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SETTING THE STAGE
What should my ideal computational tool do?

Everything really.

§ Scan my brain
§ Figure out what I want 
§ Scan the literature
§ Figure out the equations
§ Auto-generate the code
§ Run it
§ Analyze the data

I am happy to present the results.
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Since programming models and other tools are not so 
obliging, let me reduce the complexity by several 
orders of magnitude.

If we were starting a new multiphysics exascale
software project today, that expects to have long term 
use for scientific discovery, how should we design the 
software?
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SETTING THE STAGE

Chapel designers seem to think the way I do. I like the 
abstractions and the design, let me explain why.  



SCIENCE CODE DEVELOPMENT
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THERE IS MORE
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ARCHITECTING SCIENTIFIC 
CODES

Desirable Characteristics
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Maintainability and 
Verifiability

For  credible and 
reproducible results 

Performance
All machines need to be 

used well

Extensibility
Most use cases need 

additions and/or 
customizations

Portability
Even the same generation 

platforms are different



ARCHITECTING SCIENTIFIC 
CODES

Desirable Characteristics
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Maintainability and 
Verifiability
Clean code

Documentation
Comprehensive testing

Performance
Spatial and temporal locality 

of data
Minimizing data movement

Maximizing scalability

Extensibility
Well defined structure and 

modules 
Encapsulation of 
functionalities

Portability
General solutions that work 
without significant manual 

intervention across 
platforms



ARCHITECTING SCIENTIFIC 
CODES

Why it is challenging
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Extensibility
Same data layout not good 

for all solvers
Many corner cases
Necessary lateral 

interactions

Portability
Tremendous platform 

heterogeneity
A version for each class of 
device => combinatorial 

explosion

Maintainability and 
Verifiability

Wrong incentives
Designing good tests is hard

Performance
Solvers with low arithmetic 

intensity but hard sequential 
dependencies

Proximity and work 
distribution at cross 

purposes



DESIGN APPROACH
Taming the Complexity: Separation of Concerns
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Requirements

Software Architecture
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SEPARATION OF CONCERNS
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DESIGN PHILOSOPHY

§ Infrastructure design
§ Take time to discuss, iterate over requirements and 

specification
§ Keep end users involved 

§ Not doing so leaves possible options on the table

§ Simple is better
§ Flexibility Vs transparent to the user

§ Flexibility wins

§ Hierarchical access to features
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INTERACTION BETWEEN 
INFRASTRUCTURE AND PHYSICS
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Example Software: FLASH

Cosmological 
cluster formation

Supersonic MHD 
turbulence

Type Ia SN

Rayleigh-Taylor 
instability

Core collapse supernovae

Ram pressure stripping

laser slab

Rigid body 
structure

Accretion torus

Vulcan laser experiments: B-field 
generation/amplification



qMany components under research
q Software continuously evolving
qCompute on expensive, rare resources
qAll use cases are different and unique 

More Scientific 
Understanding

Higher Fidelity
Model

More Diverse
Solvers

More Hardware 
Resources

SCIENCE USING FLASH
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FLASH CODE BASICS

§ An application code, composed of encapsulated 
functional units.
§ Units are combined and composed to form applications
§ Not one monolithic binary, each problem has its own distinct 

binary
§ Setup tool (python) parses Config files, picks specific 

implementations of units and composes full application
§ Units can have alternative implementations

§ Three implementations of mesh are supported

§ Composability implies any of the implementations can be 
picked 

§ Mostly Fortran, some C, about 1.5 million lines of code
§ Portable, and until recently performance portable



DESIGN CONSIDERATIONS
§ Encapsulation and interfaces
§ Separation of concerns
§ Extensibility
§ Locality 
§ Composability
§ Orchestration
§ Cost accounting
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ENCAPSULATION

Real view : A 
whole domain 
with many 
operators

Functional 
decomposition

Virtual view :
domain sections 
as stand-alone 
computation unit 

Virtual view
collection of
components 

Spatial
decomposition

Parallelization
and scaling
optimization

Memory
access and 
compute
optimization

§ Virtual view of functionalities
§ Decomposition into units and definition of 

interfaces
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EXTENSIBILITY 
ADD A UNIT
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EXTENSIBILITY AND 
LOCALITY
ADD A SUBUNIT



Real view : A 
whole domain 
with many 
operators

Virtual view :
domain sections 
as stand-alone 
computation unit 

Parallelization
and scaling
optimization

Spatial
Decomposition
Blocks/tiles

COMPOSABILITY

Dynamic 
Scheduling

Load Distribution

Framework

§ AMR infrastructure: refinement, load balancing, work 
redistribution

§ Meta-information about domain sections
§ Asynchronization at block and operator level
§ No kernel optimization in this part



Real view : A 
whole domain 
with many 
operators

Functional 
decomposition

Virtual view
collection of
components 

Memory
access and 
compute
optimization

COMPOSITION 

Abstraction at 
solver level

code 
transformation

Fusing/inlining
Functions

Framework
§ Abstractions for performance 

portability
§ Ability to express operations 

at a higher level 
§ Do away with optimization 

blockers

§ Leave it to 
tools and 
compilers 
to optimize



CODE TRANSFORMATION

§ Two different scopes
§ The usual one

§ Write code once, generate ”optimized” code for the target
§ Down at the level of loop nests or kernels

§ Best done for limited scope computations
§ We intend to use transpiler being developed by collaborators
§ Turns IR into constrained python, optimized code generated from 

there.
§ The not so usual one

§ High level orchestration of operators
§ Determined during application configuration
§ Communicated to the runtime in part
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ORCHESTRATION SYSTEM

§ Task composer – used for configuration
§ Extension of the original FLASH “Config” files
§ A configuration DSL 
§ Encode meta-information for application construction in 

FLASH-specific syntax as needed

A primer on how FLASH framework configures 
application.
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CONFIG FILES

§ Can exist anywhere in the directory structure
§ Encode all meta-information for that level

§ Unit dependencies
§ State variables needed
§ State variables that need reconciliation at fine-coarse boundaries
§ Runtime environment
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REQUIRES Driver
REQUIRES physics/Hydro
REQUIRES physics/Eos/EosMain/Helmholtz
REQUIRES physics/sourceTerms/Burn/BurnMain/nuclearBurn
REQUIRES Simulation/SimulationComposition
PARAMETER xhe4            REAL    0.0 [0.0 to 1.0]
PARAMETER xc12            REAL    1.0 [0.0 to 1.0]
PARAMETER xo16            REAL    0.0 [0.0 to 1.0]
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CONFIGURATION
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Dubey et al, Parallel Computing 2009
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CONFIGURATION
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CONFIGURATION

Evolution
(time 

stepping)

Hydro/MHD
Explicit
Stencils

Self Gravity
Semi-implicit

Stencils, FFT etc

EOS
Pointwise

Table lookup

Burn
Pointwise

ODE

Diffusion
Implicit

Particles
Lagrangian

Radiation
Implicit

Laser 
Drive

HEDP

Library

Dubey et al, Parallel Computing 2009



COMPOSER FILES
§ Same philosophy
§ Keep them separate from Config files

§ More complex
§ Functionally different
§ Operate at individual unit level

§ Build a separate tool 
§ Could be a DSL compiler

§ We prefer to keep it simple
§ Time will tell if we can

§ Parse the meta-information and produce 
executable code
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OUR VISION
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allocateMemoryHost()
allocateMemoryAccel()
moveData_1()
kernel_1()

kernel_M()
moveData_2()
kernel_M+1()

…
…

kernel_N()
moveData_P()
deallocateMemoryHost()
deallocateMemoryAccel()

Task

Operation

Emitted code

Solver 
Information

kernels

Platform 
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RUNTIME ORCHESTRATION

Single GPU

CPU
1 MPI
Rank

Packing
Thread

Execution
Threads

Blocks Ready
Queue

Blocks Done
Queue

Enqueue using
Block Iterator

Move Data
To GPU

Control
Kernels

Run tasks
On CPU

and/or

Transfer data
back to CPU

Examples of CPU tasks:
(1) computeDt

(2) refinementError

Work done on
list of Blocks

already in
GPU Memory

Unpacking
Threads

Task Composition: scheduleComputations(gpu={gcFill, computeFluxes, updateSoln, Eos},
cpu={computeDt},
moveDataBack=True)
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BUILDING THE CODE

§ Configuration in three stages
§ Stage 1 – the usual running of setup script
§ Stage 2 – run the task composer
§ Stage 3 – run the transpiler

§ Run make as usual
§ The orchestrator generated in the process

§ Launches various threads that control run time
§ May or may not interact with AMReX asynchronization
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Lot of open questions still, but we believe that this 
is the right approach



WHY THIS WAY - PARALLELISM
§ MPI is not difficult, decomposition is
§ In parallelization neither all nor none is good

§ All – leave everything to the compiler
§ Domain specific knowledge lost – wasted opportunity
§ Compilers get impossible job, cannot optimize 

§ None – orchestrate everything explicitly
§ Not feasible for even moderately complex application 
§ Impossible from productivity perspective

§ Whichever model is used, understanding the 
parallelizable structure of application is critical

§ Constructs to encode the understanding needed
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WHY THIS WAY - KERNELS
§ C++ => Pushing a needlessly complex 

language that lacks basic structures 
§ If there is a mesh there are 3D arrays

§ meta-data built and carried around
§ Explicit order of access and order of operations

§ No graceful way to encode lack of dependence
§ Maintainable code in clean constructs, perhaps 

in python eventually
§ We can also exploit alternative implementations 

at arbitrary granularity 
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ADVANTAGES
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§ All code can be compiled with standard 
compilers

§ Constructs for expressing parallelism at different 
granularities

§ Limit intelligence needed in any one tool
§ Domain knowledge encoded in composer file, 

helps with optimizations

This is why I think Chapel designers think the way I do. 
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Questions ?


