
CHIUW
June 22, 2019

ANSHU DUBEY

PROGRAMMING
ABSTRACTIONS
FOR
ORCHESTRATION
OF HPC
SCIENTIFIC
COMPUTING

SETTING THE STAGE
What should my ideal computational tool do?

Everything really.

§ Scan my brain
§ Figure out what I want
§ Scan the literature
§ Figure out the equations
§ Auto-generate the code
§ Run it
§ Analyze the data

I am happy to present the results.

6/26/19 2

Since programming models and other tools are not so
obliging, let me reduce the complexity by several
orders of magnitude.

If we were starting a new multiphysics exascale
software project today, that expects to have long term
use for scientific discovery, how should we design the
software?

6/26/19 3

SETTING THE STAGE

Chapel designers seem to think the way I do. I like the
abstractions and the design, let me explain why.

SCIENCE CODE DEVELOPMENT

4

Numerical
solvers

Validation

Physical World

Equations

Mesh/particles
etcImplementation

Model

Discretize

Verify accuracy
stability

Model
fidelity

Model
fidelity

Domain expert

Applied Mathematician

Domain expert

Applied
Mathematician

Software Engineer
Domain
expert

THERE IS MORE

5

Numerical
solvers

Validation

Physical World

Equations

Mesh/particles
etcImplementation

Model

Discretize

Verify accuracy
stability

Model
fidelity

Model
fidelity

Domain
expert

Applied
Mathematician

Domain expert

Applied
Mathematician

Software
Engineer,
optimization
experts

Performance

Domain
expert

ARCHITECTING SCIENTIFIC
CODES

Desirable Characteristics

6

Maintainability and
Verifiability

For credible and
reproducible results

Performance
All machines need to be

used well

Extensibility
Most use cases need

additions and/or
customizations

Portability
Even the same generation

platforms are different

ARCHITECTING SCIENTIFIC
CODES

Desirable Characteristics

7

Maintainability and
Verifiability
Clean code

Documentation
Comprehensive testing

Performance
Spatial and temporal locality

of data
Minimizing data movement

Maximizing scalability

Extensibility
Well defined structure and

modules
Encapsulation of
functionalities

Portability
General solutions that work
without significant manual

intervention across
platforms

ARCHITECTING SCIENTIFIC
CODES

Why it is challenging

8

Extensibility
Same data layout not good

for all solvers
Many corner cases
Necessary lateral

interactions

Portability
Tremendous platform

heterogeneity
A version for each class of
device => combinatorial

explosion

Maintainability and
Verifiability

Wrong incentives
Designing good tests is hard

Performance
Solvers with low arithmetic

intensity but hard sequential
dependencies

Proximity and work
distribution at cross

purposes

DESIGN APPROACH
Taming the Complexity: Separation of Concerns

9

Subject of
research
Model

Numerics

More Stable
Discretization

I/O
Parameters

Treat differently

Client Code
Mathematically

complex

Infrastructure
Data structures
and movement

Hide from one
another

logically separable
functional units of

computation

Encode into framework

Differentiate between
private and public

Define interfaces

Applies to both kind

Requirements

Software Architecture
API Design

Implement

Test

Maintain

Augment

Model

API

Design
Develop

Validate

Integrate

Infrastructure Capabilities

SEPARATION OF CONCERNS

10

DESIGN PHILOSOPHY

§ Infrastructure design
§ Take time to discuss, iterate over requirements and

specification
§ Keep end users involved

§ Not doing so leaves possible options on the table

§ Simple is better
§ Flexibility Vs transparent to the user

§ Flexibility wins

§ Hierarchical access to features

6/26/19 11

INTERACTION BETWEEN
INFRASTRUCTURE AND PHYSICS

6/26/19 12

In
te

rfa
ce

s

W
ra

pp
er

 la
ye

r

infrastructure physics

Example Software: FLASH

Cosmological
cluster formation

Supersonic MHD
turbulence

Type Ia SN

Rayleigh-Taylor
instability

Core collapse supernovae

Ram pressure stripping

laser slab

Rigid body
structure

Accretion torus

Vulcan laser experiments: B-field
generation/amplification

qMany components under research
q Software continuously evolving
qCompute on expensive, rare resources
qAll use cases are different and unique

More Scientific
Understanding

Higher Fidelity
Model

More Diverse
Solvers

More Hardware
Resources

SCIENCE USING FLASH

14

FLASH CODE BASICS

§ An application code, composed of encapsulated
functional units.
§ Units are combined and composed to form applications
§ Not one monolithic binary, each problem has its own distinct

binary
§ Setup tool (python) parses Config files, picks specific

implementations of units and composes full application
§ Units can have alternative implementations

§ Three implementations of mesh are supported

§ Composability implies any of the implementations can be
picked

§ Mostly Fortran, some C, about 1.5 million lines of code
§ Portable, and until recently performance portable

DESIGN CONSIDERATIONS
§ Encapsulation and interfaces
§ Separation of concerns
§ Extensibility
§ Locality
§ Composability
§ Orchestration
§ Cost accounting

6/26/19 16

ENCAPSULATION

Real view : A
whole domain
with many
operators

Functional
decomposition

Virtual view :
domain sections
as stand-alone
computation unit

Virtual view
collection of
components

Spatial
decomposition

Parallelization
and scaling
optimization

Memory
access and
compute
optimization

§ Virtual view of functionalities
§ Decomposition into units and definition of

interfaces

Other&units

unmodified

Hydro
API

FLASH
Driver

Other&units

GridMain
Config

AMR
Config

Implementation

Grid
API

Unsplit
Config

FLASH
Driver

GridMain
Config

AMR
Config

Grid
API

HydroMain
Config

namespace organizational

Implementation
Implementation

Call4Grid_initDomain
….4(call4other4units)

Call4Grid_initDomain
Call4Hydro
….(call4other4units)

6/26/19 18

EXTENSIBILITY
ADD A UNIT

namespace(

organiza.onal(

(Implementa.on(

unmodified(FLASH
Driver

Other&units&

 GridMain
 Config

AMR
Config

Implementa.on(

 Grid
 API

FLASH
Driver

Other&units&

 GridMain
 Config

AMR
Config

Implementa.on(

 Grid
 API

 GridSolvers
 Config

modified(

6/26/19 19

EXTENSIBILITY AND
LOCALITY
ADD A SUBUNIT

Real view : A
whole domain
with many
operators

Virtual view :
domain sections
as stand-alone
computation unit

Parallelization
and scaling
optimization

Spatial
Decomposition
Blocks/tiles

COMPOSABILITY

Dynamic
Scheduling

Load Distribution

Framework

§ AMR infrastructure: refinement, load balancing, work
redistribution

§ Meta-information about domain sections
§ Asynchronization at block and operator level
§ No kernel optimization in this part

Real view : A
whole domain
with many
operators

Functional
decomposition

Virtual view
collection of
components

Memory
access and
compute
optimization

COMPOSITION

Abstraction at
solver level

code
transformation

Fusing/inlining
Functions

Framework
§ Abstractions for performance

portability
§ Ability to express operations

at a higher level
§ Do away with optimization

blockers

§ Leave it to
tools and
compilers
to optimize

CODE TRANSFORMATION

§ Two different scopes
§ The usual one

§ Write code once, generate ”optimized” code for the target
§ Down at the level of loop nests or kernels

§ Best done for limited scope computations
§ We intend to use transpiler being developed by collaborators
§ Turns IR into constrained python, optimized code generated from

there.
§ The not so usual one

§ High level orchestration of operators
§ Determined during application configuration
§ Communicated to the runtime in part

6/26/19 22

ORCHESTRATION SYSTEM

§ Task composer – used for configuration
§ Extension of the original FLASH “Config” files
§ A configuration DSL
§ Encode meta-information for application construction in

FLASH-specific syntax as needed

A primer on how FLASH framework configures
application.

6/26/19 23

CONFIG FILES

§ Can exist anywhere in the directory structure
§ Encode all meta-information for that level

§ Unit dependencies
§ State variables needed
§ State variables that need reconciliation at fine-coarse boundaries
§ Runtime environment

6/26/19 24

REQUIRES Driver
REQUIRES physics/Hydro
REQUIRES physics/Eos/EosMain/Helmholtz
REQUIRES physics/sourceTerms/Burn/BurnMain/nuclearBurn
REQUIRES Simulation/SimulationComposition
PARAMETER xhe4 REAL 0.0 [0.0 to 1.0]
PARAMETER xc12 REAL 1.0 [0.0 to 1.0]
PARAMETER xo16 REAL 0.0 [0.0 to 1.0]

25

CONFIGURATION

Evolution
(time

stepping)

Hydro/MHD
Explicit
Stencils

Self Gravity
Semi-implicit

Stencils, FFT etc

EOS
Pointwise

Table lookup

Burn
Pointwise

ODE

Diffusion
Implicit

Particles
Lagrangian

Radiation
Implicit

Laser
Drive

Shock Tube

Library

Dubey et al, Parallel Computing 2009

26

CONFIGURATION

Evolution
(time

stepping)

Hydro/MHD
Explicit
Stencils

Self Gravity
Semi-implicit

Stencils, FFT etc

EOS
Pointwise

Table lookup

Burn
Pointwise

ODE

Diffusion
Implicit

Particles
Lagrangian

Radiation
Implicit

Laser
Drive

Cellular

Dubey et al, Parallel Computing 2009

27

CONFIGURATION

Evolution
(time

stepping)

Hydro/MHD
Explicit
Stencils

Self Gravity
Semi-implicit

Stencils, FFT etc

EOS
Pointwise

Table lookup

Burn
Pointwise

ODE

Diffusion
Implicit

Particles
Lagrangian

Radiation
Implicit

Laser
Drive

GCD

Dubey et al, Parallel Computing 2009

28

CONFIGURATION

Evolution
(time

stepping)

Hydro/MHD
Explicit
Stencils

Self Gravity
Semi-implicit

Stencils, FFT etc

EOS
Pointwise

Table lookup

Burn
Pointwise

ODE

Diffusion
Implicit

Particles
Lagrangian

Radiation
Implicit

Laser
Drive

HEDP

Library

Dubey et al, Parallel Computing 2009

COMPOSER FILES
§ Same philosophy
§ Keep them separate from Config files

§ More complex
§ Functionally different
§ Operate at individual unit level

§ Build a separate tool
§ Could be a DSL compiler

§ We prefer to keep it simple
§ Time will tell if we can

§ Parse the meta-information and produce
executable code

6/26/19 29

OUR VISION

30

allocateMemoryHost()
allocateMemoryAccel()
moveData_1()
kernel_1()

kernel_M()
moveData_2()
kernel_M+1()

…
…

kernel_N()
moveData_P()
deallocateMemoryHost()
deallocateMemoryAccel()

Task

Operation

Emitted code

Solver
Information

kernels

Platform
Information

Memory
Requirements

Task
Composer

Operation

RUNTIME ORCHESTRATION

Single GPU

CPU
1 MPI
Rank

Packing
Thread

Execution
Threads

Blocks Ready
Queue

Blocks Done
Queue

Enqueue using
Block Iterator

Move Data
To GPU

Control
Kernels

Run tasks
On CPU

and/or

Transfer data
back to CPU

Examples of CPU tasks:
(1) computeDt

(2) refinementError

Work done on
list of Blocks

already in
GPU Memory

Unpacking
Threads

Task Composition: scheduleComputations(gpu={gcFill, computeFluxes, updateSoln, Eos},
cpu={computeDt},
moveDataBack=True)

6/26/19 31

BUILDING THE CODE

§ Configuration in three stages
§ Stage 1 – the usual running of setup script
§ Stage 2 – run the task composer
§ Stage 3 – run the transpiler

§ Run make as usual
§ The orchestrator generated in the process

§ Launches various threads that control run time
§ May or may not interact with AMReX asynchronization

6/26/19 32

Lot of open questions still, but we believe that this
is the right approach

WHY THIS WAY - PARALLELISM
§ MPI is not difficult, decomposition is
§ In parallelization neither all nor none is good

§ All – leave everything to the compiler
§ Domain specific knowledge lost – wasted opportunity
§ Compilers get impossible job, cannot optimize

§ None – orchestrate everything explicitly
§ Not feasible for even moderately complex application
§ Impossible from productivity perspective

§ Whichever model is used, understanding the
parallelizable structure of application is critical

§ Constructs to encode the understanding needed

6/26/19Go to "Insert | Header & Footer" to update this text 33

WHY THIS WAY - KERNELS
§ C++ => Pushing a needlessly complex

language that lacks basic structures
§ If there is a mesh there are 3D arrays

§ meta-data built and carried around
§ Explicit order of access and order of operations

§ No graceful way to encode lack of dependence
§ Maintainable code in clean constructs, perhaps

in python eventually
§ We can also exploit alternative implementations

at arbitrary granularity

6/26/19Go to "Insert | Header & Footer" to update this text 34

ADVANTAGES

6/26/19Go to "Insert | Header & Footer" to update this text 35

§ All code can be compiled with standard
compilers

§ Constructs for expressing parallelism at different
granularities

§ Limit intelligence needed in any one tool
§ Domain knowledge encoded in composer file,

helps with optimizations

This is why I think Chapel designers think the way I do.

36

Questions ?

