
Simulating Ultralight Dark Matter with
Chapel

Nikhil Padmanabhan 1 Elliot Ronaghan 2

J. Luna Zagorac 1 Richard Easther 3

1Yale Univ.

2Cray/HPE

3Univ. of Auckland

2020/05/22

Padmanabhan et al ULDM in Chapel 1/33
1/33

Motivating Ultralight Dark Matter

About
• In the standard cosmological model, 80% of the matter in the

Universe is “dark” (i.e. non-baryonic).
• Form gravitationally bound structures : dark matter halos.
• The traditional model is a heavy particle (∼ 100× proton),

with weak interactions.

Padmanabhan et al ULDM in Chapel 2/33
2/33

Motivating Ultralight Dark Matter

About
• In the standard cosmological model, 80% of the matter in the

Universe is “dark” (i.e. non-baryonic).
• Form gravitationally bound structures : dark matter halos.
• The traditional model is a heavy particle (∼ 100× proton),

with weak interactions.

Successes
• Explains a large scale of observations, from the rotation of

galaxies, to “Bullet” clusters, to the distribution of galaxies, to
the cosmic microwave background.

Padmanabhan et al ULDM in Chapel 2/33
2/33

Motivating Ultralight Dark Matter

Successes
• Explains a large scale of observations, from the rotation of

galaxies, to “Bullet” clusters, to the distribution of galaxies, to
the cosmic microwave background.

Challenges
• Possible puzzles remain on small scales from the structure of

dark matter halos, to the observed abundance of dark matter
halos. Note that these might well be solved by astrophysics.

• We have not detected these in the lab, or at accelerators.

Padmanabhan et al ULDM in Chapel 2/33
2/33

https://xkcd.com/2035

We’re waaay off to the left!

Padmanabhan et al ULDM in Chapel 3/33
3/33

Motivating Ultralight Dark Matter

• A different paradigm is a very light particle (10−31× proton).
• Many names : fuzzy dark matter, Bose-Einstein dark matter,

...
• Small mass means that quantum-mechanics can smear it out

over astrophysically interesting scales.
• High enough density that it forms a Bose-Einstein condensate.
• Different phenomenology : eg. interference patterns.
• Anything by the most idealized situations requires simulations.

Padmanabhan et al ULDM in Chapel 4/33
4/33

Our Motivation

• Want a code to do numerical experiments with.
• Need scalability

◦ Must resolve soliton cores : large dynamic range
◦ Simulation time scales as N5; need to scale to large numbers of

nodes.
• Initial problem : revisit aspects of the formation of ultra-light

dark matter halos from collisions of soliton cores.
• This is an area of very active research (we are newcomers).
• Several codes exist - including adaptive codes, codes built on

existing large astrophysical simulations. Challenges to large
boxes still exist.

• An incomplete list : Schive et al, 2014, Mocz et al, 2017,
Edwards et al 2017, Veltmaat et al, 2018

Padmanabhan et al ULDM in Chapel 5/33
5/33

History of Project
• PyUltraLighta: An initial code in Python, driven by Jupyter

notebook
◦ Easy to use and modify, allowing numerical experiments
◦ Performant and multithreaded (made significant use of eg. numexpr,

FFTW)
• Extending to isolated potentials hit Python bottlenecks
• Attempted a skunkworks (2019/6/22) port to Chapel for a single

node. Resulting code not much longer than Python, could
implement isolated potentials, better multithreaded performance.

• Distributed Code
◦ Want to run larger Ngrid, can we extend the code?
◦ Isolated potential calculation led to wanting a native Chapel distributed

FFT (useful for many other tasks).b

◦ Validating the FFT led to the NAS NPB benchmark.

aEdwards et al, arXiv:1807.04037
bNote that Chapel can also interoperate with MPI.

Padmanabhan et al ULDM in Chapel 6/33
6/33

The Schrodinger-Poisson Equations

i~
∂ψ

∂t
= − ~2

2m ∇2ψ +mΦψ

∇2Φ = 4πGm|ψ|2

Distributed FFTs are a key component!

Isolated bound-
ary conditions

FFTs

Padmanabhan et al ULDM in Chapel 7/33
7/33

Slab Decompositions Are Simple

Figure: Slab Decomposition

Figure: Pencil Decomposition

• Slab decompositions are
simpler (especially for the
end user)

• Slab limits the amount of
parallelism expressed
(especially with pure MPI)

• Use 1 slab per locale/node.
• Limits Ngrid ≥ Nnodes, but in

practice, not limiting.
• Reduce communication

complexity

http://www.2decomp.org/decomp.html

Padmanabhan et al ULDM in Chapel 8/33
8/33

Chapel Code is Expressive : Pencil and Paper

The Algorithm
1. Decompose array into slabs in the x direction
2. Fourier transform in the y directiona

3. Fourier transform in the z direction
4. Transpose x and y (all to all)
5. Fourier transform in the x direction

aWe use FFTW (www.fftw.org) for 1D serial transforms.

Padmanabhan et al ULDM in Chapel 9/33
9/33

Chapel Code is Expressive : A Naive
Implementation

coforall loc in Locales do on loc {
...
for ix in xSrc {

myplane = Src[{ix..ix, ySrc, zSrc}];
// Y-transform
forall iz in zSrc {
yPlan.execute(myplane[0, ySrc.first, iz]);

}
// Z-transform
forall iy in offset(ySrc) {
zPlan.execute(myplane[0, iy, zSrc.first]);
// Transpose data into Dst
Dst[{iy..iy, ix..ix, zSrc}] = myplane[{0..0, iy..iy, zSrc}];

}
}
allLocalesBarrier.barrier();
// X-transform, similar to Y-transform
...

}

SPMD

FFTW 1D

PGAS Transpose

Data parallel

Padmanabhan et al ULDM in Chapel 10/33
10/33

Chapel Code is Expressive : A Naive
Implementation

coforall loc in Locales do on loc {
...
for ix in xSrc {

myplane = Src[{ix..ix, ySrc, zSrc}];
// Y-transform
forall iz in zSrc {
yPlan.execute(myplane[0, ySrc.first, iz]);

}
// Z-transform
forall iy in offset(ySrc) {
zPlan.execute(myplane[0, iy, zSrc.first]);
// Transpose data into Dst
Dst[{iy..iy, ix..ix, zSrc}] = myplane[{0..0, iy..iy, zSrc}];

}
}
allLocalesBarrier.barrier();
// X-transform, similar to Y-transform
...

}

SPMD

FFTW 1D

PGAS Transpose

Data parallel

Reduce comm congestion!

Padmanabhan et al ULDM in Chapel 10/33
10/33

Chapel FFTs : Naive Performance

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 16 64 128 256 512

G
o
p
/s

Locales (x 36 cores / locale)

NPB-FT (Size D) Performance

Chapel (Optimized)
Chapel (Initial)

Padmanabhan et al ULDM in Chapel 11/33
11/33

Chapel Code is Expressive : A Performant
Implementation

...
forall iy in offset(ySrc) {
zPlan.execute(myplane[0, iy, zSrc.first]);
// Transpose data into Dst, and copy the next Src slice into myplane
copy(Dst[...], myplane[...], myLineSize);
if (ix != xSrc.last) {

copy(myplane[...], Src[...], myLineSize);
}

}
...

low-level comm

overlap computation
and comm

batch FFTW calls (not shown)

Padmanabhan et al ULDM in Chapel 12/33
12/33

Benchmarks

Machine/Compiler Specifications
• Scalability Hardware (Cray-XC):

◦ 36-core (72 HT), 128 GB RAM
◦ dual 18-core (36 HT) ”Broadwell” 2.1 GHz processors

• Software
◦ CLE 7.0.UP01
◦ Intel Compilers 19.0.5.281
◦ FFTW 3.3.8.4
◦ Chapel 1.20.0
◦ Cray 9.0.2 (classic)

Padmanabhan et al ULDM in Chapel 13/33
13/33

Benchmarks

Benchmarks
• Use the NAS NPB-FT benchmark

◦ NPB v3.4
◦ Class D (2048 × 1024 × 1024), E (8×), F(8×)

• Compare Chapel, MPI reference and UPC (with non-blocking
overlapped comm)

• MPI and UPC use pencil decompositions for large
problems/node counts.

• MPI and UPC use 32 cores/node (require a power of 2)
◦ Restricting Chapel to 32 cores dœs not significantly change

timings, indicating memory/communication bound.

Padmanabhan et al ULDM in Chapel 14/33
14/33

Chapel FFTs Scale Well Across Nodes : Class D

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 16 64 128 256 512

G
o
p
/s

Locales (x 36 cores / locale)

NPB-FT (Size D) Performance

Chapel
UPC
MPI

Padmanabhan et al ULDM in Chapel 15/33
15/33

Chapel FFTs Scale Well Across Nodes : E = 8×D

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 16 64 128 256 512

G
o
p
/s

Locales (x 36 cores / locale)

NPB-FT (Size E) Performance

Chapel
UPC
MPI

Padmanabhan et al ULDM in Chapel 16/33
16/33

Chapel FFTs Scale Well Across Nodes : F = 8×E

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 64 128 256 512

G
o
p
/s

Locales (x 36 cores / locale)

NPB-FT (Size F) Performance

Chapel
UPC
MPI

Padmanabhan et al ULDM in Chapel 17/33
17/33

Simulations Scale Well

 4

 16

 64

 256

 1024

 4096

 1 2 4 8 16 32 64 128 256 512

Ti
m

e
 (

s)

Locales (x 36 cores / locale)

ULDM Simulation (100 Steps)

Ng=512 Ng=1024 Ng=2048 Ng=4096

Padmanabhan et al ULDM in Chapel 18/33
18/33

Writing a Research Code

Plumbing

• Parallel HDF5 for saving full simulations (interop with MPI)
• HDF5 Tables for serializing arrays of records
• (C)TOML for input parameters
All of the above are good examples of C interop.

Analysis

• Summary statistics run in-line; need to be fast.
• eg. Density/Energy profiles/histograms
These get modified often; do not want to introduce a bottleneck.

Padmanabhan et al ULDM in Chapel 19/33
19/33

Computing Density Profiles/Histograms : Elegant

var counts : [ProfDom] real;
forall (i,j,k) in Dom with (+ reduce counts) {

const rr = sqrt(i*i + j*j + k*k):int;
counts[rr] += 1.0;

}

That’s elegant!

‘Dom’ is a distributed domain

Padmanabhan et al ULDM in Chapel 20/33
20/33

Timings : Elegant

Degraded perf more
severe at higher locale
count

Padmanabhan et al ULDM in Chapel 21/33
21/33

Computing Density Profiles/Histograms : Atomic

var priv_counts : [PrivateSpace][ProfDom] chpl__processorAtomicType(real);
var counts : [ProfDom] real;
forall (i,j,k) in Dom {

const rr = sqrt(i*i + j*j + k*k):int;
priv_counts[here.id][rr].add(1.0);

}
for iloc in 0.. #numLocales {

var loc_counts = priv_counts[iloc];
forall ii in ProfDom do counts[ii] += loc_counts[ii].read();

}

Avoid network atomicsLocal counts

Manual reduction

Padmanabhan et al ULDM in Chapel 22/33
22/33

Timings : Atomic

Atomic contention?

Padmanabhan et al ULDM in Chapel 23/33
23/33

Computing Density Profiles/Histograms : SPMD

var priv_counts : [PrivateSpace][ProfDom] real;
var counts : [ProfDom] real;
coforall loc in Locales do on loc {

const myDom = Dom.localSubdomain();
ref mycounts = priv_counts[here.id];
forall (i,j,k) in myDom with (+ reduce mycounts) {

const rr = sqrt(i*i + j*j + k*k):int;
mycounts[rr] += 1.0;

}
}

for iloc in 0.. #numLocales {
var loc_counts = priv_counts[iloc];
forall ii in ProfDom do counts[ii] += loc_counts[ii];

}

SPMD, local reduction

Padmanabhan et al ULDM in Chapel 24/33
24/33

Timings : SPMD

comm congestion?

Padmanabhan et al ULDM in Chapel 25/33
25/33

Computing Density Profiles/Histograms : MPI
var counts : [ProfDom] real;
coforall loc in Locales do on loc {

const myDom = Dom.localSubdomain();
var mycounts, recvbuf : [ProfDom] real;
forall (i,j,k) in myDom with (+ reduce mycounts) {

const rr = sqrt(i*i + j*j + k*k):int;
mycounts[rr] += 1.0;

}
MPI.Barrier(CHPL_COMM_WORLD);
if (here.id==0) {
MPI_Reduce(mycounts[0], recvbuf[0], (2*Ng):c_int,

MPI_DOUBLE, MPI_SUM, 0, CHPL_COMM_WORLD);
counts = recvbuf;

} else {
MPI_Reduce(mycounts[0], recvbuf[0], (2*Ng):c_int,

MPI_DOUBLE, MPI_SUM, 0, CHPL_COMM_WORLD);
}

}

Use MPI if needed

Padmanabhan et al ULDM in Chapel 26/33
26/33

Timings : MPI

Could likely match MPI with
a parallel reduction

Padmanabhan et al ULDM in Chapel 27/33
27/33

Science, Powered by Chapel
In Active Use

• Actively being used by Luna Zagorac for her thesis.
• All plots/movies are courtesy Luna, simulations are Chapel

powered!
• Code is being actively developed, with new science modules

being added in!

Binary Collisions

• Cosmological structures form hierarchically.
• Run simulations colliding pairs of solitons, exploring different

initial conditions.
• Final state of system?
• Time scales involved?

Padmanabhan et al ULDM in Chapel 28/33
28/33

Padmanabhan et al ULDM in Chapel 29/33
29/33

Padmanabhan et al ULDM in Chapel 30/33
30/33

Padmanabhan et al ULDM in Chapel 31/33
31/33

Where Chapel could do better
1. Tooling

◦ Identifying communication - how much and from where? How to
recognize a sub-optimal pattern.

◦ Easier profiling
◦ Compiler improvements, including speed.

2. Easier to express low-level communication/locality
◦ Low level communication primitives are not exposed to user

(useful when the user can reason better about the
communication patterns).

◦ Verbose to express locality of computation and have the
compiler optimize appropriately.

3. Fewer hidden performance traps
◦ Unexpected communication
◦ Promotion of operations over N-d arrays can be slow.

None of these are new issues to the Chapel team (and many
have Github issues).

Padmanabhan et al ULDM in Chapel 32/33
32/33

My Thoughts

• HPC:
◦ Productivity: Chapel design has scientific codes in mind.

• Domains/Arrays
• Expressive Parallelism - where/when you need it.
• Interoperability - C (and now Python!)

◦ Performance: Chapel code can perform/scale very well without
heroic efforts.

• It’s a fun language to write. Easy to throw together prototype
code in. And it largely dœs the right thing!

• I’m getting to the point where I’m just working in Chapel.

Padmanabhan et al ULDM in Chapel 33/33
33/33

	An Introduction to ULDM
	Distributed FFTs
	Writing a Research Code
	Computing Density Profiles

	Science Powered by Chapel
	Lessons Learned

