
Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Exploring Chapel Productivity
Using Some Graph Algorithms

Chape l Implementors and Users Workshop 2020

May 22 , 2020
SAND 2020 – 5317 C

R ic ha rd Bar re t t

Team

Omar Aaziz : node performance analysis

Richard Barrett : application development

Jeanine Cook : node performance analysis

Chris Jenkins : architecture

Stephen Oliver : runtime systems

Courtenay Vaughan : distributed memory performance analysis

Overview

Investigating Chapel performance for some linear algebra based graph analytics

Compute hitting time moments and triangle enumeration.

Sparse matrix-vector and matrix-matrix multiplication.

Compare with existing implementations

§ Grafiki hitting time : C++/Kokkos/MPI

§ “Advantages to modeling relational data using hypergraphs versus graphs”, Wolf,

Klinvexm, and Dunlavy, IEEE HPEC, 2016.

§ miniTri : C++/OpenMP/MPI

§ “A Task-Based Linear Algebra Building Blocks Approach for Scalable Graph Analytics,”,

Wolf, Stark, and Berry, IEEE HPEC 2015.

Outline

Graph hitting time

Key computation

Performance

Preview of triangle enumeration

Summary

Graph hitting time

• A random variable for the number of (Markov chain) steps to
reach a set of hitting set vertices H of a graph G

• Compute random variable distribution, i.e., the hitting time
moments : mean, standard deviation, skew, and kurtosis.

Setting up linear system

Configured as linear system : (D – A) xk = f (D, A, xk-1)

for D = diagonal matrix of vertex degrees, x = moments

where x1 mean, x2 standard deviation, x3 skew, x4 kurtosis

154

2

3

Simple undirected graph

G :

Adjacency matrix

A =

Solved using the Conjugate Gradient algorithm

- Key kernel: matrix-vector product

row
idx

col
idx values

Coordinate storage
(COO)

row
ptrs

col
idx

Row compressed
(CSR)

Chapel sparse domain

• Define dense domain

• Define subset of it: sparse domain

• Not (yet) performant (Brad)

• Using for miniTri in unique way

(not allocating anything
using the sparse domain)

(i,j) = a(i,j)

n

6n

Storing the sparse matrix

All values = 1

row
idx

col
idx

i

Locale 0

Locale 1

Locale 2

Balance the load (COO)

Locale 0

row
idx

col
idx

i

Locale 1

Locale 2

0 “padding”

Example: banded matrix A, in COO format

x = y
row
idx

col
idx

i

A

1

3

2

5

4

9

8

7

6
10G :

A
Interlocale data

movement

Strong Scaling
Lower is better

User vs API runtime

221.4s 6163.1s 5952.6s 6005.2s

Performance Tools

CrayPat

§Results look like it’s mostly monitoring runtime, not user code.
§No longer supports Chapel.

HPCToolKit

§Returns profile with missing function names, even when compiling with -g

LDMS

§ Papi sampler runs with Chapel code, but gives ‘0’ for all data collected.
§ Network samplers should work to show communication (TBD).

ChplBlamer

§ Academic tool from University of Maryland (Jeff Hollingsworth); supported?

Triangle enumeration
Key computation: sparse MatMat

e1
e4 e3

e5 e2

e6 154

2

3

=

0

BBBB@

; ; ; ; ; ;
; ; ; ; ; {2, 4, 5}
; ; ; ; ; {3, 4, 5}
; {4, 2, 5} {4, 3, 5} ; ; ;
; ; ; {5, 3, 4} {5, 2, 4} ;

1

CCCCA

edge

ve
rt
ex

vertex

ve
rt
ex

C =

0

BBBB@

0 0 0 0 1
0 0 0 1 1
0 0 0 1 1
0 1 1 0 1
1 1 1 1 0

1

CCCCA
⇤

0

BBBB@

1 0 0 0 0 0
0 1 0 0 1 0
0 0 1 1 0 0
0 0 0 1 1 1
1 1 1 0 0 1

1

CCCCA

Incidence matrixAdjacency matrix

Summary

Scaling performance currently poor.

We’re assuming no known graph structure.

Exploring various matrix storage formats:

§ COO, CSR, Chapel sparse domain

User supplied Chapel operator capability.

Need tools!

Future work
§ Matrix “in place” implementation, to support full application.
§ Additional processors, eg ARM, GPU and interconnects.

Additional slides15

Productivity

Time from idea to solution (DARPA HPCS motivator)

§ Expressiveness

§ Performance

§ Portability

§ Robustness

§ Code development tools

Conjugate gradient method solving A*x=b

Preconditioning. Ax=b => M-1Ax = M-1b; Jacobi: M = diag(A)

Matrix-vector product

inner product

vector update (daxpy)

inner product

vector update (daxpy)

vector update (daxpy)

For symmetric positive definite matrix A in Rnxn, x and b in Rnx1

Matrix-vector multiplication:
COO and CSR matrix storage

COO: Arrays for row indices, column indices (values: n/a for us)

for i in y.dom { // For nnz nonzero coefficients
y[rowidx[i]] += x[colidx[i]] * A[rowidx[i]];

}

CSR: rowptr[i+1] – rowptr[i] – 1 = number of nonzeros in row i.
(For a 6 banded matrix, rowptr = 1, 7, 13, 19, …)

for i in y.dom{ // For n matrix rows

for j in rowptr[i]..rowptr[i+1]-1 {
y[i] += x[colidx[j]] * A[i];

}}
Analogous for Compressed Column (CSC)

