
© 2019 Cray Inc.

To w a r d s R a d i x S o r t i n g i n t h e

C h a p e l S t a n d a r d L i b r a r y

Michael Ferguson
CHIUW 2019

© 2019 Cray Inc.

• Interface Design for Radix Sort
• Exploring Parallel Radix Sort Algorithms
• Comparing Single-Locale Performance
• Distributed Sorting

Outline

2

© 2019 Cray Inc.

Interface
Design for
Radix Sort

© 2019 Cray Inc.

• Programming languages usually offer a sort library
• These normally include the ability to specify a comparison function

• but that limits implementations to comparison sorting algorithms

• Some sorting libraries also allow specifying a key to sort by
• easy to sort by a specific field in a structure
• but no help for variable length keys

• Would like to improve on this situation
• to enable radix sorting in most cases
• including the common case of sorting by variable-length strings

Interface Design for Radix Sort

4

© 2019 Cray Inc.

use Sort;

record MyRecord { var key: int; var value: int; }

record MyKeyComparator {

proc key(element: MyRecord) {

return element.key; // now uses radix sorting for integral keys
}

}

config const n = 10000;

var A: [1..n] MyRecord = [i in 1..n] new MyRecord(i, i*i);

sort(A, new MyKeyComparator());

The .key method

5

© 2019 Cray Inc.

use Sort;

record MyRecord { var key: c_string; var value: int; }

record MyKeyPartComparator { }

proc keyPart(element: MyRecord, i: int) {

var byte = element.key[i-1]; // compute the current key byte
// has the end been reached? Note, c_strings have a 0 terminator

var done = if byte != 0 then 0 else -1;

return (done, byte);

} }

var A:[1..n] MyRecord = ...;

sort(A, new MyKeyPartComparator());

The .keyPart method

6

© 2019 Cray Inc.

• Say we are sorting strings
• Which comes first?

• "badminton"
• "bad"

• keyPart returns a tuple to indicate the ordering here
• Tuple consists of (section, part)

• (-1, part) ⇢ sort this key before those with more data
• (0, part) ⇢ sort based on key data in part
• (1, part) ⇢ sort this key after those with more data

How .keyPart supports variable length keys

7

© 2019 Cray Inc.

Exp lor ing
Para l le l Radix
Sor t A lgor i thms

© 2019 Cray Inc.

• Two most-significant digit first counting radix sorts
• Recursive algorithm with serial bucketize inspired by [1]
• Two-array algorithm with parallel bucketize

[1] Peter M McIlroy, Keith Bostic, and M Douglas McIlroy. 1993. Engineering radix sort. Computing
systems 6, 1 (1993), 5–27.

Algorithms Explored

9

© 2019 Cray Inc. 10

21 11 53 52 26 11 22 15 Count 1st digit:
3x '1' 3x '2' 2x '5'

Scan to find bin starts1s 2s 5s

Bucketize: move into bins11 11 15 21 26 22 53 52

Continue with next digit within
each bin

11 11 15 21 26 22 53 52

© 2019 Cray Inc.

Recursive Algorithm

11

proc recursiveSort(start, end, A, digit) {

// local arrays for byte counts and offsets
var counts, offsets : [0..#256] int;

parallelCountAndScan(...)

sequentialInPlaceBucketize(...); // repeated swapping of current item
forall bins do

// recursively calls algorithm
recursiveSort(binStart, binEnd,

A, digit+1);

}

Drawbacks:
Limited parallel speedup
Lots of array allocations
Not a stable sort

© 2019 Cray Inc.

Iterative Algorithm

12

var counts, offsets : [0..#256] int; // just one of each per sort call
proc twoArraySort(start, end, A, Scratch, digit) {

bigTasks.push(...);

while !bigTasks.isEmpty() {

task = bigTasks.pop();

parallelCountAndScan(...);

parallelBucketizeToScratch(...)

for bins do append task to bigTasks or smallTasks

}

forall tasks in smallTasks do baseCaseSort(...)

}

Drawbacks:
Uses 2n space

© 2019 Cray Inc. 13

Count 1st digit:
3x '1' 3x '2' 2x '5'

Scan to find bin starts

Bucketize: move into bins11 11 15 21 26 22 53 52

Continue with next digit within
each bin

11 11 15 21 26 22 53 52

21 11 53 52 26 11 22 15

t1 t2 t4t3

1s 2s 5s
t1 t3 t4 t1 t3 t4 t2

© 2019 Cray Inc.

Compar ing
Sing le-Locale
Per formance

© 2019 Cray Inc.

66

2,813

1,766

175

1,485

90

161

94

8

0 500 1000 1500 2000 2500 3000 3500

Chapel two-array radix
Chapel recursive radix

Chapel quickSort
ips4o

Boost Block Indirect
Boost Spreadsort

GCC parallel_stl sort
C++ std::sort

C qsort
numpy sort

python3 builtin sort

Speed (MiB/s)

Sorting 1GiB of random uint(64): Broadwell

15

© 2019 Cray Inc.

3,034

670

66

2,813

1,766

175

1,485

90

161

94

8

0 500 1000 1500 2000 2500 3000 3500

Chapel two-array radix
Chapel recursive radix

Chapel quickSort
ips4o

Boost Block Indirect
Boost Spreadsort

GCC parallel_stl sort
C++ std::sort

C qsort
numpy sort

python3 builtin sort

Speed (MiB/s)

Sorting 1GiB of random uint(64): Broadwell

16

© 2019 Cray Inc.

D istr ibuted
Sort ing

© 2019 Cray Inc.

Distributed Two-Array Algorithm

18

proc distSort(start, end, A, Scratch, digit) {

while !distTasks.isEmpty() {

countAndBucketizeLocalDataToScratch(...) on each locale

for bins do append task to distTasks or localTasks

}

forall tasks in localTasks do twoArraySort(...)

}

© 2019 Cray Inc.

0

500

1000

1500

2000

2500

3000

0 4 8 12 16 20 24 28

S
or

t S
pe

ed
 (M

iB
/s

)

Number of Locales

Strong Scaling on Broadwell, sorting 100 M uint

19

© 2019 Cray Inc.

0

5

10

15

20

25

30

0 4 8 12 16 20 24 28

S
or

t T
im

e
(s

)

Number of Locales

Weak Scaling on Broadwell
sorting numLocales*100 M uint

20

© 2019 Cray Inc.

• Put two-array sorting and distributed sorting on master
• Explore in-place one-pass parallel bucketizer as with ips4o [2]
• Support sample sort

• when only comparison function is provided
• for very data with skewed data distribution

Thanks to: Rupal Jain and Avneet Kaur (Rails Girls Summer of Code 2018)
References:

[1] Peter M McIlroy, Keith Bostic, and M Douglas McIlroy. 1993. Engineering radix sort. Computing
systems 6, 1 (1993), 5–27.

[2] Michael Axtmann, Sascha Witt, Daniel Ferizovic, Peter Sanders. In-Place Parallel Super Scalar
Sample Sort. arXiv:1705.02257v2 [cs.DC] 29 Jun 2017

Future Work

21

© 2019 Cray Inc.

S A F E H A R B O R
S TAT E M E N T

This presentation may contain forward-looking
statements that are based on our current
expectations. Forward looking statements may
include statements about our financial
guidance and expected operating results, our
opportunities and future potential, our product
development and new product introduction
plans, our ability to expand and penetrate our
addressable markets and other statements
that are not historical facts.

These statements are only predictions and
actual results may materially vary from those
projected. Please refer to Cray's documents
filed with the SEC from time to time
concerning factors that could affect the
Company and these forward-looking
statements.

22

THANK YOU
Q U E S T I O N S ?

@ChapelLanguage

chapel-lang.org

chapel_info@cray.com

@cray_inc

linkedin.com/company/cray-inc-

cray.com

