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Overview

Investigating Chapel performance for some linear algebra based graph analytics

Compute hitting time moments and triangle enumeration.

Sparse matrix-vector and matrix-matrix multiplication.

Compare with existing implementations 

§ Grafiki hitting time : C++/Kokkos/MPI

§ “Advantages to modeling relational data using hypergraphs versus graphs”, Wolf, 

Klinvexm, and Dunlavy, IEEE HPEC, 2016.

§ miniTri : C++/OpenMP/MPI

§ “A Task-Based Linear Algebra Building Blocks Approach for Scalable Graph Analytics,”, 

Wolf, Stark, and Berry, IEEE HPEC 2015.
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Graph hitting time

• A random variable for the number of (Markov chain) steps to 
reach a set of  hitting set vertices H of a graph G 

• Compute random variable distribution, i.e., the hitting time 
moments : mean, standard deviation, skew, and kurtosis.



Setting up linear system

Configured as linear system : ( D – A ) xk = f ( D, A, xk-1)

for D = diagonal matrix of vertex degrees, x = moments 

where x1 mean, x2 standard deviation, x3 skew, x4 kurtosis
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Simple undirected graph

G :

Adjacency matrix

A =

Solved using the Conjugate Gradient algorithm

- Key kernel: matrix-vector product



row 
idx

col 
idx values

Coordinate storage 
(COO)

row 
ptrs

col 
idx

Row compressed 
(CSR)

Chapel sparse domain

• Define dense domain

• Define subset of it: sparse domain

• Not (yet) performant (Brad)

• Using for miniTri in unique way

(not allocating anything 
using the sparse domain)
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Storing the sparse matrix

All values = 1
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Example: banded matrix A, in COO format
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Strong Scaling
Lower is better



User vs API runtime

221.4s                              6163.1s                             5952.6s                                  6005.2s



Performance Tools

CrayPat

§Results look like it’s mostly monitoring runtime, not user code.
§No longer supports Chapel.

HPCToolKit

§Returns profile with missing function names, even when compiling with -g

LDMS 

§ Papi sampler runs with Chapel code, but gives ‘0’ for all data collected.
§ Network samplers should work to show communication (TBD).

ChplBlamer

§ Academic tool from University of Maryland (Jeff Hollingsworth); supported?



Triangle enumeration
Key computation: sparse MatMat
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Summary

Scaling performance currently poor.

We’re assuming no known graph structure.

Exploring various matrix storage formats:

§ COO, CSR, Chapel sparse domain

User supplied Chapel operator capability.

Need tools!

Future work
§ Matrix “in place” implementation, to support full application.
§ Additional processors, eg ARM, GPU and interconnects.



Additional slides15



Productivity

Time from idea to solution   (DARPA HPCS motivator)

§ Expressiveness

§ Performance

§ Portability

§ Robustness

§ Code development tools



Conjugate gradient method solving A*x=b

Preconditioning.     Ax=b => M-1Ax = M-1b; Jacobi: M = diag(A)

Matrix-vector product

inner product

vector update (daxpy)

inner product

vector update (daxpy)

vector update (daxpy)

For symmetric positive definite matrix A in Rnxn, x and b in Rnx1



Matrix-vector multiplication: 
COO and CSR matrix storage

COO: Arrays for row indices, column indices (values: n/a for us)

for i in y.dom {    // For nnz nonzero coefficients
y[rowidx[i]] += x[colidx[i]] * A[rowidx[i]];

}

CSR: rowptr[i+1] – rowptr[i] – 1 = number of nonzeros in row i.
(For a 6 banded matrix, rowptr = 1, 7, 13, 19, …)

for i in y.dom{   // For n matrix rows

for j in rowptr[i]..rowptr[i+1]-1 {
y[i] += x[colidx[j]] * A[i];

}}
Analogous for Compressed Column (CSC)


