
Arkouda

Interactive Supercomputing for
Data Science

Dr. William Reus

US Department of Defense

1
https://github.com/mhmerrill/arkouda

https://github.com/mhmerrill/arkouda

Data Science?

Data science proper is:

• Fundamental

• Difficult

• Computationally
intensive

• Underemphasized

Data Science Data
Technology

Artificial
IntelligenceAnalytics

Human
Understanding

Understanding Physics of Datasets

3

Data

InspectSummarize

Enrich

Filter

Transform

Model

Many names: Exploratory Data Analysis, Data Wrangling, Data Modeling, etc.

DataData
I/O Knowledge

Data Science Demands Interactivity

● Productivity with just enough performance
○ No compilation
○ No intermediate I/O
○ No writing boilerplate code
○ Fast enough to stay within thought loop

● Interactive Python on a large server satisfies these
criteria for datasets up to 10-100 GB

Python Is Not Really Python

BLAS

C/Fortran code

and many more
Python packages

GPU code

Data Science Demands Scaling

● Must use the whole dataset
○ Unbiased sampling of large datasets is difficult
○ Even unbiased sampling eliminates rare and high-order

effects
○ Physics of most datasets are global, not local

● Datasets have outgrown (normal) computers
○ Server memory: ~ 1 TB
○ Many datasets > 10 TB

Dilemma: Interactivity vs. Scaling
Fr

ee
d

o
m

Power

Conventional HPC

What Data Science Needs

Single-node Python

Commodity Space

?

?

Can We Fly an HPC?

8

Load Terabytes of data…
… into a familiar, interactive UI …

… where standard data science operations …
… execute within the human thought loop …
… and interoperate with optimized libraries.

Arkouda

Load Terabytes of data…
… into a familiar, interactive UI …

… where standard data science operations …
… execute within the human thought loop …
… and interoperate with optimized libraries.

9

Arkouda: an HPC shell for data science

• Chapel backend (server)

• Jupyter/Python frontend (client)

• NumPy-like API

Arkouda: NumPy for HPC

Parallel,
Distributed
Runtime

HPC libraries?

Scalable
DataFrames

GPU code?

Arkouda

Large
(hyper)graphs

Feature
extraction

Arkouda Design

11

Python3 Client Chapel ServerZMQ
Socket

Dispatcher

In
d

ex
in

g

So
rt

in
g

A
ri

th
m

et
ic

...

Meta

MPP, SMP, Cluster, Laptop, etc.

Distributed Array

G
en

er
at

io
n

I/
OCode Modules

Distributed
Object Store

Platform

A Chapel Interpreter

12

“binopvv + id_1 id_2”

binopvv + id_1 id_2

In
d

ex
in

g

So
rt

in
g

A
ri

th
m

et
ic

...

id_1
id_2
id_3

+

G
en

er
at

io
n

I/
O

“created id_3”

=
+
=

+
=

+
=

3 Argument lookup
and result allocation

Parallel execution

Client message1

4

Module dispatch2

Return message5

Client Handles Bookkeeping

• A, B, C are instances of pdarray class
• attributes store metadata

• size
• data type (subset of NumPy dtypes)
• server-side name

• methods issue server commands
• e.g. operator overloads
• object deletion issues server command to free array data

• Client language (python) handles
• scoping
• garbage collection
• reference counting
• exceptions

Chapel Is Unique

• Productivity
• Parallelism and locality are first-class citizens
• Arkouda server = 12k lines of code

• Performance
• Single-threaded comparable to NumPy (C/Fortran)
• Parallel, distributed comparable to C/OpenMP/MPI

• Portability
• Develop on laptop, run on supercomputer

14

Where Does Arkouda Fit In?

• Unique approach: start with performance, build
towards interactivity

• Arkouda uses the HPC
• Scales well to at least 512 nodes / 18k cores
• Exploits features of high-speed interconnects
• Leverages parallel filesystems
• All without user fine-tuning

• Current drawbacks
• Still adding major features (e.g. authentication)
• Only one I/O format (HDF5)
• GPU support only for client

15

Arkouda Startup

16

> arkouda_server –nl 96

server listening on hostname:port

1) In terminal:

2) In Jupyter:

Toy Workflow

17

Login Node
(Python/NumPy)

MPP
(Arkouda)

Data Science on 50 Billion Records

• A, B are 50
billion-element arrays
of 32-bit values

• Timings measured on
real data

• Hardware: Cray XC40
• 96 nodes

• 3072 cores

• 24 TB

• Lustre filesystem

18

Operation Example Approx. Time
(seconds)

Read from disk A = ak.read_hdf() 30-60

Scalar Reduction A.sum() < 1

Histogram ak.histogram(A) < 1

Vector Ops A + B, A == B, A & B < 1

Logical Indexing A[B == val] 1 - 10

Set Membership ak.in1d(A, set) 1

Gather B = Table[A] 4 - 120

Get Item print(A[42]) < 1

Sort Indices by
Value I = ak.argsort(A) 15

Group by Key G = ak.GroupBy(A) 30

Aggregate per Key G.aggregate(B, ‘sum’) 10

Enrich

Summarize

Filter

Transform

Inspect

I/O

Model

Sorting is Critical

Sorting (argsort and coargsort) is the rate-limiting step
in most arkouda workflows:
● Grouping tabular data by one or multiple columns
● Creating sparse matrices (graphs)
● Finding unique values and reindexing
● Extracting features for statistical testing
● Computing set operations

Sorting Is Critical

https://www.growingwiththeweb.com/sorting/radix-sort-lsd/

Arkouda uses a least-significant-digit radix sort

• Requires a fast interconnect

• communication is

• But runtime is independent of data distribution

• best case = worst case = avg. case =

https://www.growingwiththeweb.com/sorting/radix-sort-lsd/

Sorting Scales

Image credit: Elliot Ronaghan, HPE

Performance Is Portable

Image credit: Elliot Ronaghan, HPE

Climbing the Tree

Arkouda

Set Operations

>>> ak.intersect1d(ak.array([1, 3, 4]), ak.array([1, 2, 3]))

 array([1, 3])

def intersect1d(pda1, pda2, assume_unique =False):

 if isinstance(pda1, pdarray) and isinstance(pda2, pdarray):

 if pda1.size == 0:

 return pda1 # nothing in the intersection

 if pda2.size == 0:

 return pda2 # nothing in the intersection

 if not assume_unique:

 pda1 = unique(pda1)

 pda2 = unique(pda2)

 aux = concatenate((pda1, pda2))

 aux_sort_indices = argsort(aux)

 aux = aux[aux_sort_indices]

 mask = aux[1:] == aux[:-1]

 int1d = aux[:-1][mask]

 return int1d

 else:

 raise TypeError("must be pdarray {} or {}" .format(pda1,pda2))

This example (from the arkouda source code) is very similar to numpy.intersect1d

Future Directions

• Leaves
• Implement DataFrames
• Add sparse linear algebra (GraphBLAS)
• ???

• Trunk
• Authentication
• Data sharing and access control
• Multi-user resource management?

• Roots
• Link in FFT, tensor decomp., solvers, etc.
• Need to standardize a distributed array

interface with the HPC community
24

Arkouda

[Your package here]

[Your library here]

A New (Old) Perspective on HPC

25

Not Just This But Also This

Acknowledgements

• Michael Merrill – inventor and lead developer
• Elliot Ronaghan – significant performance enhancements, scaling

studies
• Chapel team – instrumental in helping arkouda use Chapel to the

fullest
• All our contributors!

https://github.com/mhmerrill/arkouda

26

https://github.com/mhmerrill/arkouda

