
An Automated Machine Learning Approach 
for Data Locality Optimizations in Chapel 

Engin Kayraklioglu
Hewlett Packard Enterprise*

Tarek El-Ghazawi
The George Washington University

This talk is a summary of author's Ph.D. dissertation he completed before joining Cray/HPE



Data Locality Optimizations in HPC
§ Data locality optimization is complicated
§ Many sub-tasks…
§ … relying on

• system characteristics
• application characteristics

§ Existing approaches
• Programmer does everything
• Language does tries to do everything

§ This talk focuses on aggregated 
communication

2



Optimizing Matrix Transpose in Chapel

😡More code

3



Optimizing Matrix Transpose in Chapel

😡More code

😡More complicated code

4



Optimizing Matrix Transpose in Chapel

😡More code

😡More complicated code
😡Different application logic

5



This talk
§ … will discuss three ideas

• a collaborative language feature for data locality optimization
• a high-level profiler to analyze accesses to distributed arrays
• a machine-learning based framework for complete automation

§ … with specific focus on …
• what they mean for a Chapel user

§ … while mostly handwaving about …
• implementation details
• experimental results

6



Locality Aware Productive Prefetching Support (LAPPS)

§ It is hard for the compiler to do locality optimization
• Static analysis is difficult
• Code modification is "scary"

§ It is hard for the runtime to do locality optimization
• Dynamic analysis has costs
• They have limited view of the application

§ What if the user tells them exactly how the data is accessed?

E. Kayraklioglu et al. "Locality-Aware Productive Prefetching Support for PGAS", ACM 
Transactions on Architecture and Code Optimizations, Vol 15, Issue 3. 2018

7



Matrix Transpose with LAPPS

😡More code

😡More complicated code
😡Different application logic

8



Matrix Transpose with LAPPS

😡More code

😡More complicated code
😡Different application logic

9



Matrix Transpose with LAPPS

😡More code

😡More complicated code
😡Different application logic

10



Matrix Transpose with LAPPS
🙂 Trivial code modifications

😡More code

😡More complicated code
😡Different application logic

11



Matrix Transpose with LAPPS
🙂 Trivial code modifications

🙂 Application logic remains identical

😡More code

😡More complicated code
😡Different application logic

12



Prefetch Patterns

13

§ Also a “Custom” pattern

• User gives an array to describe what data is needed by each locale

• Figuring out the communication is still handled by the library/runtime

• The custom pattern can also be used by automatic code generators

All-to-all Stencil Row-wise Col-wise Transpose



LAPPS Experiments Summary
§ Performance tested with synthetic and application benchmarks

§ Good strong and weak scaling performance

§ Up to two orders of magnitude faster than un-optimized

§ On-par with manually optimized application

§ Negligible memory footprint increase over manually-optimized

14



LAPPS is good, but…

…still relies on the programmer understanding the data access 
patterns and making the correct prefetch call

Can a high-level, data-centric application profiler 
help the programmer use LAPPS?

15

E.Kayraklioglu et al. "An Access Pattern Analysis Tool for Distributed Arrays", ACM Computing 
Frontiers 2018



Access Pattern Analysis Tool (APAT)
§ A profiler that is

• high-level
• data-centric

§ And that does
• Collect accessed indices
• Help identify spatial patterns

§ And that can be used
• standalone,
• or with LAPPS

16

Local Indices Accessed Indices

A screenshot from the GUI
HPCC-PTRANS with 4 locales



APAT helps programmers use LAPPS, but…

…interpreting the APAT output and appropriately using LAPPS is 
still the programmer's duty.

Can we automate the process by making AI learn the 
access patterns and optimize the application and 

using LAPPS?

17

E.Kayraklioglu et al. "A Machine Learning Approach for Productive Data Locality Exploitation in Parallel Computing 
Systems", IEEE/ACM CCGrid 2018

E.Kayraklioglu et al. "A Machine-Learning-Based Framework for Productive Locality Exploitation", IEEE TPDS, 
under review



Matrix Transpose with LAPPS
🙂 Trivial code modifications

🙂 Application logic remains identical

😡More code

😡More complicated code
😡Different application logic

18



Matrix Transpose with LAPPS
🙂 Trivial code modifications

🙂 Application logic remains identical

😡More code

😡More complicated code
😡Different application logic

19



Matrix Transpose with LAPPS
🙂 Trivial code modifications

🙂 Application logic remains identical
🙂 No need to worry about pattern

😡More code

😡More complicated code
😡Different application logic

20



How it works…

Pragma 
Parser

Chapel

LAPPS

APAT

User gives code with pragmas

21



How it works…

Pragma 
Parser

Data Collection
Engine

Chapel

LAPPS

APAT

Code with profiler calls passed to
data collection engine

Code with LAPPS calls generated,
waiting for a specific trained model

22



How it works…

Pragma 
Parser

Data Collection
Engine

Chapel

LAPPS

APAT

Access pattern info passed to 
data collection engine

23



How it works…

Pragma 
Parser

Data Collection
Engine

Chapel

LAPPS

APAT
Logs are
passed to

APAT

24



How it works…

Pragma 
Parser

Data Collection
Engine

Chapel

LAPPS

APAT

Access pattern info passed to 
data collection engine

25



How it works…

Pragma 
Parser

Data Collection
Engine

Machine Learning
Daemon

Chapel

LAPPS

APAT

Training in
batches

26



How it works…

Pragma 
Parser

Data Collection
Engine

Machine Learning
Daemon

Chapel

LAPPS

APAT

Final model saved to a file

27



How it works…

Pragma 
Parser

Data Collection
Engine

Machine Learning
Daemon

Chapel

LAPPS

APAT

Generated executable uses 
LAPPS+trained model 

to aggregate data
28



Performance Results Summary

29

§ On-par performance
§ Good scalability
§ Portable optimization
§ Low memory footprint

§ Very little programmer effort
§ Short aggregate training time

• 3 min in a 50 node cluster
• 30 min in a personal workstation

STREAM

DGEMM

PARACR

InfiniBand QDR Gemini



Summary
§ 3 related approaches for more productive optimizations

• A language feature that makes coding easier
• A profiler to help understand access patterns
• A framework that uses machine learning to automate process

§ Programmer still need to be involved
• But in a much less disruptive fashion
• Application correctness and performance concerns are separated

• One person can write the application 
• without knowing/caring too much about distributed memory

• Another can optimize it
• without knowing/caring too much about the application

30



Thanks!

engin@hpe.com

31


