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Introduction

• Matthieu Parenteau: PhD Candidate, Member of Eric Laurendeau’s
research team

• Simon Bourgault-Cote: Research associate, Member of Eric
Laurendeau’s research team

• Frederic Plante: PhD Candidate, Member of Eric Laurendeau’s
research team

• Eric Laurendeau: Professor, Department of Mechanical Engineering

Main Research Activities
• Computational Fluid Dynamics (CFD)

• Multi-fidelity aerodynamics

• Multi-physics simulation (Aero-icing and Aero-elastic)
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CFD

Complex Algorithms
• The Navier-Stokes equations are highly nonlinear PDEs

• Iterative solution of large sparse matrices

High Computational Cost
• The computational cost increases rapidly with fidelity (up to 600M

elements for finest grids)

• The number of iterations increases with the fidelity

Programming Language
• C, C++ and Fortran are generally the main programming languages

used in CFD to achieved adequate performances

• MPI/OpenMP are used to enable parallelism over distributed and
shared memory respectively
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What we want in a programming language for CFD

Productivity
• The research field of CFD evolves rapidly and is competitive

• Quick implementation of complex algorithms over distributed
memory

Fast
• The inherent computational cost demands fast CFD software

Portable and Scalable
• 2D cases on a desktop

• Large scale 3D cases over 500+ cores

• 1 code portable to any hardware
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CFD Applications with Chapel

2D Euler Structured Code
As a first investigation, our in-house shared memory 2D Euler code
written in C was converted into Chapel to compare directly the language
performances.

3D RANS Unstructured Code
A new 3D unstructured Reynolds Average Navier-Stokes (RANS) flow
solver was built from scratch with Chapel and with the aim to perform
large scale simulations (3D) on distributed memory.
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2D Structured Code

C code : NSCODE
• Shared memory only

• Parallelism performed with OpenMP on the partitioned mesh

Chapel code
• Simple translation of the C code

• Compiled for single Locale only

• Parallelism applied like the C code with ”forall”

Objective
For a simple flow solver, is Chapel as fast as C?

CFD with Chapel – Matthieu Parenteau, Simon Bourgault-Cote, Frederic Plante and Éric Laurendeau 7/21
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NSCODE vs Chapel Implementation
Real time in second to complete 100 iterations on a grid of 1M elements
! Chapel code is faster or equal to NSCODE
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3D Unstructured Code

Objective
Build a complete 3D unstructured RANS flow solver from scratch with
Chapel for large scale simulation on distributed memory and compare
overall performances with a traditional flow solver written in C++ (SU2).

CHapel Multi-Physics Simulation (CHAMPS)
• 3D Unstructured RANS flow solver.

• Second order finite volume.

• Convective flux schemes: Roe and AUSM

• Spalart Allmaras turbulence model.

• Explicit solver (Runge Kutta) and implicit solvers (SGS, GMRES,
BCGSTAB).

• Interface with external libraries: MKL, CGNS, METIS and PETSC.
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Parallelism over distributed memory

• Inspired by an SPMD approach with MPI

• 1 task per zone

• E�cient approach for finite volume schemes⌥ ⌅
1 coforall loc in Locales do

2 on loc

3 {

4 const localZonesIndices=globalHandle.zones_.

localSubdomain ();

5 var localZones=globalHandle.zones_.localSlice(

localZonesIndices);

6

7 coforall (zone , localTaskID) in zip(localZones , 0..#

localZones.size)

8 {

9 for i in 0..# maxIter

10 {

11 zone.flowSolver_.iterate(zone);⌃ ⇧
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Communication⌥ ⌅
1 proc performInterfaceExchanges(zone , exchangeType)

2 {

3 // Fill buffers

4 local do zone.prepareExchange(exchangeType);

5 allLocalesBarrier.barrier ();

6

7 // Read buffers

8 zone.exchangeInterfaces(exchangeType);

9 allLocalesBarrier.barrier ();

10 }⌃ ⇧
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CHAMPS

• A Multi-physics problem requires di↵erent computational grids

• Type aliases are used to define these various computational domains

GlobalHandle_c

zoneType_t:type

zoneDom:dmapped domain

zoneArray:[zoneDom]

Mesh_c

bZoneType_t:type

iZoneType_t:type

boundaries:[] bZoneType_t

interfaces:[] iZoneType_t

gridDomains:domain

gridArrays:[gridDomains]

MeshFlow_c

flowArray:[gridDomains]

PhysicalBoundary_c

PhysicalBoundaryFlow_c

Interface_c

InterfaceFlow_c

BoundaryZone_c
nZ

nZ

1

nBC

nBC

1

nI

nI

1

Inheritance

Generic object
aggregation
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Avoiding Performance Pitfalls

Implicit Parallelism
• Implicit parallelism embedded in some operations (whole array

assignment)

• In CHAMPS, all the available cores on a Locale are used (1 task per
zone)

• If placed inside the iterative process, implicit parallelism incurs
serious overhead

Multi-Locale Overhead
• Noticeable overhead between Single-Locale and Multi-Locale mode

• The local statement is necessary to reduce this overhead
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Overall Performances

Computational Time per Iteration
Depends on the harware, the programming language and the
implementation.

Scalability
Depends on the harware, the programming language and the
implementation.

Convergence Rate
Depends mainly on the implemented algorithms, flow conditions and
mesh quality.
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CRM - High-Lift Configuration
• Common Research Model (CRM) in high-lift configuration

• Mixed element grid: 22M cells and 10M nodes (coarse grid)

• Challenging conditions for a CFD software

• Chapel 1.19 configured with the infiniband conduit for gasnet

• Comparison against SU2 (C++/MPI)
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Computational Time and Scalability

• CHAMPS is achieving similar performances than SU2.
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Convergence Rate
• Comparison of the lift force convergence for the clean configuration
• Flow conditions: Mach = 0.85, Angle of Attack = 1.0 and Reynolds

number = 5E6
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Chapel 1.22
• Optimization made for infiniband network
• Around 20% faster runs with Chapel 1.22

#Cores

T
im

e
 (

s
)

100 200 300 400 500 600

10

20

30

40

50

60

70

80 Chapel 1.19
Chapel 1.22

Time to compute 10 iterations on Beluga

CFD with Chapel – Matthieu Parenteau, Simon Bourgault-Cote, Frederic Plante and Éric Laurendeau 18/21
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Conclusion

Distributed Memory Parallelism
• The development of distributed memory application is very e�cient

with Chapel

• Complex algorithms are easily portable to large computer clusters

• However, it must be done with care to avoid performance pitfalls

Productivity
• Language well accepted by the rest of the team (considering a

C/C++/Python background)

• Additional modules are easily added by team members (other than
original developers)

Performance
• The Chapel codes are performing similarly to other C/C++

applications.
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Future Developments

New physical models
• Droplet model for ice accretion

• Structural model for aeroelastic simulations
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