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Motivating Ultralight Dark Matter

About

In the standard cosmological model, 80% of the matter in the
Universe is “dark” (i.e. non-baryonic).

Form gravitationally bound structures : dark matter halos.

The traditional model is a heavy particle (~ 100x proton),
with weak interactions.
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Successes
Explains a large scale of observations, from the rotation of
galaxies, to “Bullet” clusters, to the distribution of galaxies, to
the cosmic microwave background.
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Motivating Ultralight Dark Matter

Successes
Explains a large scale of observations, from the rotation of
galaxies, to “Bullet” clusters, to the distribution of galaxies, to
the cosmic microwave background.

Challenges

Possible puzzles remain on small scales from the structure of
dark matter halos, to the observed abundance of dark matter
halos. Note that these might well be solved by astrophysics.

We have not detected these in the lab, or at accelerators.
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Motivating Ultralight Dark Matter

A different paradigm is a very light particle (103! x proton).

e Many names : fuzzy dark matter, Bose-Einstein dark matter,

Small mass means that quantum-mechanics can smear it out
over astrophysically interesting scales.

High enough density that it forms a Bose-Einstein condensate.

Different phenomenology : eg. interference patterns.

Anything by the most idealized situations requires simulations.
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Our Motivation

* Want a code to do numerical experiments with.
¢ Need scalability
o Must resolve soliton cores : large dynamic range
o Simulation time scales as N°; need to scale to large numbers of
nodes.
e |nitial problem : revisit aspects of the formation of ultra-light
dark matter halos from collisions of soliton cores.

e This is an area of very active research (we are newcomers).

e Several codes exist - including adaptive codes, codes built on
existing large astrophysical simulations. Challenges to large
boxes still exist.

e An incomplete list : Schive et al, 2014, Mocz et al, 2017,
Edwards et al 2017, Veltmaat et al, 2018
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History of Project

e PyUltraLight? An initial code in Python, driven by Jupyter
notebook
o Easy to use and modify, allowing numerical experiments

o Performant and multithreaded (made significant use of eg. numexpr,
FFTW)

e Extending to isolated potentials hit Python bottlenecks
e Attempted a skunkworks (2019/6/22) port to Chapel for a single
node. Resulting code not much longer than Python, could
implement isolated potentials, better multithreaded performance.
e Distributed Code
© Want to run larger Ng 4, can we extend the code?
o Isolated potential calculation led to wanting a native Chapel distributed

FFT (useful for many other tasks).?
o Validating the FFT led to the NAS NPB benchmark.

9Edwards et al, arXiv:1807.04037
®Note that Chapel can also interoperate with MPI.
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The Schrodinger-Poisson Equations
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Isolated bound-
ary conditions

Distributed FFTs are a key component!
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Slab Decompositions Are Simple

e Slab decompositions are
simpler (especially for the
end user)

e Slab limits the amount of
parallelism expressed
(especially with pure MPI)

e Use 1slab per locale/node.

e Limits Ngiq > Npodes. but in
practice, not limiting.

e Reduce communication
complexity

Figure: Pencil Decomposition

http://www.2decomp.org/decomp.html
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Chapel Code is Expressive : Pencil and Paper

The Algorithm
Decompose array into slabs in the = direction
Fourier transform in the y direction?

Fourier transform in the z direction

Transpose x and y (all to all)

Fourier transform in the 2 direction
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Chapel Code is Expressive : A Naive
Implementation

coforall loc in Locales do on loc { SPMD

for ix in xSrc {
myplane = Src[{ix..ix, ySrc, zSrc}];
// Y-transform
forall iz in zSrc { Data para”el
yPlan.execute(myplane[0, ySrc.first, izl); FFTW 1D
}
// Z-transform
forall iy in offset(ySrc) {
zPlan.execute (myplane[0, iy, zSrc.firstl);
// Transpose data into Dst
Dst[{iy..iy, ix..ix, zSrc}] = myplane[{0..0, iy..iy, zSrc}];

) ’ PGAS Transpose

alllLocalesBarrier.barrier();
// X-transform, similar to Y-transform
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Padmanabhan et al ULDM in Chapel 33‘



Chapel Code is Expressive : A Naive
Implementation

coforall loc in Locales do on loc { SPMD

for ix in xSrc {
myplane = Src[{ix..ix, ySrc, zSrc}];
// Y-transform
forall iz in zSrc { Data para”el

yPlan.execute(myplane[0, ySrc.first

}

// Z-transform

forall iy in offsetkfSrc) {
zPlan.execute(myplane [0, iy, zSrc.first]);
// Transpose data into Dst

Dst[{iy..iy, ix..ix, zSrc}] = myplane[{0..0, iy..iy, zSrc}];

) ’ PGAS Transpose

alllLocalesBarrier.barrier();
// X-transform, similar to Y-transform

}
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Chapel FFTs : Naive Performance

NPB-FT (Size D) Performance
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Chapel Code is Expressive : A Performant
Implementation

overlap computation
and comm

forall iy in offset(ySrc) {
Plan.execute(myplane[0, iy, zSrc.first]);
// Transpose data into Dst, and copy the next Src slice into myplane

copy(Dst[...], myplane[...], myLineSize);

if (ix != xSrc.last) { low-level comm
copy (myplanel[...], Src[...], myLineSize);

}
}
batch FFTW calls (not shown)
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Benchmarks

Machine/Compiler Specifications

Scalability Hardware (Cray-XC):

36-core (72 HT), 128 GB RAM
dual 18-core (36 HT) "Broadwell” 2.1 GHz processors

Software

CLE 7.0.UPO1

Intel Compilers 19.0.5.28]1
FFTW 3.3.8.4

Chapel 1.20.0

Cray 9.0.2 (classic)
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Benchmarks

Benchmarks

Use the NAS NPB-FT benchmark
NPB v3.4
Class D (2048 x 1024 x 1024), E (8x), F(8x)

Compare Chapel, MPI reference and UPC (with non-blocking

overlapped comm)

MPI and UPC use pencil decompositions for large
problems/node counts.
MPI and UPC use 32 cores/node (require a power of 2)

Restricting Chapel to 32 cores does not significantly change
timings, indicating memory/communication bound.
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Chapel FFTs Scale Well Across Nodes : Class D

NPB-FT (Size D) Performance
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Chapel FFTs Scale Well Across Nodes : E = 8xD
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Chapel FFTs Scale Well Across Nodes : F = 8xE

NPB-FT (Size F) Performance
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Simulations Scale Well

ULDM Simulation (100 Steps)
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Writing a Research Code

e Parallel HDF5 for saving full simulations (interop with MPI)
e HDF5 Tables for serializing arrays of records

e (C)TOML for input parameters
All of the above are good examples of C interop.

e Summary statistics run in-line; need to be fast.

e eg. Density/Energy profiles/histograms
These get modified often; do not want to introduce a bottleneck.

]9/33‘
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Computing Density Profiles/Histograms : Elegant

‘Dom’ is a distributed domain

forall (i,j,k) in Dom with (+ reduce counts) {

var counts : [ProfDom] real;

const rr = sqrt(ixi + j*j + kxk):int;
counts[rr] += 1.0;

}

20/
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Timings : Elegant
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Computing Density Profiles/Histograms : Atomic

Avoid network atomics

var priv_counts : [PrivateSpace] [ProfDom] chpl_MprocessorAtomicType(real);
var counts : [ProfDom] real;
forall (i,j,k) in Dom {

const rr = sqrt(i*i + j*j + kxk):int;

priv_counts[here.id] [rr].add(1.0);
}
for iloc in 0.. #numLocales {

var loc_counts = priv_counts[iloc];

forall ii in ProfDom do counts[ii] += loc_counts[ii].read();
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Timings : Atomic
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Computing Density Profiles/Histograms : SPMD

var priv_counts : [PrivateSpace] [ProfDom] real;
var counts : [ProfDom] real;
coforall loc in Locales do on loc {

const myDom = Dom.localSubdomain(); .
ref mycounts = priv_counts[here.id];
forall (i,j,k) in myDom with (+ reduce mycounts) {
const rr = sqrt(i*i + j*j + k+*k):int;
mycounts [rr] += 1.0;
}
}
for iloc in 0.. #numLocales {
var loc_counts = priv_counts[iloc];

forall ii in ProfDom do counts[ii] += loc_counts[iil;
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Timings : SPMD
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Computing Density Profiles/Histograms : MPI

var counts : [ProfDom] real;
coforall loc in Locales do on loc {
const myDom = Dom.localSubdomain();
var mycounts, recvbuf : [ProfDom] real;
forall (i,j,k) in myDom with (+ reduce mycounts) {
const rr = sqrt(i*i + j*j + k+*k):int;
mycounts [rr] += 1.0;

}

MPI.B i HPL MM LD);
arrier (CHPL_COMM_WORLD); (TSI V/[al IRVt
if (here.id==0) {

MPI_Reduce(mycounts[0], recvbuf[0], (2*Ng):c_int,
MPI_DOUBLE, MPI_SUM, 0O, CHPL_COMM_WORLD);
counts = recvbuf;
} else {
MPI_Reduce (mycounts[0], recvbuf[0], (2*Ng):c_int,
MPI_DOUBLE, MPI_SUM, 0, CHPL_COMM_WORLD);

Padmanabhan et al ULDM in Chapel
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Timings : MPI
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Science, Powered by Chapel
In Active Use.

e Actively being used by Luna Zagorac for her thesis.

e All plots/movies are courtesy Luna, simulations are Chapel
powered!

e Code is being actively developed, with new science modules
being added in!

e Cosmological structures form hierarchically.

e Run simulations colliding pairs of solitons, exploring different
initial conditions.

e Final state of system?

e Time scales involved?

28 /
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Mass Density

Momentum Density

01% 1.0% 10%

99.9%

30% 50% 70% 90% 99% 99.9% 0.1% 1.0% 10% 30% 50% 70% 90% 99%
Cumulative Mass in Soliton Cumulative Potential Energy in Soliton
0 50 100 150 200 250 300 350 400 0 50 100

Save Number

ULDM in Chapel

150 200 250
Save Number

300 350 400




Momentum Density
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Where Chapel could do better
1. Tooling

o |dentifying communication - how much and from where? How to
recognize a sub-optimal pattern.
o Easier profiling
o Compiler improvements, including speed.
2. Easier to express low-level communication/locality

o Low level communication primitives are not exposed to user
(useful when the user can reason better about the
communication patterns).

o Verbose to express locality of computation and have the
compiler optimize appropriately.

3. Fewer hidden performance traps
o Unexpected communication
o Promotion of operations over N-d arrays can be slow.

None of these are new issues to the Chapel team (and many
have Github issues).
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My Thoughts

e HPC:

o Productivity: Chapel design has scientific codes in mind.

o Domains/Arrays
o Expressive Parallelism - where/when you need it.
o Interoperability - C (and now Python!)

o Performance: Chapel code can perform/scale very well without
heroic efforts.
e It's a fun language to write. Easy to throw together prototype
code in. And it largely dces the right thing!

* I'm getting to the point where I'm just working in Chapel.
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