  - Still adding major features (e.g. authentication)
  - Only one I/O format (HDF5)
  - GPU support only for client

### Arkouda Startup

#### 1) In terminal:

> arkouda\_server -nl 96

server listening on hostname:port

2) In Jupyter:

4.2.5
psp = tcp://nid00104:5555
connected to tcp://nid00104:5555

#### Toy Workflow

In [9]: A = ak.randint(0, 10, 10\*\*11)
B = ak.randint(0, 10, 10\*\*11)
C = A \* B
hist = ak.histogram(C, 20)
Cmax = C.max()
Cmin = C.min()

executed in 3.96s, finished 13:45:28 2019-09-12

executed in 193ms, finished 13:45:28 2019-09-12





### Data Science on 50 Billion Records

|           | Operation             | Example               | Approx. Time<br>(seconds) |
|-----------|-----------------------|-----------------------|---------------------------|
| I/O       | Read from disk        | A = ak.read_hdf()     | 30-60                     |
|           | Scalar Reduction      | A.sum()               | < 1                       |
| Summarize | Histogram             | ak.histogram(A)       | < 1                       |
| Filter    | Vector Ops            | A + B, A == B, A & B  | < 1                       |
|           | Logical Indexing      | A[B == val]           | 1 - 10                    |
| Enrich    | Set Membership        | ak.in1d(A, set)       | 1                         |
|           | Gather                | B = Table[A]          | 4 - 120                   |
| Inspect   | Get Item              | print(A[42])          | < 1                       |
| Transform | Sort Indices by Value | I = ak.argsort(A)     | 15                        |
| Model     | Group by Key          | G = ak.GroupBy(A)     | 30                        |
|           | Aggregate per Key     | G.aggregate(B, 'sum') | 10                        |

- A, B are 50 billion-element arrays of 32-bit values
- Timings measured on real data
- Hardware: Cray XC40
  - 96 nodes
  - 3072 cores
  - 24 TB

• Lustre filesystem

## Sorting is Critical

Sorting (argsort and coargsort) is the rate-limiting step in most arkouda workflows:

- Grouping tabular data by one or multiple columns
- Creating sparse matrices (graphs)
- Finding unique values and reindexing
- Extracting features for statistical testing
- Computing set operations

## Sorting Is Critical

Arkouda uses a least-significant-digit radix sort

- Requires a fast interconnect
  - communication is O(wn)
- But runtime is independent of data distribution
  - best case = worst case = avg. case = O(wn)



$$w = \left\lceil \log_{radix} \left( \max - \min \right) \right\rceil$$

#### Sorting Scales



#### Performance Is Portable



### Climbing the Tree



```
def intersect1d (pda1, pda2, assume unique =False):
   if isinstance (pda1, pdarray) and isinstance (pda2, pdarray):
       if pda1.size == 0:
           return pda1 # nothing in the intersection
       if pda2.size == 0:
           return pda2 # nothing in the intersection
       if not assume unique:
           pda1 = unique (pda1)
           pda2 = unique (pda2)
       aux = concatenate((pda1, pda2))
       aux sort indices = argsort (aux)
       aux = aux[aux sort indices]
      mask = aux[1:] == aux[:-1]
      int1d = aux[:-1][mask]
       return int1d
   else:
       raise TypeError ("must be pdarray {} or {}".format (pda1,pda2))
```

This example (from the arkouda source code) is very similar to numpy.intersect1d

### **Future Directions**



• Leaves

- Implement DataFrames
- Add sparse linear algebra (GraphBLAS)
- ???
- Trunk
  - Authentication
  - Data sharing and access control
  - Multi-user resource management?
- Roots
  - Link in FFT, tensor decomp., solvers, etc.
  - Need to standardize a distributed array interface with the HPC community

## A New (Old) Perspective on HPC

#### Not Just This



#### But Also This



## Acknowledgements

- Michael Merrill inventor and lead developer
- Elliot Ronaghan significant performance enhancements, scaling studies
- Chapel team instrumental in helping arkouda use Chapel to the fullest
- All our contributors!

https://github.com/mhmerrill/arkouda