
© 2020 Cray, a Hewlett Packard Enterprise company

chapel-lang.org

Towards Stability in the Chapel

Language
Michael Ferguson

CHIUW 2020
May 22, 2020

@ChapelLanguage

© 2020 Cray, a Hewlett Packard Enterprise company

• Language stability is a feature of a programming language
• guarantee that valid programs will continue to function

• Without language stability, programmers need to update code for each release
• all this added work can reduce any productivity benefit the language offers

• Languages in wide use have two strategies for language stability:
1. Don't change the language in a way that breaks existing programs
2. Provide versions of the language (e.g. C99 or Python 3)

Language Stability

2

© 2020 Cray, a Hewlett Packard Enterprise company

• Providing versions of the language doesn't entirely solve the problem
• programmers still need to update when migrating to the new version
• the old version might eventually become unsupported

• e.g. Python 2 is reaching end of life

• Language versioning does give programmers more control over when to update

• Some compilers can even apply newer optimization to older standards
• e.g. C compilers with flags like --std=c99

Language Versioning

3

© 2020 Cray, a Hewlett Packard Enterprise company

• The Chapel language started development as a research prototype
• Started in 2003 - first public release was 0.8 in 2008

• Initial focus was to demonstrate key differentiating features
• productive parallel and distributed programming
• user-defined distributions

• Over time Chapel has become significantly more usable and performant
• and the user community has grown

• Language stability is now important to Chapel users

Some History

4

© 2020 Cray, a Hewlett Packard Enterprise company

• In the past several years, we have been working towards language stability
• Sometimes refer to the stable language version as "Chapel 2.0"

• Once the language is stable, the project will
• commit to not breaking a set of core language features
• adopt semantic versioning

Language Stability for Chapel

5

© 2020 Cray, a Hewlett Packard Enterprise company

• Could the project have just declared Chapel 1.14 as stable?
• and committed not to change core features past that point?

• Doing so would have prevented addressing changes requested by users

• Stabilizing a language to soon leads to obvious problems never being fixed
• e.g. Makefiles and tab characters

• There is a balance between addressing requests and stabilizing

Why is Language Stability Challenging?

6

© 2020 Cray, a Hewlett Packard Enterprise company

• Language support for error handling
• Leak-free use of classes without needing to call 'delete'
• Classes that cannot store nil by default
• Robust class and record initializer support
• Language design that minimizes unnecessary copies and memory errors
• A package manager enabling the community to share libraries
• Support for Unicode strings
• Make the built-ins either 1-based or 0-based, not a mix of the two

Changes Requested by Users

7

© 2020 Cray, a Hewlett Packard Enterprise company

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21
error handling
delete-free programming x
class types and nilability x
initializers x
initialization, deinitialization & intents
package manager
modules and visibility x
Unicode strings
arrays and loop expressions
function overload resolution
override and overload set checking

2016 2017 2017 2018 2018 2019 2019 2020

serious defects unsolved problems partially solved mostly stable stable

Known Language Problems Over Time

8

© 2020 Cray, a Hewlett Packard Enterprise company

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21
error handling
delete-free programming x
class types and nilability x
initializers x
initialization, deinitialization & intents
package manager
modules and visibility x
Unicode strings
arrays and loop expressions
function overload resolution
override and overload set checking

2016 2017 2017 2018 2018 2019 2019 2020

serious defects unsolved problems partially solved mostly stable stable

Known Language Problems Over Time

9

• New types Owned and
Shared types lead to
realization that class types
should have nilable and non-
nilable variants

• Partly due to issues of
ownership transfer

© 2020 Cray, a Hewlett Packard Enterprise company

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21
error handling
delete-free programming x
class types and nilability x
initializers x
initialization, deinitialization & intents
package manager
modules and visibility x
Unicode strings
arrays and loop expressions
function overload resolution
override and overload set checking

2016 2017 2017 2018 2018 2019 2019 2020

serious defects unsolved problems partially solved mostly stable stable

Known Language Problems Over Time

10

• New types Owned and
Shared types lead to
realization that class types
should have nilable and non-
nilable variants

• Partly due to issues of
ownership transfer

© 2020 Cray, a Hewlett Packard Enterprise company

• Owned example from 1.15:

var myOwned = new Owned(new MyClass());

var otherOwned = myOwned;

// anotherOwned now stores nil

// both assignment and copy-initialization transfer ownership

• Ownership transfer adds a new way for variables to become 'nil'
• increasing the chance of 'nil' dereference errors
• Can these be caught at compile-time?

Owned in 1.15

11

© 2020 Cray, a Hewlett Packard Enterprise company

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21
error handling
delete-free programming x
class types and nilability x
initializers x
initialization, deinitialization & intents
package manager
modules and visibility x
Unicode strings
arrays and loop expressions
function overload resolution
override and overload set checking

2016 2017 2017 2018 2018 2019 2019 2020

serious defects unsolved problems partially solved mostly stable stable

Known Language Problems Over Time

12

© 2020 Cray, a Hewlett Packard Enterprise company

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21
error handling
delete-free programming x
class types and nilability x
initializers x
initialization, deinitialization & intents
package manager
modules and visibility x
Unicode strings
arrays and loop expressions
function overload resolution
override and overload set checking

2016 2017 2017 2018 2018 2019 2019 2020

serious defects unsolved problems partially solved mostly stable stable

Known Language Problems Over Time

13

© 2020 Cray, a Hewlett Packard Enterprise company

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21
error handling
delete-free programming x
class types and nilability x
initializers x
initialization, deinitialization & intents
package manager
modules and visibility x
Unicode strings
arrays and loop expressions
function overload resolution
override and overload set checking

2016 2017 2017 2018 2018 2019 2019 2020

serious defects unsolved problems partially solved mostly stable stable

Known Language Problems Over Time

14

• CHIP 20 described
"hijacking" scenarios

https://github.com/chapel-lang/chapel/blob/master/doc/rst/developer/chips/20.rst

© 2020 Cray, a Hewlett Packard Enterprise company

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21
error handling
delete-free programming x
class types and nilability x
initializers x
initialization, deinitialization & intents
package manager
modules and visibility x
Unicode strings
arrays and loop expressions
function overload resolution
override and overload set checking

2016 2017 2017 2018 2018 2019 2019 2020

serious defects unsolved problems partially solved mostly stable stable

Known Language Problems Over Time

15

• Users of new 'mason'
manager in 1.16
demonstrated problems with
module system

© 2020 Cray, a Hewlett Packard Enterprise company

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21
error handling
delete-free programming x
class types and nilability x
initializers x
initialization, deinitialization & intents
package manager
modules and visibility x
Unicode strings
arrays and loop expressions
function overload resolution
override and overload set checking

2016 2017 2017 2018 2018 2019 2019 2020

serious defects unsolved problems partially solved mostly stable stable

Known Language Problems Over Time

16

• Users of new 'mason'
manager in 1.16
demonstrated problems with
module system

© 2020 Cray, a Hewlett Packard Enterprise company

file hierarchy:
.

├── AB.chpl

├── A/

│ ├── A.chpl

│ └── Help.chpl

└── B/

├── B.chpl

└── Help.chpl

Module Issue Revealed by Mason

17

// AB.chpl
use A;

use B;

// A.chpl
use Help; // expecting A/Help.chpl

// B.chpl
use Help; // expecting B/Help.chpl

> chpl AB.chpl A/A.chpl B/B.chpl

warning: Ambiguous module source file
-- using A/C.chpl over B/C.chpl

• Module system needs to help distinguish local and global modules, somehow

© 2020 Cray, a Hewlett Packard Enterprise company

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21
error handling
delete-free programming x
class types and nilability x
initializers x
initialization, deinitialization & intents
package manager
modules and visibility x
Unicode strings
arrays and loop expressions
function overload resolution
override and overload set checking

2016 2017 2017 2018 2018 2019 2019 2020

serious defects unsolved problems partially solved mostly stable stable

Known Language Problems Over Time

18

© 2020 Cray, a Hewlett Packard Enterprise company

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21
error handling
delete-free programming x
class types and nilability x
initializers x
initialization, deinitialization & intents
package manager
modules and visibility x
Unicode strings
arrays and loop expressions
function overload resolution
override and overload set checking

2016 2017 2017 2018 2018 2019 2019 2020

serious defects unsolved problems partially solved mostly stable stable

Known Language Problems Over Time

19

© 2020 Cray, a Hewlett Packard Enterprise company

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21
error handling
delete-free programming x
class types and nilability x
initializers x
initialization, deinitialization & intents
package manager
modules and visibility x
Unicode strings
arrays and loop expressions
function overload resolution
override and overload set checking

2016 2017 2017 2018 2018 2019 2019 2020

serious defects unsolved problems partially solved mostly stable stable

Known Language Problems Over Time

20

• Big breaking
changes

• initializers
replace
constructors

• managed
class types

© 2020 Cray, a Hewlett Packard Enterprise company

record Point {

var x, y: real;

proc Point(x: real, y: real) {

this.x = x;

this.y = y;

}

}

var p = new Point(1.0, 2.0);

Initializers Replaced Constructors in 1.18

21

record Point {

var x, y: real;

proc init(x: real, y: real) {

this.x = x;

this.y = y;

}

}

var p = new Point(1.0, 2.0);

• Initializers significantly more robust and capable than constructors

© 2020 Cray, a Hewlett Packard Enterprise company

class C {

var x: int;

}

proc main() {

var instance = new C(1);

var tmp: C = instance;

delete instance;

}

Managed Class Types in 1.18

22

class C {

var x: int;

}

proc main() {

var instance = new owned C(1);

var tmp: borrowed C = instance;

// instance automatically deleted here
}

• Generally removed need for 'delete'
• Some memory errors are now caught at compile-time

© 2020 Cray, a Hewlett Packard Enterprise company

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21
error handling
delete-free programming x
class types and nilability x
initializers x
initialization, deinitialization & intents
package manager
modules and visibility x
Unicode strings
arrays and loop expressions
function overload resolution
override and overload set checking

2016 2017 2017 2018 2018 2019 2019 2020

serious defects unsolved problems partially solved mostly stable stable

Known Language Problems Over Time

23

© 2020 Cray, a Hewlett Packard Enterprise company

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21
error handling
delete-free programming x
class types and nilability x
initializers x
initialization, deinitialization & intents
package manager
modules and visibility x
Unicode strings
arrays and loop expressions
function overload resolution
override and overload set checking

2016 2017 2017 2018 2018 2019 2019 2020

serious defects unsolved problems partially solved mostly stable stable

Known Language Problems Over Time

24

• Errors are classes
• So class

changes
caused
problems for
error handling

© 2020 Cray, a Hewlett Packard Enterprise company

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21
error handling
delete-free programming x
class types and nilability x
initializers x
initialization, deinitialization & intents
package manager
modules and visibility x
Unicode strings
arrays and loop expressions
function overload resolution
override and overload set checking

2016 2017 2017 2018 2018 2019 2019 2020

serious defects unsolved problems partially solved mostly stable stable

Known Language Problems Over Time

25

• Errors are classes
• So class

changes
caused
problems for
error handling

© 2020 Cray, a Hewlett Packard Enterprise company

Error Handling Problem in 1.18

26

proc f() throws {

throw new InvalidArgumentError();

}

try {

f();

} catch e: InvalidArgumentError {

throw new WrappedError(e); // led to double-free

}

undecorated new is
'new borrowed'

and can't be returned?

if 'e' is a borrowed Error,
how can I transfer ownership?

© 2020 Cray, a Hewlett Packard Enterprise company

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21
error handling
delete-free programming x
class types and nilability x
initializers x
initialization, deinitialization & intents
package manager
modules and visibility x
Unicode strings
arrays and loop expressions
function overload resolution
override and overload set checking

2016 2017 2017 2018 2018 2019 2019 2020

serious defects unsolved problems partially solved mostly stable stable

Known Language Problems Over Time

27

© 2020 Cray, a Hewlett Packard Enterprise company

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21
error handling
delete-free programming x
class types and nilability x
initializers x
initialization, deinitialization & intents
package manager
modules and visibility x
Unicode strings
arrays and loop expressions
function overload resolution
override and overload set checking

2016 2017 2017 2018 2018 2019 2019 2020

serious defects unsolved problems partially solved mostly stable stable

Known Language Problems Over Time

28

© 2020 Cray, a Hewlett Packard Enterprise company

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21
error handling
delete-free programming x
class types and nilability x
initializers x
initialization, deinitialization & intents
package manager
modules and visibility x
Unicode strings
arrays and loop expressions
function overload resolution
override and overload set checking

2016 2017 2017 2018 2018 2019 2019 2020

serious defects unsolved problems partially solved mostly stable stable

Known Language Problems Over Time

29

© 2020 Cray, a Hewlett Packard Enterprise company

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21
error handling
delete-free programming x
class types and nilability x
initializers x
initialization, deinitialization & intents
package manager
modules and visibility x
Unicode strings
arrays and loop expressions
function overload resolution
override and overload set checking

2016 2017 2017 2018 2018 2019 2019 2020

serious defects unsolved problems partially solved mostly stable stable

Known Language Problems Over Time

30

• Big breaking change:
• Class types

cannot store 'nil'
by default

© 2020 Cray, a Hewlett Packard Enterprise company

class C {

var x: int;

}

var a: borrowed C = ...;

var b: borrowed C = nil; // now an error in 1.20
var c: borrowed C; // now an error in 1.20
a = nil; // now an error in 1.20

var bb: borrowed C? = nil; // OK in 1.20, C? is a nilable class type

Non-Nilable Class Types in 1.20

31

• Helps discover more errors at compile time and make safer code the default

© 2020 Cray, a Hewlett Packard Enterprise company

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21
error handling
delete-free programming x
class types and nilability x
initializers x
initialization, deinitialization & intents
package manager
modules and visibility x
Unicode strings
arrays and loop expressions
function overload resolution
override and overload set checking

2016 2017 2017 2018 2018 2019 2019 2020

serious defects unsolved problems partially solved mostly stable stable

Known Language Problems Over Time

32

© 2020 Cray, a Hewlett Packard Enterprise company

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21
error handling
delete-free programming x
class types and nilability x
initializers x
initialization, deinitialization & intents
package manager
modules and visibility x
Unicode strings
arrays and loop expressions
function overload resolution
override and overload set checking

2016 2017 2017 2018 2018 2019 2019 2020

serious defects unsolved problems partially solved mostly stable stable

Known Language Problems Over Time

33

• Non-nilable class
types cannot be
default initialized

• Non-nilable
owned cannot be
copy-initialized

© 2020 Cray, a Hewlett Packard Enterprise company

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21
error handling
delete-free programming x
class types and nilability x
initializers x
initialization, deinitialization & intents
package manager
modules and visibility x
Unicode strings
arrays and loop expressions
function overload resolution
override and overload set checking

2016 2017 2017 2018 2018 2019 2019 2020

serious defects unsolved problems partially solved mostly stable stable

Known Language Problems Over Time

34

• Non-nilable class
types cannot be
default initialized

• Non-nilable
owned cannot be
copy-initialized

© 2020 Cray, a Hewlett Packard Enterprise company

var x: owned MyClass;

try {

var arg = ...;

... lots of code setting arg ...

x = new MyClass(arg);

}

• Needed a way to write such patterns without needing nilable variables

Non-Nilable Initialization in 1.20

35

© 2020 Cray, a Hewlett Packard Enterprise company

var x: owned MyClass = new MyClass(1);

var y = x; // ownership transfer... now x stores 'nil'
// but x's type is not a nilable class type!

• Needed a way to address this type system gap
• preferably, without completely prohibiting such patterns

Non-Nilable Ownership Transfer in 1.20

36

© 2020 Cray, a Hewlett Packard Enterprise company

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21
error handling
delete-free programming x
class types and nilability x
initializers x
initialization, deinitialization & intents
package manager
modules and visibility x
Unicode strings
arrays and loop expressions
function overload resolution
override and overload set checking

2016 2017 2017 2018 2018 2019 2019 2020

serious defects unsolved problems partially solved mostly stable stable

Known Language Problems Over Time

37

© 2020 Cray, a Hewlett Packard Enterprise company

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21
error handling
delete-free programming x
class types and nilability x
initializers x
initialization, deinitialization & intents
package manager
modules and visibility x
Unicode strings
arrays and loop expressions
function overload resolution
override and overload set checking

2016 2017 2017 2018 2018 2019 2019 2020

serious defects unsolved problems partially solved mostly stable stable

Known Language Problems Over Time

38

© 2020 Cray, a Hewlett Packard Enterprise company

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21
error handling
delete-free programming x
class types and nilability x
initializers x
initialization, deinitialization & intents
package manager
modules and visibility x
Unicode strings
arrays and loop expressions
function overload resolution
override and overload set checking

2016 2017 2017 2018 2018 2019 2019 2020

serious defects unsolved problems partially solved mostly stable stable

Known Language Problems Over Time

39

• Breaking change:
• Module visibility is

much tighter

© 2020 Cray, a Hewlett Packard Enterprise company

• Import statements are new and support a more resilient coding style:
import MyModule;

writeln(MyModule.sym1); // Enabled by the 'import'
writeln(sym1); // Not enabled, won’t work

• 'use' statements are private by default
• 'use' and 'import' statements can request relative module paths

use this.Submodule; // Uses module defined within current module

use super.SiblingModule; // Uses module defined in parent module

• These improvements support mason packages
• by considering the possibility of module name collisions across packages

Module System Improvements

40

© 2020 Cray, a Hewlett Packard Enterprise company

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21
error handling
delete-free programming x
class types and nilability x
initializers x
initialization, deinitialization & intents
package manager
modules and visibility x
Unicode strings
arrays and loop expressions
function overload resolution
override and overload set checking

2016 2017 2017 2018 2018 2019 2019 2020

serious defects unsolved problems partially solved mostly stable stable

Known Language Problems Over Time

41

© 2020 Cray, a Hewlett Packard Enterprise company

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21
error handling
delete-free programming x
class types and nilability x
initializers x
initialization, deinitialization & intents
package manager
modules and visibility x
Unicode strings
arrays and loop expressions
function overload resolution
override and overload set checking

2016 2017 2017 2018 2018 2019 2019 2020

serious defects unsolved problems partially solved mostly stable stable

Known Language Problems Over Time

42

© 2020 Cray, a Hewlett Packard Enterprise company

• We polled Chapel users about switching to 0-based indexing
• Most said they would prefer it, if we were designing the language from scratch
• Most were not terribly concerned about updating their existing Chapel code
• Most expressed concern about the expected impact to other users

• After studying the impact on key codes, we decided to switch to 0-based
• Did so in a separate release - 1.22 - to make migrating code easier

• Change impacts many types: tuples, strings, bytes, array literals, lists, ...
var t = (1.2, 3.4); // t(1) was 1.2; it’s now 3.4, and t(0) is 1.2

0-based indexing

43

© 2020 Cray, a Hewlett Packard Enterprise company

• Language support for error handling
• Leak-free use of classes without needing to call 'delete'
• Classes that cannot store nil by default
• Robust class and record initializer support
• Language design that minimizes unnecessary copies and memory errors
• A package manager enabling the community to share libraries
• Support for Unicode strings
• Make the built-ins either 1-based or 0-based, not a mix of the two

Changes Requested by Users

44

© 2020 Cray, a Hewlett Packard Enterprise company

• Language support for error handling
• Leak-free use of classes without needing to call 'delete'
• Classes that cannot store nil by default
• Robust class and record initializer support
• Language design that minimizes unnecessary copies and memory errors
• A package manager enabling the community to share libraries
• Support for Unicode strings
• Make the built-ins either 1-based or 0-based, not a mix of the two

Changes Requested by Users

45

• Have not needed major changes to the unique features of Chapel:
• parallelism and distributed programming

© 2020 Cray, a Hewlett Packard Enterprise company

• Adding constrained generics
• Addressing problems with point-of-instantiation in function resolution
• Improving array initialization

• currently does default initialization + assignment instead of copy initialization

• Stabilizing the standard libraries

• The 1.21/1.22 release notes have much more detail
• about problems addressed in 1.21 to support language stability
• about areas not yet included in stabilization

Stabilization Next Steps

46

https://chapel-lang.org/releaseNotes/1.21/01-language.pdf

© 2020 Cray, a Hewlett Packard Enterprise company

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21
error handling
delete-free programming x
class types and nilability x
initializers x
initialization, deinitialization & intents
package manager
modules and visibility x
Unicode strings
arrays and loop expressions
function overload resolution
override and overload set checking

2016 2017 2017 2018 2018 2019 2019 2020

serious defects unsolved problems partially solved mostly stable stable

Questions?

47

© 2020 Cray, a Hewlett Packard Enterprise company

FORWARD LOOKING
STATEMENTS

48

This presentation may contain forward-looking statements that involve risks, uncertainties
and assumptions. If the risks or uncertainties ever materialize or the assumptions prove
incorrect, the results of Hewlett Packard Enterprise Company and its consolidated
subsidiaries ("Hewlett Packard Enterprise") may differ materially from those expressed or
implied by such forward-looking statements and assumptions. All statements other than
statements of historical fact are statements that could be deemed forward-looking
statements, including but not limited to any statements regarding the expected benefits and
costs of the transaction contemplated by this presentation; the expected timing of the
completion of the transaction; the ability of HPE, its subsidiaries and Cray to complete the
transaction considering the various conditions to the transaction, some of which are outside
the parties’ control, including those conditions related to regulatory approvals; projections of
revenue, margins, expenses, net earnings, net earnings per share, cash flows, or other
financial items; any statements concerning the expected development, performance, market
share or competitive performance relating to products or services; any statements regarding
current or future macroeconomic trends or events and the impact of those trends and events
on Hewlett Packard Enterprise and its financial performance; any statements of expectation
or belief; and any statements of assumptions underlying any of the foregoing. Risks,
uncertainties and assumptions include the possibility that expected benefits of the transaction
described in this presentation may not materialize as expected; that the transaction may not
be timely completed, if at all; that, prior to the completion of the transaction, Cray’s business
may not perform as expected due to transaction-related uncertainty or other factors; that the
parties are unable to successfully implement integration strategies; the need to address the
many challenges facing Hewlett Packard Enterprise's businesses; the competitive pressures
faced by Hewlett Packard Enterprise's businesses; risks associated with executing Hewlett
Packard Enterprise's strategy; the impact of macroeconomic and geopolitical trends and
events; the development and transition of new products and services and the enhancement
of existing products and services to meet customer needs and respond to emerging
technological trends; and other risks that are described in our Fiscal Year 2018 Annual
Report on Form 10-K, and that are otherwise described or updated from time to time in
Hewlett Packard Enterprise's other filings with the Securities and Exchange Commission,
including but not limited to our subsequent Quarterly Reports on Form 10-Q. Hewlett Packard
Enterprise assumes no obligation and does not intend to update these forward-looking
statements.

Q U E S T I O N S ?

@ChapelLanguage

chapel_info@cray.com

@cray_inc

linkedin.com/company/cray-inc-/

cray.com

THANK YOU

chapel-lang.org

