An Automated Machine Learning Approach for Data Locality Optimizations in Chapel

Engin Kayraklioglu
Hewlett Packard Enterprise*

Tarek El-Ghazawi
The George Washington University

This talk is a summary of author's Ph.D. dissertation he completed before joining Cray/HPE
Data Locality Optimizations in HPC

- Data locality optimization is complicated
- Many sub-tasks...
- … relying on
 - system characteristics
 - application characteristics

- Existing approaches
 - Programmer does everything
 - Language does *tries to do* everything

- This talk focuses on aggregated communication
for i in 1..numIter {
 forall (i, j) in B.domain do
 B[i, j] = A[j, i];
 forall a in A do
 a += 1.0;
}

coforall l in Locales do on l {
 var locIdxs = B.localSubdomain();
 var tDom = {locIdxs.dim(2), locIdxs.dim(1)};
 var localA: [tDom] real;
 for i in 1..numIter {
 localA = A[transposeDom];
 forall (i, j) in dLocSubDom do
 B[i,j] = localA[j, i];
 forall (i, j) in A.localSubdomain() do
 A[i,j] += 1.0;
 }
}
Optimizing Matrix Transpose in Chapel

```chapel
for i in 1..numIter {
    forall (i, j) in B.domain do
        B[i, j] = A[j, i];
    forall a in A do
        a += 1.0;
}
```

```chapel
coforall l in Locales do on l {
    var locIdxs = B.localSubdomain();
    var tDom = {locIdxs.dim(2), locIdxs.dim(1)};
    var localA = [tDom] real;
    for i in 1..numIter {
        localA = A[transposeDom];
        forall (i, j) in bLocSubDom do
            B[i,j] = localA[j, i];
        forall (i, j) in A.localSubdomain() do
            A[i,j] += 1.0;
    }
}
```
for i in 1..numIter {
 forall (i, j) in B.domain do
 B[i, j] = A[j, i];
 forall a in A do
 a += 1.0;
}

coforall l in Locales do on l {
 var locIdxs = B.localSubdomain();
 var tDom = {locIdxs.dim(2), locIdxs.dim(1)};
 var localA: [tDom] real;
 for i in 1..numIter {
 localA = A[transposeDom];
 forall (i, j) in bLocSubDom do
 B[i,j] = localA[j, i];
 forall (i, j) in A.localSubdomain() do
 A[i,j] += 1.0;
 }
}
This talk

- ... will discuss three ideas
 - a collaborative language feature for data locality optimization
 - a high-level profiler to analyze accesses to distributed arrays
 - a machine-learning based framework for complete automation

- ... with specific focus on ...
 - what they mean for a Chapel user

- ... while mostly handwaving about ...
 - implementation details
 - experimental results
Locality Aware Productive Prefetching Support (LAPPS)

- It is hard for the compiler to do locality optimization
 - Static analysis is difficult
 - Code modification is "scary"

- It is hard for the runtime to do locality optimization
 - Dynamic analysis has costs
 - They have limited view of the application

- What if the user tells them exactly how the data is accessed?

Matrix Transpose with LAPPs

```plaintext
for i in 1..numIter {
    forall (i, j) in B.domain do
        B[i, j] = A[j, i];
    forall a in A do
        a += 1.0;
}
```

More code
More complicated code
Different application logic
Matrix Transpose with LAPPs

```plaintext
for i in 1..numIter {
    forall (i, j) in B.domain do
        B[i, j] = A[j, i];
    forall a in A do
        a += 1.0;
}
```

More code

More complicated code

Different application logic
Matrix Transpose with LAPPs

```plaintext
for i in 1..numIter {
    forall (i, j) in B.domain do
        B[i, j] = A[j, i];
    forall a in A do
        a += 1.0;
}
```

More code

More complicated code

Different application logic
Matrix Transpose with LAPPs

```
for i in 1..numIter {
    forall (i, j) in B.domain do
        B[i, j] = A[j, i];
    forall a in A do
        a += 1.0;
}
```

- 😊 Trivial code modifications
- 😠 More code
- 😞 More complicated code
- 😞 Different application logic
Matrix Transpose with LAPPSS

Trivial code modifications

Application logic remains identical

More code

More complicated code

Different application logic
Also a “Custom” pattern

- User gives an array to describe what data is needed by each locale
- Figuring out the communication is still handled by the library/runtime
- The custom pattern can also be used by automatic code generators
LAPPS Experiments Summary

- Performance tested with synthetic and application benchmarks
- **Good strong and weak scaling** performance
- **Up to two orders of magnitude faster** than un-optimized
- **On-par** with manually optimized application
- **Negligible memory footprint** increase over manually-optimized
LAPPS is good, but…

…still relies on the programmer understanding the data access patterns and making the correct prefetch call.

Can a high-level, data-centric application profiler help the programmer use LAPPS?

Access Pattern Analysis Tool (APAT)

- A profiler that is
 - high-level
 - data-centric
- And that does
 - Collect accessed indices
 - Help identify spatial patterns
- And that can be used
 - standalone,
 - or with LAPPS
APAT helps programmers use LAPPS, but…

…interpreting the APAT output and appropriately using LAPPS is still the programmer's duty.

Can we automate the process by making AI learn the access patterns and optimize the application and using LAPPS?

Matrix Transpose with LAPPs

```plaintext
for i in 1..numIter {
    forall (i, j) in B.domain do
        B[i, j] = A[j, i];
    forall a in A do
        a += 1.0;
}
```

Trivial code modifications

Application logic remains identical

More code

More complicated code

Different application logic
Matrix Transpose with LAPPSS

Trivial code modifications

Application logic remains identical

More code

More complicated code

Different application logic

```c
for i in 1..numIter {
    forall (i, j) in B.domain do
        B[i, j] = A[j, i];
    forall a in A do
        a += 1.0;
}
```
Matrix Transpose with LAPPSS

Trivial code modifications
Application logic remains identical
No need to worry about pattern

More code
More complicated code
Different application logic
How it works…

User gives code with pragmas

Pragma Parser

APAT

Chapel

LAPPS
How it works…

Pragma Parser -> Data Collection Engine

Code with profiler calls passed to data collection engine

Code with LAPPS calls generated, waiting for a specific trained model

APAT
Chapel
LAPPS
Pragma Parser → Data Collection Engine → APAT → Chapel → LAPPSS

Access pattern info passed to data collection engine
How it works...

Pragma Parser → Data Collection Engine → APAT

Logs are passed to APAT

APAT → Chapel → LAPPS
Pragma Parser

Data Collection Engine

Access pattern info passed to data collection engine

APAT

Chapel

LAPPS
How it works…

Pragma Parser → Data Collection Engine → Machine Learning Daemon → APAT → Chapel → LAPPS

Training in batches
How it works…

Pragma Parser

Data Collection Engine

Machine Learning Daemon

Final model saved to a file

APAT

Chapel

LAPPS
How it works…

Pragma Parser → Data Collection Engine → Machine Learning Daemon

APAT → Chapel → LAPPSS

Generated executable uses LAPPSS+trained model to aggregate data
Performance Results Summary

- On-par performance
- Good scalability
- Portable optimization
- Low memory footprint

- Very little programmer effort
- Short aggregate training time
 - 3 min in a 50 node cluster
 - 30 min in a personal workstation
Summary

- 3 related approaches for more productive optimizations
 - A language feature that makes coding easier
 - A profiler to help understand access patterns
 - A framework that uses machine learning to automate process

- Programmer still need to be involved
 - But in a much less disruptive fashion
 - Application correctness and performance concerns are separated
 - One person can write the application
 - without knowing/caring too much about distributed memory
 - Another can optimize it
 - without knowing/caring too much about the application
Thanks!

engin@hpe.com