Simulating Ultralight Dark Matter with
Chapel

Nikhil Padmanabhan ' Elliot Ronaghan 2
J. Luna Zagorac' Richard Easther 3

Yale Univ.
2Cray/HPE

3Univ. of Auckland

2020/05/22

1
Padmanabhan et al ULDM in Chapel /33 y

Motivating Ultralight Dark Matter

About

In the standard cosmological model, 80% of the matter in the
Universe is “dark” (i.e. non-baryonic).

Form gravitationally bound structures : dark matter halos.

The traditional model is a heavy particle (~ 100x proton),
with weak interactions.

2
/33‘

Padmanabhan et al ULDM in Chapel

Motivating Ultralight Dark Matter

About
In the standard cosmological model, 80% of the matter in the
Universe is “dark” (i.e. non-baryonic).
Form gravitationally bound structures : dark matter halos.

The traditional model is a heavy particle (~ 100x proton),
with weak interactions.

Successes
Explains a large scale of observations, from the rotation of
galaxies, to “Bullet” clusters, to the distribution of galaxies, to
the cosmic microwave background.

Padmanabhan et al ULDM in Chapel @

Motivating Ultralight Dark Matter

Successes
Explains a large scale of observations, from the rotation of
galaxies, to “Bullet” clusters, to the distribution of galaxies, to
the cosmic microwave background.

Challenges

Possible puzzles remain on small scales from the structure of
dark matter halos, to the observed abundance of dark matter
halos. Note that these might well be solved by astrophysics.

We have not detected these in the lab, or at accelerators.

2/
Padmanabhan et al ULDM in Chapel 33 y

DARK. MATTER CANDIDRTES:

Mme\f &V KeV MeV Gev Tev

107,

kg ToN 10°%s 0%k 10"k 107k 10™%s
1 1 L 1 1 1 L L 1 1 1

g Mg M g
L | PP PP | [1 1 1 1 1 1
— T—] T 1
AXIONS Q-BAUS POUEN
STERIE
NEUTRNOS | NEUTRALNGS NO-SEE-UMS
ELECTRONS PAINTED B aALs IS
LITH SPACE. CAMDUFLAGE

https://xkcd.com/2035

—BLACK HOLES, M.EDOUI'B’(—
| HICRD BUZZKILL
IRE ? LENSING | (ENSING | ASTRONOMERS

OBEusrs NEUTRON S0LAR SYSTEM
MONOUTHS, mﬂ STARDATA STRABILITY
DS

MAYBE THOSE ORBIT LINES IN SPACE.
DIAGRAMS ARE REAL AND VERY” HEAVY

Padmanabhan et al

ULDM in Chapel

3
/5

Motivating Ultralight Dark Matter

A different paradigm is a very light particle (103! x proton).

e Many names : fuzzy dark matter, Bose-Einstein dark matter,

Small mass means that quantum-mechanics can smear it out
over astrophysically interesting scales.

High enough density that it forms a Bose-Einstein condensate.

Different phenomenology : eg. interference patterns.

Anything by the most idealized situations requires simulations.

4
Padmanabhan et al ULDM in Chapel /33 y

Our Motivation

* Want a code to do numerical experiments with.
¢ Need scalability
o Must resolve soliton cores : large dynamic range
o Simulation time scales as N°; need to scale to large numbers of
nodes.
e |nitial problem : revisit aspects of the formation of ultra-light
dark matter halos from collisions of soliton cores.

e This is an area of very active research (we are newcomers).

e Several codes exist - including adaptive codes, codes built on
existing large astrophysical simulations. Challenges to large
boxes still exist.

e An incomplete list : Schive et al, 2014, Mocz et al, 2017,
Edwards et al 2017, Veltmaat et al, 2018

5
Padmanabhan et al ULDM in Chapel /33 y

History of Project

e PyUltraLight? An initial code in Python, driven by Jupyter
notebook
o Easy to use and modify, allowing numerical experiments

o Performant and multithreaded (made significant use of eg. numexpr,
FFTW)

e Extending to isolated potentials hit Python bottlenecks
e Attempted a skunkworks (2019/6/22) port to Chapel for a single
node. Resulting code not much longer than Python, could
implement isolated potentials, better multithreaded performance.
e Distributed Code
© Want to run larger Ng 4, can we extend the code?
o Isolated potential calculation led to wanting a native Chapel distributed

FFT (useful for many other tasks).?
o Validating the FFT led to the NAS NPB benchmark.

9Edwards et al, arXiv:1807.04037
®Note that Chapel can also interoperate with MPI.

6
Padmanabhan et al ULDM in Chapel /33 y

The Schrodinger-Poisson Equations

” 2 /\ G

V1
Z@t vaw—l—mcbzp

e V20 = 4nGm/|y|?

Isolated bound-
ary conditions

Distributed FFTs are a key component!

7
Padmanabhan et al ULDM in Chapel /33 y

Slab Decompositions Are Simple

e Slab decompositions are
simpler (especially for the
end user)

e Slab limits the amount of
parallelism expressed
(especially with pure MPI)

e Use 1slab per locale/node.

e Limits Ngiq > Npodes. but in
practice, not limiting.

e Reduce communication
complexity

Figure: Pencil Decomposition

http://www.2decomp.org/decomp.html
8/
Padmanabhan et al ULDM in Chapel 33 y

Chapel Code is Expressive : Pencil and Paper

The Algorithm
Decompose array into slabs in the = direction
Fourier transform in the y direction?

Fourier transform in the z direction

Transpose x and y (all to all)

Fourier transform in the 2 direction

’/
Padmanabhan et al ULDM in Chapel 33 y

Chapel Code is Expressive : A Naive
Implementation

coforall loc in Locales do on loc { SPMD

for ix in xSrc {
myplane = Src[{ix..ix, ySrc, zSrc}];
// Y-transform
forall iz in zSrc { Data para”el
yPlan.execute(myplane[0, ySrc.first, izl); FFTW 1D
}
// Z-transform
forall iy in offset(ySrc) {
zPlan.execute (myplane[0, iy, zSrc.firstl);
// Transpose data into Dst
Dst[{iy..iy, ix..ix, zSrc}] = myplane[{0..0, iy..iy, zSrc}];

) ’ PGAS Transpose

alllLocalesBarrier.barrier();
// X-transform, similar to Y-transform

} 10/
Padmanabhan et al ULDM in Chapel 33‘

Chapel Code is Expressive : A Naive
Implementation

coforall loc in Locales do on loc { SPMD

for ix in xSrc {
myplane = Src[{ix..ix, ySrc, zSrc}];
// Y-transform
forall iz in zSrc { Data para”el

yPlan.execute(myplane[0, ySrc.first

}

// Z-transform

forall iy in offsetkfSrc) {
zPlan.execute(myplane [0, iy, zSrc.first]);
// Transpose data into Dst

Dst[{iy..iy, ix..ix, zSrc}] = myplane[{0..0, iy..iy, zSrc}];

) ’ PGAS Transpose

alllLocalesBarrier.barrier();
// X-transform, similar to Y-transform

}

Padmanabhan et al ULDM in Chapel

A FFTW 1D

Reduce comm congestion!

10
/5

Chapel FFTs : Naive Performance

NPB-FT (Size D) Performance

9000 o=~ ===

. Chapel (Optimized) —— - - - - - - - - - ______~=T__
8000 sl (nial) ——

7000 f---- - T T
6000 [-~ T e
5000 [~ == T e
L s EECECECEEEEEEEEEEEEEEs
| SSeee e =ae e
I e E e EEEEE L ECEEEEEE
| s e '

16 64 128 256 512
Locales (x 36 cores / locale)

Gop/s

n
Padmanabhan et al ULDM in Chapel /33‘

Chapel Code is Expressive : A Performant
Implementation

overlap computation
and comm

forall iy in offset(ySrc) {
Plan.execute(myplane[0, iy, zSrc.first]);
// Transpose data into Dst, and copy the next Src slice into myplane

copy(Dst[...], myplane[...], myLineSize);

if (ix != xSrc.last) { low-level comm
copy (myplanel[...], Src[...], myLineSize);

}
}
batch FFTW calls (not shown)

12 /
Padmanabhan et al ULDM in Chapel 33‘

Benchmarks

Machine/Compiler Specifications

Scalability Hardware (Cray-XC):

36-core (72 HT), 128 GB RAM
dual 18-core (36 HT) "Broadwell” 2.1 GHz processors

Software

CLE 7.0.UPO1

Intel Compilers 19.0.5.28]1
FFTW 3.3.8.4

Chapel 1.20.0

Cray 9.0.2 (classic)

Padmanabhan et al ULDM in Chapel

Benchmarks

Benchmarks

Use the NAS NPB-FT benchmark
NPB v3.4
Class D (2048 x 1024 x 1024), E (8x), F(8x)

Compare Chapel, MPI reference and UPC (with non-blocking

overlapped comm)

MPI and UPC use pencil decompositions for large
problems/node counts.
MPI and UPC use 32 cores/node (require a power of 2)

Restricting Chapel to 32 cores does not significantly change
timings, indicating memory/communication bound.

Padmanabhan et al ULDM in Chapel @

Chapel FFTs Scale Well Across Nodes : Class D

NPB-FT (Size D) Performance

9000
8000 |=Chapel ——
7000
6000
5000
4000
3000
2000
1000

Gop/s

16 64 128 256 512
Locales (x 36 cores / locale)

]5/33‘

Padmanabhan et al ULDM in Chapel

Chapel FFTs Scale Well Across Nodes : E = 8xD

10000

Gop/s

Padmanabhan et al

9000
8000
7000
6000
5000
4000
3000
2000
1000

NPB-FT (Size E) Performance

=Chapel —#— - - - - - - - - - - - - o oo
PC

16 64 128
Locales (x 3

ULDM in Chapel

6 cores / locale)

16
/33‘

Chapel FFTs Scale Well Across Nodes : F = 8xE

NPB-FT (Size F) Performance

Gop/s

Locales (x 36 cores / locale)

]7/33‘

Padmanabhan et al ULDM in Chapel

Simulations Scale Well

ULDM Simulation (100 Steps)
4096 [ttt
157) A —
256
64
16

Time (s)

1 2 4 8 16 32 64 128 256 512

Locales (x 36 cores / locale)
Ng=512 —#— Ng=1024 —e— Ng=2048 —+— Ng=4096 —*—

18 /
Padmanabhan et al ULDM in Chapel 33‘

Writing a Research Code

e Parallel HDF5 for saving full simulations (interop with MPI)
e HDF5 Tables for serializing arrays of records

e (C)TOML for input parameters
All of the above are good examples of C interop.

e Summary statistics run in-line; need to be fast.

e eg. Density/Energy profiles/histograms
These get modified often; do not want to introduce a bottleneck.

]9/33‘

Padmanabhan et al ULDM in Chapel

Computing Density Profiles/Histograms : Elegant

‘Dom’ is a distributed domain

forall (i,j,k) in Dom with (+ reduce counts) {

var counts : [ProfDom] real;

const rr = sqrt(ixi + j*j + kxk):int;
counts[rr] += 1.0;

}

20/
Padmanabhan et al ULDM in Chapel 33‘

Timings : Elegant
0.6| |

Degraded perf more
0.5} severe at higher locale

—_— 0.4_

)

count

0 10 20 30 40 50 60
NumLocales (x44 cores)

— Elegant

ULDM in Chapel

Computing Density Profiles/Histograms : Atomic

Avoid network atomics

var priv_counts : [PrivateSpace] [ProfDom] chpl_MprocessorAtomicType(real);
var counts : [ProfDom] real;
forall (i,j,k) in Dom {

const rr = sqrt(i*i + j*j + kxk):int;

priv_counts[here.id] [rr].add(1.0);
}
for iloc in 0.. #numLocales {

var loc_counts = priv_counts[iloc];

forall ii in ProfDom do counts[ii] += loc_counts[ii].read();

22 /
Padmanabhan et al ULDM in Chapel 33‘

Timings : Atomic

?4 : - - :

g

5_

© 4}

£

= 9

2_

1 S
oL

0 10 20 30 40 50 60
NumLocales (x44 cores)
—— Elegant - Atomic

ULDM in Chapel

Computing Density Profiles/Histograms : SPMD

var priv_counts : [PrivateSpace] [ProfDom] real;
var counts : [ProfDom] real;
coforall loc in Locales do on loc {

const myDom = Dom.localSubdomain(); .
ref mycounts = priv_counts[here.id];
forall (i,j,k) in myDom with (+ reduce mycounts) {
const rr = sqrt(i*i + j*j + k+*k):int;
mycounts [rr] += 1.0;
}
}
for iloc in 0.. #numLocales {
var loc_counts = priv_counts[iloc];

forall ii in ProfDom do counts[ii] += loc_counts[iil;

24 /
Padmanabhan et al ULDM in Chapel 33‘

Timings : SPMD

0.6}

comm congestion?

0.5}
£ 0.3}
E

0.2

0.1}

0.0t

0 10 20 30 40 50
NumLocales (x44 cores)
—— Elegant ----- SPMD

ULDM in Chapel

60

Computing Density Profiles/Histograms : MPI

var counts : [ProfDom] real;
coforall loc in Locales do on loc {
const myDom = Dom.localSubdomain();
var mycounts, recvbuf : [ProfDom] real;
forall (i,j,k) in myDom with (+ reduce mycounts) {
const rr = sqrt(i*i + j*j + k+*k):int;
mycounts [rr] += 1.0;

}

MPI.B i HPL MM LD);
arrier (CHPL_COMM_WORLD); (TSI V/[al IRVt
if (here.id==0) {

MPI_Reduce(mycounts[0], recvbuf[0], (2*Ng):c_int,
MPI_DOUBLE, MPI_SUM, 0O, CHPL_COMM_WORLD);
counts = recvbuf;
} else {
MPI_Reduce (mycounts[0], recvbuf[0], (2*Ng):c_int,
MPI_DOUBLE, MPI_SUM, 0, CHPL_COMM_WORLD);

Padmanabhan et al ULDM in Chapel

26
/5

Timings : MPI

0.6}
Could likely match MPI with
a parallel reduction

0.5}

—_ 0.4_

)

0 10 20 30 40 50 60
NumLocales (x44 cores)
—— Elegant ----- MPI

ULDM in Chapel

Science, Powered by Chapel
In Active Use.

e Actively being used by Luna Zagorac for her thesis.

e All plots/movies are courtesy Luna, simulations are Chapel
powered!

e Code is being actively developed, with new science modules
being added in!

e Cosmological structures form hierarchically.

e Run simulations colliding pairs of solitons, exploring different
initial conditions.

e Final state of system?

e Time scales involved?

28 /
Padmanabhan et al ULDM in Chapel 33‘

Mass Density) Momentum Density
@
P

0.1% 1.0% 10% 30% 50% 70% 90% 99% 99.9% 0.1% 1.0% 10% 30% 50% 70% 90% 99% 99.9%

Cumulative Mass in Soliton Cumulative Potential Energy in Soliton
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Save Number Save Number

ULDM in Chapel

Mass Density

Momentum Density

01% 1.0% 10%

99.9%

30% 50% 70% 90% 99% 99.9% 0.1% 1.0% 10% 30% 50% 70% 90% 99%
Cumulative Mass in Soliton Cumulative Potential Energy in Soliton
0 50 100 150 200 250 300 350 400 0 50 100

Save Number

ULDM in Chapel

150 200 250
Save Number

300 350 400

Momentum Density

Mass Density

99% 99.

30% 50% 70% 90%

1.0% 10%
Cumulative Mass in Soliton

0.1%

90% 99% 99.9%

30% 50% 70%

9% 0.1% 1.0% 10%
Cumulative Potential Energy in Soliton

300 350 400

100 150 200 250

250 300 350

50
Save Number

400

150 200
Save Number

50 100

ULDM in Chapel

Where Chapel could do better
1. Tooling

o |dentifying communication - how much and from where? How to
recognize a sub-optimal pattern.
o Easier profiling
o Compiler improvements, including speed.
2. Easier to express low-level communication/locality

o Low level communication primitives are not exposed to user
(useful when the user can reason better about the
communication patterns).

o Verbose to express locality of computation and have the
compiler optimize appropriately.

3. Fewer hidden performance traps
o Unexpected communication
o Promotion of operations over N-d arrays can be slow.

None of these are new issues to the Chapel team (and many
have Github issues).

32 /
Padmanabhan et al ULDM in Chapel 33‘

My Thoughts

e HPC:

o Productivity: Chapel design has scientific codes in mind.

o Domains/Arrays
o Expressive Parallelism - where/when you need it.
o Interoperability - C (and now Python!)

o Performance: Chapel code can perform/scale very well without
heroic efforts.
e It's a fun language to write. Easy to throw together prototype
code in. And it largely dces the right thing!

* I'm getting to the point where I'm just working in Chapel.

33 /
Padmanabhan et al ULDM in Chapel 33‘

	An Introduction to ULDM
	Distributed FFTs
	Writing a Research Code
	Computing Density Profiles

	Science Powered by Chapel
	Lessons Learned

