4 chapel_info@cray.com
@ chapel-lang.org
¥ @ChapelLanguage

a Hewlett Packard Enterprise company

What is Chapel? Sy

Chapel: A modern parallel programming language
» portable & scalable

» open-source & collaborative

Goals:

» Support general parallel programming

» Make parallel programming at scale far more productive

© 2020 Cray, a Hewlett Packard Enterprise company @; 2

What does “Productivity” mean to you? Smes

Recent Graduates:
“something similar to what | used in school: Python, Matlab, Java, ...”

Seasoned HPC Programmers:
“that sugary stuff that | don’t need because | was-borato-suffer”
want full control to ensure performance”
Computational Scientists:
“something that lets me focus on my science without having to wrestle with
architecture-specific details”

Chapel Team:
“something that lets computational scientists express what they want,
without taking away the control that HPC programmers want,
implemented in a language as attractive as recent graduates want.”

© 2020 Cray, a Hewlett Packard Enterprise company \: 3

Comparing Chapel to Other Languages SEea

Chapel aims to be as...
...programmable as Python
...fast as Fortran
...scalable as MPI, SHMEM, or UPC
...portable as C
...flexible as C++
...fun as [your favorite programming language]

© 2020 Cray, a Hewlett Packard Enterprise company

Why Consider New Languages at all? cERa

e High level, elegant syntax
Improve programmer productivity

Static analysis can help with correctness
We need a compiler (front-end)

If optimizations are needed to get

Performance RRLCCIC

We need a compiler (back-end)

) . [Source: Kathy Yelick,
Language defines what is easy and hard CHIUW 2018 keynote:

Influences algorithmic thinking Why Languages Matter
More Than Ever]

Algorithms

© 2020 Cray, a Hewlett Packard Enterprise company \/ 5

Outline

v

» Chapel and Productivity b
» A Brief Tour of Chapel Features

« Summary and Resources

© 2020 Cray, a Hewlett Packard Enterprise company

STREAM Triad: a trivial parallel computation

Given: m-element vectors A, B, C
Compute: Vi€ 1.m, A; = B; + a-C;

In pictures:

© 2020 Cray, a Hewlett Packard Enterprise company

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

STREAM Triad: a trivial parallel computation SRes

Given: m-element vectors A, B, C
Compute: Vi€ 1.m, A; = B; + a-C;

In pictures, in parallel (shared memory / multicore):

| | |
| | |
A
s T I T T IT T TTTTT]
+ I + I + I +
¢ O ITITC I T IITTT]
o[

© 2020 Cray, a Hewlett Packard Enterprise company - 8

STREAM Triad: a trivial parallel computation

Given: m-element vectors A, B, C
Compute: Vi€ 1.m, A; = B; + a-C;

In pictures, in parallel (distributed memory):
|

© 2020 Cray, a Hewlett Packard Enterprise company

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

STREAM Triad: a trivial parallel computation SRes

Given: m-element vectors A, B, C
Compute: Vi€ 1.m, A; = B; + a-C;

In pictures, in parallel (distributed memory multicore):
|

s (T T T T T T T T T T T
+ 7+ 01+ [+ 01 4+ +1 + | +

) .D.E.D.E.D.i .|:|.

© 2020 Cray, a Hewlett Packard Enterprise company - 10

STREAM Triad: C + MPI cSma

#include <hpcc.h> if (fa || 'b || 'c) |
if (c) HPCC free(c);
if (b) HPCC free(b);
if (a) HPCC free(a)

’

if (doIO) {
static int VectorSize; fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);
static double *a, *b, *c; fclose (outFile);
}
int HPCC StarStream(HPCC Params *params) { return 1;
int myRank, commSize; }
int rv, errCount;
MPI Comm comm = MPI COMM WORLD;
MPI Comm size(comm, &commSize);
MPI Comm rank(comm, &myRank); for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
rv = HPCC Stream(params, 0 == myRank); ci3] = 1.0;

MPI Reduce(&rv, &errCount, 1, MPI INT, MPI SUM, 0, comm); }
return errCount; scalar = 3.0;

}

int HPCC Stream(HPCC Params *params, int doIO) ({
register int j;

double scalar; for (j=0; j<VectorSize; Jj++)

alj]l = bljl+scalar*cl[j];
VectorSize = HPCC LocalVectorSize(params, 3, sizeof (double), 0);

- HPCC free(c);
HPCC free(b);

a = HPCC XMALLOC (double, VectorSize);
b = HPCC XMALLOC(double, VectorSize); HPCC_free(a);
c = HPCC_ XMALLOC (double, VectorSize);

return O;

© 2020 Cray, a Hewlett Packard Enterprise company - 11

STREAM Triad: C + MPI + OpenMP cSma

#include <hpcc.h> if (fa || 'b || 'c) |

#ifdef _OPENMP if (c) HPCC_free(c);

#include <omp.h> if (b) HPCC free(b);

#endif if (a) HPCC free(a);

if (doIO) {

static int VectorSize; fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);
static double *a, *b, *c; fclose(outFile);

int HPCC StarStream(HPCC Params *params) { ieturn 1;

int myRank, commSize; }
int rv, errCount;

MPI Comm comm = MPI COMM WORLD; #ifdef OPENMP
#pragma omp parallel for
MPI Comm size(comm, &commSize); #endif
MPI Comm rank(comm, &myRank); for (j=0; j<VectorSize; J++) {
blj] = 2.0;
rv = HPCC Stream(params, 0 == myRank); cl3] = 1.0;

MPI Reduce(&rv, &errCount, 1, MPI INT, MPI SUM, 0, comm); }

lar = 3.0;
return errCount; scala 3.0;

} #ifdef _OPENMP
int HPCC_Stream (HPCC Params *params, int doIO) { ig;Z??a omp parallel for
register int j;
dogble scalai- for (j=0; j<VectorSize; j++)
! alj] = b[jl+scalar*c[j];

VectorSize = HPCC LocalVectorSize(params, 3, sizeof (double), 0);
- HPCC free(c);

HPCC free(b);

a = HPCC XMALLOC (double, VectorSize);
b = HPCC XMALLOC(double, VectorSize); HPCC_free(a);
c = HPCC_ XMALLOC (double, VectorSize);

return O;

© 2020 Cray, a Hewlett Packard Enterprise company \ 12

STREAM Triad: Chapel cResr

use ..,

The special sauce:
How should this index

config const m = 1000,

alpha = 3.0;
set—and the arrays and

const ProblemSpace = {1..m}(dmapped ..; computations over it—be

mapped to the system?

var A, B, C: [ProblemSpace] real;

B = 2.
c=1

© 2020 Cray, a Hewlett Packard Enterprise company < 13

HPCC STREAM Triad: Chapel vs. C+MPI+OpenMP =245

STREAM Performance (GB/s)

30000 [~ - - <= ----s-mmem o e o e
Reference MPI+OpenMP —%¢—
25000 Chapel .19 == - = cmccccccccccnccnnncans

20000
15000
10000

5000

GB/s

Locales (x 36 cores / locale)

© 2020 Cray, a Hewlett Packard Enterprise company \’(}: 14

HPCC Random Access (RA) e

Data Structure: distributed table

|

Computation: update random table locations in parallel

Two variations:
* lossless: don't allow any updates to be lost
* lossy: permit some fraction of updates to be lost

© 2020 Cray, a Hewlett Packard Enterprise company 15

HPCC Random Access (RA) e

Data Structure: distributed table

|

Computation: update random table locations in parallel

Two variations:
=) « |lossless: don’t allow any updates to be lost ==

* lossy: permit some fraction of updates to be lost

© 2020 Cray, a Hewlett Packard Enterprise company 16

HPCC RA: MPI kernel

/* Perform updates to main table. The scalar equivalent is: } else {
* HPCC_InsertUpdate (Ran, WhichPe, Buckets);
* for (i=0; i<NUPDATE; i++) { pendingUpdates++;
* Ran = (Ran << 1) * (((s64Int) Ran < 0) ? POLY : 0); }
* Table[Ran & (TABSIZE-1)] = Ran; it+;
*)
% else {

MPI_Test (soutreq, s&have done, MPI_STATUS_IGNORE) ;
if (have_done) {
outreq = MPI_REQUEST_NULL;
pe = HPCC_GetUpdates (Buckets, LocalSendBuffer, localBufferSize,
speUpdates) ;
MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe,
UPDATE_TAG, MPI_COMM WORLD, &outreq);
pendingUpdates -= peUpdates;

MPI_Irecv(sLocalRecvBuffer, localBufferSize, tparams.dtype6d,
MPI_ANY SOURCE, MPI_ANY TAG, MPI_COMM WORLD, &inreq);
while (i < SendCnt) {
/* receive messages */
do {
MPI_Test (&inreq, &have_done, &status);
if (have_done) {
if (status.MPI_TAG == UPDATE_TAG) {)
MPI_Get_count (&status, tparams.dtype64, &recvUpdates);)
bufferBase = 0;)
for (j=0; j < recvUpdates; j ++) { /* send remaining updates in buckets */
inmsg = LocalRecvBuffer [bufferBase+j]; while (pendingUpdates > 0)
LocalOffset = (inmsg & (tparams.TableSize - 1)) - /* receive messages */
tparams.GlobalStartMyProc; do {
HPCC_Table[LocalOffset] "= inmsg; MPI_Test (s¢inreq, s&have_done, &status);
) if (have_done) (
} else if (status.MPI_TAG == FINISHED_TAG) f{ if (status.MPI_TAG == UPDATE_TAG) {
NumberReceiving--; MPI_Get_count (&status, tparams.dtype64, &recvUpdates);
} else bufferBase = 0;
MPI_Abort(MPI_COMM WORLD, -1); for (j=0; j < recvUpdates; j ++) {
MPI_Irecv(sLocalRecvBuffer, localBufferSize, tparams.dtype6d, inmsg = LocalRecvBuffer[bufferBase+j];
MPI_ANY SOURCE, MPI_ANY TAG, MPI_COMM WORLD, &inreq); LocalOffset = (inmsg & (tparams.TableSize - 1)) -
} tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] "= inmsg;

} while (have_done && NumberReceiving > 0);
if (pendingUpdates < maxPendingUpdates) { }

Ran = (Ran << 1) ((s64Int) Ran < ZERO64B ? POLY : ZEROG4B);) else if (status.MPI_TAG == FINISHED TAG) {
GlobalOffset = Ran & (tparams.TableSize-1); /* we got a done message. Thanks for playing... */
if (GlobalOffset < tparams.Top) NumberReceiving--;
WhichPe = (GlobalOffset / (tparams.MinLocalTableSize + 1));) else {
else MPI_Abort (MPI_COMM WORLD, -1);
WhichPe = ((GlobalOffset - tparams.Remainder) /)

tparams.MinLocalTableSize); MPI_Irecv(sLocalRecvBuffer, localBufferSize, tparams.dtype64,
{ MPI_ANY SOURCE, MPI_ANY TAG, MPI_COMM WORLD, &inreq);

if (WhichPe == tparams.MyProc)
LocalOffset = (Ran & (tparams.TableSize - 1)) -)
tparams.GlobalStartMyProc; } while (have done && NumberReceiving > 0);

HPCC_Table[LocalOffset] "= Ran;

© 2020 Cray, a Hewlett Packard Enterprise company

CRAaNY

a Hewlett Packard Enterprise company

MPI_Test (soutreq, &have done, MPI_STATUS_IGNORE) ;
if (have_done) {
outreq = MPI_REQUEST_NULL;
pe = HPCC_GetUpdates (Buckets, LocalSendBuffer, localBufferSize,
speUpdates) ;
MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe,
UPDATE_TAG, MPI_COMM WORLD, &outreq);
pendingUpdates -= peUpdates;

)
/* send our done messages */

for (proc_count = 0 ; proc_count < tparams.NumProcs ; ++proc_count) {
if (proc_count == tparams.MyProc) { tparams.finish_req[tparams.MyProc] =
MPI_REQUEST NULL; continue; }
/* send garbage - who cares, no one will look at it */

MPI_Isend(&Ran, 0, tparams.dtype6d, proc_count, FINISHED TAG,
MPI_COMM WORLD, tparams.finish_req + proc_count);
)
/* Finish everyone else up... */
while (NumberReceiving > 0) {
MPI_Wait (&inreq, &status);
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count (&status, tparams.dtype64, &recvUpdates);
bufferBase = 0;
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) -
tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] "= inmsg;
)

} else if (status.MPI_TAG == FINISHED_TAG) {
/* we got a done message. Thanks for playing... */
NumberReceiving--;

) else {

MPI_Abort (MPI_COMM WORLD, -1);

)
MPI_Irecv(sLocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY SOURCE, MPI_ANY TAG, MPI_COMM WORLD, &inreq);

MPI Waitall(tparams.NumProcs, tparams.finish req, tparams.finish statuses);

17

HPCC RA: MPI kernel comment vs. Chapel SReas

/* Perform updates to main table. The scalar equivalent is: C h a pel Ke rnel

* for (i=0; i<NUPDATE; i++) {

e g e =0 7 POLY 0 forall (, r) in zip(Updates, RAStream()) do
- _
! Tl[r & 1ndexMask].xor(r);

MPI Comment

Perform updates to main table. The scalar equivalent 1is:

for (1=0,; 1i<NUPDATE; i++) {
Ran = (Ran << 1) * (((s64Int) Ran < 0) 2 POLY : 0);
Table[Ran & (TABSIZE-1)] ”“= Ran;

% X o X X %

© 2020 Cray, a Hewlett Packard Enterprise company 18

HPCC RA: Chapel vs. C+MPI e

RA Performance (GUPS)

B e il

12 |- MPIC(E:EEIetIil.'\Ig‘;I """""""""""""""

IO - T
€ sfF
G ST i lior— el

4 b — — e e o

2 SV —x

0 1]]

16 32 64 128 256

Locales (x 36 cores / locale)

© 2020 Cray, a Hewlett Packard Enterprise company ‘:\:\ 19

HPCC RA: MPI vs. Chapel Sy

/* Perform updates to main table. The scalar equivalent is: C h a pel Ke rnel

* for (i=0; i<NUPDATE; i++) {

Tabitkan e (rABSE T < o O forall (, r) in zip(Updates, RAStream()) do
. _
Tl[r & 1ndexMask].xor(r);

© 2020 Cray, a Hewlett Packard Enterprise company L 20

HPCC RA: MPI vs. Chapel

else {

Lilodat Buckeis)

/* Perform updates to main table. The scalar equivalent is: }
B (Ban

ERCC Tos Lhichp
= for (i=0; i<NUPDATE; i++) {
* Ran = (Ran << 1) (((s64Int) Ran < 0) ? POLY : 0);

: Table[Ran & (TABSIZE-1)] = Ran; fo ra l l (_ 4 r)
! T[r & indexMask]

MPI_Irecv (sLocalRecvBuffer, localBufferSize, tparams.dty
MPI_ANY SOURCE, MPI_ANY TAG, MPI_COMM WORLD,

while (i < SendCnt) {

Chapel Kernel

)

in zip (Updates,
xor (r

7

CRANY

a Hewlett Packard Enterprise company

RAStream()) do

pe,

/* receive messages */ T ———
{ peUpdates, tparams.dtype64, (int)pe,

do MPI_Isend(&LocalSendBuffer,
MPI_Test (&inreq, &have_done, &status); UPDATE_TAG, MPI_COMM_WORLD, &outreq);
if (have_done) { pendingUpdates -= peUpdates;
if (status.MPI_TAG == UPDATE_TAG) {)
MPI_Get_count (&status, tparams.dtype6éd, &recvUpdates);)
bufferBase = 0;)
for j < recvUpdates; j ++) { /* send remaining updates in buckets Y
inmsg = LocalRecvBuffer [bufferBase+j]; while (pendingUpdates >
LocalOffset = (inmsg & (tparams.TableSize - 1)) /* receive messages */
tparams.GlobalStartMyProc; do {
HPCC_Table[LocalOffset] "= inmsg; MPI_Test (s¢inreq, s&have_done, &status);
) if (have_done) ({
} else if (status.MPI_TAG FINISHED_TAG) { if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count (&status, tparams.dtype64, &recvUpdates);
) bufferBase = 0;
_Abort (MPI_COMM_WORLD, -1); for (§=0; j < recvUpdates; j ++) {
MPI Irecv(uLocalRDcf'Buffer, localBufferSize, tparams.dtype64, inmsg = LocalRecvBuffer [bufferBase+]];
MPI_ANY SOURCE, MPI_ANY TAG, MPI_COMM WORLD, &inreq); LocalOffset = (inmsg & (TableSize - 1))
} 5.Glo] tartMyProc;
} while (have done && NumberReceiving > 0); HPCC_Table[LocalOffset] ~= inmsg;
if (pendingUpdates < maxPendingUpdates) { }
Ran = (Ran << 1) " ((s64Int) Ran < ZERO64B ? POLY : ZERO64B);)} else if (status.MPI_TAG == FINISHED TPG) {
GlobalOffset = Ran & (tparams.TableSize-1); /* we got a done message. Thanks for playing...
if (GlobalOffset < tparams.Top) NumberReceiving--;
WhichPe = (GlobalOffset / (tparams.MinLocalTableSize + 1));)} else {
else MPI_Abort (MPI_COMM WORLD, -1);
WhichPe = ((GlobalOffset - tparams.Remainde / }
tparams.MinLocalTableSize); MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,
if (WhichPe == tparams.MyProc) { MPI_ANY SOURCE, MPI_ANY TAG, MPI_COMM WORLD, &inreq);
LocalOffs (Ran & (tparams.TableSize - 1)))
tparams.GlobalStartMy } while ve_done && NumberReceiving > 0);

HPCC_Table[LocalOffset] "= Ran;

© 2020 Cray, a Hewlett Packard Enterprise company

T
/* send our done messages Y

for (proc_count = 0 ; proc_count < tparams.NumProcs ; ++proc_count) {
if (proc_count == ams.MyProc) { t s.finish_req[tparams.MyProc] =
MPI_REQUEST NULL; continue; }
/* send gar! - who cares, no one will look it %/

MPI_Isend(&Ran, 0, tparams.dtype64, FINISHED TAG,
MPI_COMM_WORLD, rams.finish_req + proc_count);

proc_count,

)
/* Finish everyone else up... */

while (NumberReceiving > 0) {
MPI_Wait (&inreq, &status);
if (status.MPI_TAG UPDATE_TAG) {
MPI_Get_count (&status, tparams.dtype64, &recvUpdates);
bufferBase 0;
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg & (t s.TableSize - 1))
tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] "= inmsg;
)
) else if (status.MPI_TAG == FINISHED TAG) {
/* we got a done message. Thanks for playing...
NumberReceiving--;
)} else {
MPI_Abort(MPI_COMM WORLD, -1);

)
MPI_Irecv (&Lo
MPI_ANY_ SOURCE,

localBufferSize, tparams.dtype6d,
MPI_COMM_WORLD, &inreq);

RecvBuffer,
MPI_ANY TAG,

MPI_Waitall(tparams.NumProcs, tparams.finish req, tparams.finish_statuses);

21

Why Consider New Languages at all? cRex

High level, elegant syntax
Improve programmer productivity

Syntax

Static analysis can help with correctness
We need a compiler (front-end)

Semantics

If optimizations are needed to get

Performance IGGGEE

We need a compiler (back-end)

) . [Source: Kathy Yelick,
Language defines what is easy and hard CHIUW 2018 keynote:

Influences algorithmic thinking Why Languages Matter
More Than Ever]

Algorithms

© 2020 Cray, a Hewlett Packard Enterprise company ‘\\, 22

HPC Patterns: Chapel vs. Reference

LCALS

NAS FT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

HPCC RA

Local loop kernels

Global Transposes

Global Random
Updates

Embarrassing/Pleasing
Parallelism

Bucket-Exchange
Pattern

Stencil Boundary
Exchanges

STREAM Triad

© 2020 Cray, a Hewlett Packard Enterprise company

|Sx

PRK Stencil

23

HPC Patterns: Chapel vs. Reference

LCALS

NAS FT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

HPCC RA

Local loop kernels

Global Transposes

Global Random
Updates

Embarrassing/Pleasing
Parallelism

Bucket-Exchange
Pattern

Stencil Boundary
Exchanges

STREAM Triad

© 2020 Cray, a Hewlett Packard Enterprise company

|Sx

PRK Stencil

24

HPC Patterns: Chapel vs. Reference Sma

a Hewlett Packard Enterprise company

LCALS NAS FT HPCC RA

LCALS: Chapel vs. Reference Smas NAS FT: Chapel vs. UPC vs. MPI Smas HPCC RA: Chapel vs. C+MPI Smas
Serial Kernels (long) NPB-FT (Size E) Performance
3 RA Performance (GUPS)
Chapel 1.19 —+—
MPI (bucketing) —*—
@
Q 3
(=} a
o 3
1 1
16 64 128 256 512 1632 64 128 256
= Nomalized orefaronco rof mNommalzed 7 Locales (x 36 cores / locale) Locales (x 36 cores / locale)
HPCC STREAM Triad: Chapel vs. Reference Sma ISx: Chapel vs. Reference sma PRK Stencil: Chapel vs. Reference e

STREAM Performance (GBs) 15x Time (seconds)

PRK Stencil Performance (Gflop/s)

GBls
Time (sec)
Gflopls

il L L s
16 32 64 128 256
Locales (x 36 cores / locale)

16 3 64 128 256

16 32 64 128 256

Locales (x 36 cores / locale)

STREAM Triad

© 2020 Cray, a Hewlett Packard Enterprise company

Locales (x 36 cores / locale)

-

|Sx More on Chapel performance online at: PRK Stencil

https://chapel-lang.org/performance.html

W

25

https://chapel-lang.org/performance.html

Notable Applications of Chapel i

CHAMPS: 3D Computational Fluid
Dynamics

Simon Bourgault-Coté, Matthieu
Parenteau, et al.

Ecole Polytechnique Montréal

ChplUltra: Simulating Ultralight

5? 1 Dark Matter
a e Nikhil Padmanabhan et al.

Yale University

%/ CHGL: Chapel Hypergraph Library
Jesun Firoz, Cliff Joslyn, et al.

Pacific PNNL

Arkouda: NumPy at Massive Scale
Mike Merrill, Bill Reus, et al.

Northwest US DOD
ChOp: Chapel-based Optimization CrayAl: Distributed Machine Learning
h%_ Tiago Carneiro, Nouredine Melab, et al. &=FRAX" Cray, a Hewlett Packard Enterprise
INRIA Lille, France Company

For more information, see: https://chapel-lang.org/poweredby.html

© 2020 Cray, a Hewlett Packard Enterprise company 26

https://chapel-lang.org/poweredby.html

A Brief Tour of
Chapel Features

© 2020 Cray, a Hewlett Packard Enterprise company

Chapel Feature Areas

© 2020 Cray, a Hewlett Packard Enterprise company

Chapel language concepts

Domain Maps

Task Parallelism
Base Language
Locality Control

Target Machine

a Hewlett Packard Enterprise company

28

Base Language e

C Domain Maps
Data Parallelism
Task Parallelism

b4 Base Language
Locality Control

Lower-level Chapel

Target Machine

© 2020 Cray, a Hewlett Packard Enterprise company L 29

Base Language Features, by example e

iter fib(n) { config const n = 10;
var current = 0,
next = 1; for £ in fib(n) do

writeln (£f) ;

for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example

Configurable declarations

(support command-line overrides)

./fib --n=1000000

iter fib(n) {
var current =
next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

’ -
config const n

for £ in fib(n)
writeln (£f) ;

10;

do

a Hewlett Packard Enterprise company

Base Language Features, by example e

iter fib(n) { onfig const n = 10;

var current = 0,
next = 1; for f in fib(n) do

writeln (£f) ;

for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example e

Static type inference for:

* arguments
* return types
» variables

iter fib(n)' \ config cénst n = 10;
var current = 0,
next = 1; for f ‘in fib(n) do
writeln (£f) ;

for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example e

Explicit types also
supported

iter fib(nﬂ nt)f\int (| config const ng int = 10;

var current: int = O,
next: int = 1; for £ in fib(n) do

writeln (£f) ;

for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example e

iter fib(n) { config const n = 10;
var current = 0,
next = 1; for £ in fib(n) do

writeln (£f) ;

for i in 1..n {
yield current;
current += next;
current <=> next;

iter fib(n) {
var current = 0O,
next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example

Zippered iteration

config const n =[10;
for (i,f) in zip(0..<n, fib(n)) do
writeln("fib #", i, " is ", f);

a Hewlett Packard Enterprise company

iter fib(n) {
var current = A0,
next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example

Range types and

operators

config const n =

for (i,f)
writeln ("fib #",

1\3;

in zip (0. .<n,

i,

a Hewlett Packard Enterprise company

Base Language Features, by example e

iter fib(n) { config const n = 10;
var current = 0,
next = 1; for (i,f) in zip(0..<n, fib(n)) do
writeln("fib #", i, " is ", f);

for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example e

iter fib(n) { config const n = 10;
var current = 0,
next = 1; for (i,f) in zip(0..<n, fib(n)) do
writeln (, 1, , f);

for i in 1..n {
yield current;
current += next;
current <=> next;

Other Base Language Features =

* Object-oriented programming (value- and reference-based)
» Managed objects and lifetime checking
 Nilable vs. non-nilable class variables

* Generic programming / polymorphism

* Error-handling

« Compile-time meta-programming

* Modules (supporting namespaces)

* Procedure overloading / filtering

« Arguments: default values, intents, name-based matching, type queries
« and more...

© 2020 Cray, a Hewlett Packard Enterprise company ‘\\, 40

Task Parallelism and Locality Control e

C Domain Maps D
Data Parallelism
b J Task Parallelism
Base Language

b md Locality Control

Target Machine

© 2020 Cray, a Hewlett Packard Enterprise company « 41

Locales in Chapel Sy

» Locales can run tasks and store variables
* Think “compute node”
* Number of locales specified on executable’s command-line

> ./myProgram --numLocales=4 # or "-nl 4°
Locales:
Iocale\ locale locale locale
0 1 2 3

User’s main() executes on locale #0

© 2020 Cray, a Hewlett Packard Enterprise company - 42

Task Parallelism and Locality, by example e

taskParallel.chpl

const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %$n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl
prompt> ./taskParallel
Hello from task 2 of 2 running on nl032

Hello from task 1 of 2 running on nl032

a Hewlett Packard Enterprise company

Task Parallelism and Locality, by example cRay

taskParallel.chpl

const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do

Abstraction of

System Resources
itef ("Hello from task %n of %$n "+

on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl
prompt> ./taskParallel
Hello from task 2 of 2 running on nl032

Hello from task 1 of 2 running on nl032

© 2020 Cray, a Hewlett Packard Enterprise company

44

Task Parallelism and Locality, by example e

High-Level

taskParallel.chpl

Task Parallelism

const numTasks = here.numPUs () ;

\\\"coforall tid in 1..numTasks do

writef ("Hello from task %$n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl
prompt> ./taskParallel
Hello from task 2 of 2 running on nl032

Hello from task 1 of 2 running on nl032

© 2020 Cray, a Hewlett Packard Enterprise company

45

a Hewlett Packard Enterprise company

Task Parallelism and Locality, by example SR

taskParallel.chpl

const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do

So far, this is a shared memory program

writef ("Hello from task %$n of %n "+
Nothing refers to remote locales,

explicitly or implicitly

"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl
prompt> ./taskParallel
Hello from task 2 of 2 running on nl032

Hello from task 1 of 2 running on nl032

© 2020 Cray, a Hewlett Packard Enterprise company

46

Task Parallelism and Locality, by example e

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %$n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl

prompt> ./taskParallel --numLocales=2

Hello from task 1 of 2 running on nl033
Hello from task 2 of 2 running on nl032
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2 running on nl032

Task Parallelism and Locality, by example

Abstraction of

System Resources

taskParallel.chpl

coforall loc in Locales do

on loc
const numTasks =

coforall tid in 1..numTasks
writef ("Hello from task
"running on %s\n",

tid, numTasks,

here.numPUs () ;

do

sn of

sn

here.name) ;

”+

prompt> chpl taskParallel.chpl

./taskParallel --numLocales=2
task 1 of 2 nl0
task 2 of 2 nl0
task 2 of 2 nl0
task 1 of 2 nl0

prompt>
Hello
Hello
Hello
Hello

from running on

from running on
from running on

from running on

33
32
33
32

a Hewlett Packard Enterprise company

Task Parallelism and Locality, by example

High-Level
Task Parallelism

taskParallel.chpl

-coforall loc in Locales do

on loc {
const numTasks =
coforall tid in 1..numTasks
writef ("Hello from task
"running on %s\n",

tid, numTasks,

here.numPUs () ;

do

sn of

SN

here.name) ;

”+

prompt> chpl taskParallel.chpl

./taskParallel --numLocales=2
task 1 of 2 nl0
task 2 of 2 nl0
task 2 of 2 nl0
task 1 of 2 nl0

prompt>
Hello
Hello
Hello
Hello

from running on

from running on
from running on

from running on

33
32
33
32

a Hewlett Packard Enterprise company

Task Parallelism and Locality, by example

Control of Locality/Affinity

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks =
coforall tid in 1..numTasks
writef ("Hello from task
"running on %s\n",

tid, numTasks,

here.numPUs () ;

do

sn of

SN

here.name) ;

”+

prompt> chpl taskParallel.chpl

./taskParallel --numLocales=2
task 1 of 2 nl0
task 2 of 2 nl0
task 2 of 2 nl0
task 1 of 2 nl0

prompt>
Hello
Hello
Hello
Hello

from running on

from running on

from running on

from running on

33
32
33
32

a Hewlett Packard Enterprise company

Task Parallelism and Locality, by example e

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %$n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl

prompt> ./taskParallel --numLocales=2

Hello from task 1 of 2 running on nl033
Hello from task 2 of 2 running on nl032
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2 running on nl032

Other Task Parallel Features cRa

* begin / cobegin statements: other ways of creating tasks
« atomic / synchronized variables: for sharing data & coordination
- task intents / task-private variables: ways of having tasks refer to variables

© 2020 Cray, a Hewlett Packard Enterprise company ‘\\, 52

Data Parallelism in Chapel Smea

Chapel language concepts

C Domain Maps
D Higher-level
Task Parallelism Chapel

Base Language
Locality Control

Target Machine

© 2020 Cray, a Hewlett Packard Enterprise company \/ 53

Data Parallelism, by example e

dataParallel.chpl

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do
Afi,j] =i + (J - 0.5)/n;

writeln (2) ;

prompt> chpl dataParallel.chpl
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

2
3.
4
5

1 2.7
.1 3.7
.1 4.7
1 5.7

Data Parallelism, by example Smeas

Domains (Index Sets) dataParallel.chpl

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do
Afi,j] =i + (J - 0.5)/n;

writeln (2) ;

prompt> chpl dataParallel.chpl
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

2.7
3.7
4.7
5.7

12
.1 3.
.1 4.
15

Data Parallelism, by example e

dataParallel.chpl

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

Ali,J] =1 4+ (J - 0.5)/n;
writeln (2) ;

prompt> chpl dataParallel.chpl
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

2
3.
4
5

1 2.7
.1 3.7
.1 4.7

1 5.7

Data Parallelism, by example Smeas

dataParallel.chpl

config const n = 1000;
var D = {1..n, 1..n};

Data-Parallel Forall Loops

var A: [D] real;
forall (i,j) in D do
Afi,j] =i + (J - 0.5)/n;

writeln (2) ;

prompt> chpl dataParallel.chpl
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

12
.1 3.
1 4
15

2.7
3.7
4.7
5.7

Data Parallelism, by example e

dataParallel.chpl

config const n = 1000;

var D = {1..n, 1..n};
So far, this is a shared memory program o Ay (D] racetls
Nothing refers to remote locales, forall (i,3j) in D do
explicitly or implicitly Ali,j] =i+ (3 - 0.5)/n;

writeln (2) ;

prompt> chpl dataParallel.chpl
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

12
.1 3.
1 4
15

2.7
3.7
4.7
5.7

Distributed Data Parallelism, by example

Domain Maps
(Map Data Parallelism to the System)

dataParallel.chpl

use CyclicDist;
config const n = 1000;

forall (i,j) in D do
(J - 0.5)/n;

var D = {l1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1));
va : [D] real;

prompt> chpl dataParallel.chpl
prompt> ./dataParallel --n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2
3.
4
5

1 2.7
.1 3.7
.1 4.7

1 5.7

a Hewlett Packard Enterprise company

Distributed Data Parallelism, by example Smeas

dataParallel.chpl

use CyclicDist;
config const n = 1000;
var D = {l1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1));
var A: [D] real;
forall (i,j) in D do
Afi,j]1 =i+ (3 - 0.5)/n;

writeln (2) ;

prompt> chpl dataParallel.chpl
prompt> ./dataParallel --n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2
3.
4
5

1 2.7
.1 3.7
.1 4.7

1 5.7

Other Data Parallel Features cRasy

Parallel Iterators and Zippering

Slicing: refer to subarrays using ranges / domains

Promotion: execute scalar functions in parallel using array arguments

Reductions: collapse arrays to scalars or subarrays
« Scans: parallel prefix operations

“steve”
« Several Domain/Array Types: | [“lee”
| |“sung”
u o) o o] D I O TLTTTTTTTT _“daVid"
ul o o o o O :IIIIII:==:=_I _“jacob”
b 000 oo oo | |“albert’
b o o o 8@ - | |“brad”

dense strided sparse associative

© 2020 Cray, a Hewlett Packard Enterprise company \/ 61

Summary and
Resources

© 2020 Cray, a Hewlett Packard Enterprise company

Summary Smes

Chapel cleanly and orthogonally supports...
...expression of parallelism and locality
...specifying how to map computations to the system

Chapel is powerful:
* supports succinct, straightforward code
« can result in performance that competes with (or beats) C+MPI+OpenMP

Chapel is attractive to computational scientists and Python programmers

© 2020 Cray, a Hewlett Packard Enterprise company 63

Chapel Homepage

https://chapel-lang.orqg

e downloads

e presentations
papers
resources

e documentation

© 2020 Cray, a Hewlett Packard Enterprise company

[
CHAPEL

What is Chapel?
What's New?

Upcoming Events
Job Opportunities

How Can | Learn Chapel?
Contributing to Chapel

Download Chapel
Try Chapel Online

Documentation
Release Notes

Performance
Powered by Chapel

User Resources
Developer Resources

Social Media / Blog Posts
Pre:

Presentations
Papers / Publications

CHIUW
CHUG

Contributors / Credits

chapel_info@cray.com

(PR] T10)
vyEiEHDO

The Chapel Parallel Programm

Language

What is Chapel?

Chapel is a programming language designed for productive parallel computing at scale,
Why Chapel? Because it simplifies parallel programming through elegant support for:

« distributed arrays that can leverage thousands of nodes' memories and cores

« a global namespace supporting direct access to local or remote variables

« data parallelism to trivially use the cores of a laptop, cluster, or supercomputer
« task parallelism to create concurrency within a node or across the system

Chapel Characteristics

« productive: code tends to be similarly readable/writable as Python
« scalable: runs on laptops, clusters, the cloud, and HPC systems

« fast: performance competes with or beats C/C++ & MPI & OpenMP
« portable: compiles and runs in virtually any *nix environment

* open-source: hosted on GitHub, permissively licensed

New to Chapel?

As an introduction to Chapel, you may want to...

watch an overview talk or browse its slides

read a blog-length or chapter-length introduction to Chapel
learn about projects powered by Chapel

check out performance highlights like these:

PRK Stoncil Perormance (Gop's) NPB.FT Performance (Gop's)

Gop's
Gop's

Locales (x 36 cores / locale) Locales (x 36 cores / kocale)

* browse sample programs or learn how to write distributed programs like this one:

use CyclicDist; // use the Cyclic distribution Library
config const n = 100; // use --n=<val> when executing to override this default

forall i in {1..n) dmapped Cyclic(startIdx=1) do
writeln(*Hello from iteration ", i, * of ", n, " running on node

, here.id);

CRANY

a Hewlett Packard Enterprise company

64

https://chapel-lang.org/

Chapel Documentation i

https://chapel-lang.org/docs: ~270 pages, including primer examples

Chapel Documentation

Docs » Chapel Documentation View page source

version1.22 v

Chapel Documentation

Compiling and Running Chapel

Quickstar

Using Chape Quickstart Instructions

Using Chapel # Chapel Documentation

Platform-Specific Notes

Docs » Using Chapel View page source

al Nc Platform-Specific Notes 1BV

Technical Notes

Tools

Using Chapel

Using Chapel » chgl View

Writing Chapel Programs

Quick Reference Contents:

chpl
SYNOPSIS

Hello World Variants B Using Chapel

Quick Reference
Hello World Variants
Primers

Language Specification

Chapel Prere
Chapel Prerequisites « Setting up Your Environment for Chag
Building Chapel

Compiling Chapel Programs
Chapel Man Page

ites

Primers

Lan chol -0} [~no-checks| |-fast]

[~savec directory]

Setting up Your Environment for
Chapel

unctions Buiding Chapel :
ilt-i i Setting up Your Enviscnment for [-M divectory..] [-main-module mod)
« Built-in Types and Functions R « Executing Chapel Programs Ot [-o0 cutsée] [options] source-fles.
« Standard Modules et Sl L « Multilocale Chapel Execution Buiding Cupel
Pac « Padkage Modules Chapel Man Page « Chapel Launchers Cerrpling Chagel Programs DESC ON
Standard « Standard Layouts and Distributions Executing Chapel Programs « Chapel Tas! 9 Ohapel Man Page RIPTI
« Chapel Users Guide (WIP) Multilocale Chapel Execution « Debugging Chapel Programs B The chpl command kvokes the Chapel compiler. chpl converts one o more Chapel source files Into

Chape s Guide (WIP) « Reporting Chapel Issues escuPmoN 20 exncutable. it doss this by compiing Chapel code to C99 code and then invoking the tarpet

Chapel Launchers SOURCE FILES platform’s € compller to create the exscutable. However, most users wil not need to be aware of
Language History Chapel Tasks omoes the use of C a5 an intermedate format during campilaticn
© Previous

Debugging Chapel Programs e SOURCE FILES

Chapel Evolution Bucs

« Chapel Evolution Reporting Chapel Issues NI

Crapel recognizes four source fle types: chpl, <. h, and 0.

Documentation Archives .
L entat « Documentation Archives

Copyright 2

© 2020 Cray, a Hewlett Packard Enterprise company \/ 65

https://chapel-lang.org/docs

Chapel Social Media (no account required

http://twitter.com/ChapelLanquage

© 2020 Cray, a Hewlett Packard Enterprise company

facebook

Chapel Language

@ChapelLanguage

A productive parallel programming language designed to scale fr

supercomputers whose development is being led by @HPE (former| Chapel
Programming . -

& chapel-lang.org Joined February 2016 Language _’*“'” ieu-omm
SChapeiLangusge | memtas

97 Following 456 Followers toms S| [0 [
Posts

Tweets Tweets & replies Media || V* Posts
Eioke rogramming Language a8
About 6 AM - O
Pinned Tweet Community CHIUW 2020, the 7th annual Chapel Implemanters and Users
7= Chapel Language @ChapelLanguage - 4h s Toa orentwill b fre sl ooen o ryore who & teested 1t
_., We'rejustaweek away from CHIUW 2020, representing t| == ""Td,"':,:: T:::u.‘;‘j\:;';:‘mw

CHIUW 2020

R The Chapel Parallel Programming Language
((oma
©

The 7th Ansuat
Chapel Implementers and Users Workshop
Miated wen $OPS 2020

1 1POPS

CRANY

a Hewlett Packard Enterprise company

o> L] a
Chapel Parallel Programming Language “
PuavLSTS CHanneLs AsouT Q
FEATURED CHANNELS
2 AW Traniog.
Chapel Comes of Age: 8 Language for Productivity, Pacalielism, and suesceE
Performance

http://facebook.Com/C'hapeILanqu

=
("::,/

43 HPChow - 592 views - 3 mah g0

Bend Chamberian (Croy

CHIUW 2017 keynote: Chapel's Home in the New Landscape of
Scientific Frameworks, Jonathan Dursi

Chape Parael Programeming Language - 529 views - 2 pears 390

Thva s Jomathan Dursf heynete 1t b CHUW 2017. he 483 Aerassl Chagel brglementers s
Users Werkihop The sides are seadable st ezpe /s gt < CHUWIO1 T/ (e 30 echecal d

The Audacity of Chapet: Scalable Paraliel Programming Dore Right -
ul

https://www.youtube.com/channel/UCHmMmM27bYjhknKEmU7ZzPGsQ/

66

http://twitter.com/ChapelLanguage
http://facebook.com/ChapelLanguage
https://www.youtube.com/channel/UCHmm27bYjhknK5mU7ZzPGsQ/

Chapel Community

:\\\ Questions Developer Jobs Tags Users [chapel)

Tagged Questions ‘ own g veles

Chapel is a portable, open-source parallel programming language. Use this tag to ask questions about the Chapel
language of its implementation.

Leam more. mprove tag info Top users Synonyms.
6 Tuple Concatenation in Chapel
votes Let's say I'm generating tuples and | want to concatenate them as they come. How do | do this? The following

does element-wise addiion: If s = (00", "cat’), t = ("bar", “dog") 15 += t gives ts =
E fuples concatenation addtion hpc chapel asked Jan 2

Is there a way to use non-scalar values in functions with where clauses in Chapel?

T've boen trying cut Chapel off and on over the past year of 50. | have used C and C++ briefly in the past, but
most of my experience is with dynamic languages such as Python, Ruby, and Eriang more

chapel
6 Is there any writef() format specifier for a bool?
haaaad 1 looked at the writed() documentasion for any bool specifier and there Gidn't seem 10 be any. In a Chapel

program | have: ... config const verify = false; /* that works but | want o use writef()
g Sepe. .

i vme
140

https://stackoverflow.com/questions/tagged/chapel

questions tagged

chapel-lang / chapel

Code @ssves 292 Pull requests 26 Projects © Settings Insights «
Filters + iscissue is:open Labels Milestones
@ 2020pen v 77 Closed Author « Labels « Projects « Milestones «
0 a2 forall" for remote coforalls aea: Complier
type: Performance

oened 13 hous 390 by ronsmho
processor atomics for remote coforalls EndCount aees: Compiler
urs 990 by rosawho ¥ 0 of &

make uninstall ares BTR type: Feature Reguest

make check doesn't work with ./configure ame 8TR

#6352 cpened 16 hours ag b

Passing variable via in intent to a forall loop seems to create an iteration-private variable,
nOt a task-private one aees: Compiler [EpetBNg
openad a day ago by cassels

Remove chpl_comm_make_progress area: Runtime sasy [fypes Design

ered 3 o

10 by sungeunchsi

Runtime error after make on Linux Mint ameai8TR user issve

#6348 opaned 3 day 850 by daningians

http

s://qithub.com/chapel-lang/chapel/issues

Where
communities
thrive

NPy
ok coummar

Youn cwn CommumITY

CRANY

a Hewlett Packard Enterprise company

chapel-lang/chapel chapel programming language | Peak developer hours are 0600-1700 PT

Brian Dolan @buddha3ld
what is the syntax for making a copy (not a reference) to an array?

Michael Ferguson @mppf
like in a new variable?

Brian Dolan uddhalle
oh, got ¢, thanks!

Michael Ferguson f

Brian Dolan @buddha
isn'ttherea proc f(ret arr) {} aswell?

Michael Ferguson @mppf
yes. The default intent for array is ‘ref’ or ‘const ref” depending on if the function body modifies
it. So that's effectively the default.

Brian Dolan g
thanks!

https://qitter.im/chapel-lang/chapel

read-only mailing list: chapel-announce@lists.sourceforge.net (~15 mails / year

© 2020 Cray, a Hewlett Packard Enterprise company

67

https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues
https://gitter.im/chapel-lang/chapel

Suggested Reading: Historical Overview e a

Chapel chapter from Programming Models for Parallel Computing

» a detailed overview of Chapel’s history, motivating themes, features
 published by MIT Press, November 2015
« edited by Pavan Balaji (Argonne)

» chapter is also available online

epiTep By PAVAN BALAJ

© 2020 Cray, a Hewlett Packard Enterprise company { 68

https://mitpress.mit.edu/books/programming-models-parallel-computing
https://chapel-lang.org/publications/PMfPC-Chapel.pdf

Suggested Rea

ding: Mid-project Progress (o13-201s)

Chapel Comes of Age: Making S

Mml_mm Ronaghan, Ben Albrecht, Lydia Duncan, Michael Ferguson,
Ben Harshbarger, David lten, David Keaton, Vassily Litvinov, Prestoa Sahabe, and Greg Titus
Chapel Team

i the sease that when you have a parallel algorithm in mind
and a panallel system oa which you wish 1o run i, Chagel
should be able 10 handie that

clusters to Cray systems. In addition, Chapel programs can
be run oa closd-computisg plaforms and HPC sysiems
from oeher vendors. Chape! s being developed in an opes-
source manner under the Apache 2.0 licease and is hosted
0 GitHoh.!

herpr i b comhapet-targctapel

The development of the Chapel limguage was undertaken
by Cray Inc. as part of its pasticipation in the DARPA High
Productivity Computing Systems program (HPCS). HPCS
wrapped up in late 2012, at which poist Chapel was a com-
pelling peotoeype, having seccessfully demonstraed several
key research challenges that the project had undertaken.
Chief among these was supporting data- and task-paralielism
in & unified manner within a sisgle language. This was
upporting the creation of high-level data-

1 abstractions like pasallel loops and arrays is terms
of lower-level Chapel features such as classes, iterators, and
tasks.

Under HPCS, Chape! also successfully supported the ex-
pression of parallelism using distinct language features from
those wsed 10 control locality and afisity—that s, Chapel
programmers specify which computations should run in
paraliel distisctly from specifying where those computatioes
should be run. This permits Chapel programs to sepport
multicore, multi-node, and beterogencows computisg within
a single unified langeage.

Chapel’s implemestation under HPCS demonstrased that
the language could be implementad portably while still being.
cptimized for HPC-specific featares such as the RDMA
support. available in Cray® Gemini™ and Aries™ net
woeks. This aliows Chapel 10 tske advantage of native
bardware support for remote puts, gets, and atomic memory

cperations,
Despite these saccesses, a the close of HPCS, Chapel was
0t at all ready 10 support production codes in the field. This
was 2ot surprising given the language's aggressive design
and modest-sized rescarch team. However, reactions from
potential users were sufficiently positive that, is early 2013,
Cray embarked on a follow-ep effort 10 improve Chapel
and move it towards being a peoduction-ready language.
Colloquially, we refer 10 this effort as “the five-year push.”
This papee’s costribetion is to describe the results of this
five-year effort, providing readers with an understanding of
Chapel's progress and achievemests since the end of the
HPCS program. In doing s0, we directly compare the statis
of Chapel version 1.17, released last moath, with
version 1.7, which was released five years ago i Apeil 2013,

CRANY

a Hewlett Packard Enterprise company

available at chapel-lang.org

Chapel Comes of Age: Y
 Productive Parallelism at Scale @-.:SET_
CUG 2018 =/
Brad Chamberlain, Chapel Team, Cray Inc.

© 2020 Cray, a Hewlett Packard Enterprise company

[/ ‘\) 69

https://chapel-lang.org/publications/cug2018-chapel.pdf
https://chapel-lang.org/publications/ChapelForCUG2018.pdf

Suggested Reading: The Very Latest s e

» Chapel release notes: https://chapel-lang.org/releaseNotes.html

N The Chapel Parallel Programming Language
@.::ez

=/
: Release Notes

The following are the detailed release notes for Chapel 1.21 / 1.22:

Home

Language Improvements

Library Improvements

Interoperability Improvements

Benchmarks and Performance Optimizations
User Application Optimizations

Ongoing Efforts

Proposed Priorities for Chapel 1.23

What is Chapel?
What's New?

Upcoming Events
Job Opportunities

How Can | Learn Chapel?
Contributing to Chapel

Download Chapel : . .
Try Chapel Online For further information, you may also want to refer to the CHANGES.md file.
Documentation

Release Notes

Archived Release Notes (for previous releases)

Performance

© 2020 Cray, a Hewlett Packard Enterprise company

https://chapel-lang.org/releaseNotes.html

Summary Smes

Chapel cleanly and orthogonally supports...
...expression of parallelism and locality
...specifying how to map computations to the system

Chapel is powerful:
* supports succinct, straightforward code
« can result in performance that competes with (or beats) C+MPI+OpenMP

Chapel is attractive to computational scientists and Python programmers

© 2020 Cray, a Hewlett Packard Enterprise company 71

iy

L.

SAFE HARBOR o g
STATEMENT

This presentation may contain forward-looking
statements that are based on our current
expectations. Forward looking statements may
include statements about our financial
guidance and expected operating results, our
opportunities and future potential, our product
development and new product introduction
plans, our ability to expand and penetrate our
addressable markets and other statements
that are not historical facts.

These statements are only predictions and
actual results may materially vary from those
projected. Please refer to Cray's documents
filed with the SEC from time to time
concerning factors that could affect the
Company and these forward-looking
statements.

© 2020 Cray, a Hewlett Packard Enterprise company

1apel-lang.

QUESTIONS?

cray.com

@cray_inc

linkedin.com/company/cray-inc-/

5 ¢

