Y bradc@cray.com
@ chapel-lang.org
¥ @ChapelLanguage

What is Chapel? cmas

Chapel: A modern parallel programming language

» portable & scalable

» open-source & collaborative /~
CcCRANY
CHAPEL

Goals: 0

» Support general parallel programming

 “any parallel algorithm on any parallel hardware”

» Make parallel programming at scale far more productive

©2019 Cray Inc. C 2

What does "Productivity” mean to you®? e

Recent Graduates:
“something similar to what | used in school: Python, Matlab, Java, ...”

Seasoned HPC Programmers:
“that sugary stuff which | don’t need because | require full control to get performance”

Computational Scientists:
“something that lets me express my parallel computations without having to wrestle
with architecture-specific details”

Chapel Team:
“something that lets computational scientists express what they want,
without taking away the control that HPC programmers want,
implemented in a language as attractive as recent graduates want.”

©2019 Cray Inc. (@) ?

Why Consider New Languages at all?

Performance

Algorithms

High level, elegant syntax
Improve programmer productivity

Static analysis can help with correctness
We need a compiler (front-end)

If optimizations are needed to get
performance

We need a compiler (back-end)

Language defines what is easy and hard
Influences algorithmic thinking

© 2019 Cray Inc.

CRANY

[Source: Kathy Yelick,
CHIUW 2018 keynote:
Why Languages Matter

More Than Ever]

Comparing Chapel to Other Languages e

Chapel aims to be as...
...programmable as Python
...fast as Fortran
...scalable as MPI, SHMEM, or UPC
...portable as C
...flexible as C++
...fun as [your favorite programming language]

©2019 Cray Inc. (@

Outline

v

> A Brief Tour of Chapel Features
» Chapel Evaluations

« Summary and Resources

© 2019 Cray Inc.

Chapel Feature Areas

© 2019 Cray Inc.

Chapel language concepts

Domain Maps

Task Parallelism

Base Language
Locality Control

Target Machine

CRANY

Base Language sRas

C Domain Maps
Data Parallelism
Task Parallelism

1 Base Language
Locality Control

Target Machine

Lower-level Chapel

© 2019 Cray Inc. C 8

Base Language Features, by example cRas

iter fib(n) { config const n = 10;
var current = 0,
next = 1; for £ in fib(n) do

writeln (f);

for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example

Configuration declarations

(support command-line overrides)

./fib --n=1000000

iter fib(n) {
var current =
next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

’ -
config const n

for £ in fib(n)
writeln (£f) ;

10;

do

CRANY

Base Language Features, by example cRas

iter fib(n) { onfig const n = 10;

var current = 0,
next = 1; for f in fib(n) do

writeln (£f) ;

for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example cRas

Static type inference for:

* arguments
* return types
» variables

iter fib(n)' \ config cénst n = 10;
var current = 0,
next = 1; for f ‘in fib(n) do
writeln (£f) ;

for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example cRas

Explicit types also
supported

iter fib(n: int): int {)config const n: int = 10;

var current: int = O,
next: int = 1; for £ in fib(n) do

writeln (f);

for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example cRas

iter fib(n) { config const n = 10;
var current = 0,
next = 1; for £ in fib(n) do

writeln (f);

for i in 1..n {
yield current;
current += next;
current <=> next;

iter fib(n) {
var current = 0,
next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example

Zippered iteration

config const n =[10;
for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

CRANY

iter fib(n) {
var current = A0,
next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example

Range types and

operators

config const n =

for (i,f)
writeln ("fib #",

1\3;

in zip (0. .#n,

i,

CRANY

Base Language Features, by example cRas

iter fib(n) { config const n = 10;
var current = 0,
next = 1; for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

for i in 1..n {
yield current;
current += next;
current <=> next;

Base Language Features, by example cRas

iter fib(n) { config const n = 10;
var current = 0,
next = 1; for (i,f) in zip(0..#n, fib(n)) do
writeln (, 1, , f);

for i in 1..n {
yield current;
current += next;
current <=> next;

Other Base Language Features =mas

* Object-oriented programming (value- and reference-based)
» Managed objects and lifetime checking
 Nilable vs. non-nilable class variables

* Generic programming / polymorphism

* Error-handling

« Compile-time meta-programming

* Modules (supporting namespaces)

* Procedure overloading / filtering

« Arguments: default values, intents, name-based matching, type queries
« and more...

©2019 Cray Inc. (@ 19

Task Parallelism and Locality Control Smas

C Domain Maps D

Data Parallelism
 ammd Task Parallelism
Base Language

b md Locality Control

Target Machine

© 2019 Cray Inc. C 20

Locales, briefly cmas

» Locales can run tasks and store variables
* Think “compute node”
* The number of locales is specified on the execution command-line

> ./myProgram --numLocales=4 # or "-nl 4°
Locales:
Iocale\ locale locale locale
0 1 2 3

User’s code starts executing on locale #0

© 2019 Cray Inc. C 21

Task Parallelism and Locality, by example S

taskParallel.chpl

const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %$n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl
prompt> ./taskParallel
Hello from task 2 of 2 running on nl032

Hello from task 1 of 2 running on nl032

Task Parallelism and Locality, by example S

taskParallel.chpl

. const numTasks = here.numPUs () ;
Abstraction of _ -
coforall tid in 1..numTasks do
System Resources

tef ("Hello from task %n of %$n "+

on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl
prompt> ./taskParallel
Hello from task 2 of 2 running on nl032

Hello from task 1 of 2 running on nl032

© 2019 Cray Inc. 23

Task Parallelism and Locality, by example

© 2019 Cray Inc.

High-Level

Task Parallelism

taskParallel.chpl

const numTasks = here.numPUs () ;
\\\"coforall tid in 1..numTasks do

writef ("Hello from task %$n of

"running on %s\n",

o)

sn

tid, numTasks, here.name);

”+

prompt> chpl taskParallel.chpl
prompt> ./taskParallel
Hello from task 2 of 2 running on nl032

Hello from task 1 of 2 running on nl032

CRANY

24

Task Parallelism and Locality, by example cRase

taskParallel.chpl

const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do

So far, this is a shared memory program

writef ("Hello from task %$n of %n "+
Nothing refers to remote locales,

explicitly or implicitly

"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl
prompt> ./taskParallel
Hello from task 2 of 2 running on nl032

Hello from task 1 of 2 running on nl032

© 2019 Cray Inc.

Task Parallelism and Locality, by example S

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %$n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl

prompt> ./taskParallel --numLocales=2

Hello from task 1 of 2 running on nl033
Hello from task 2 of 2 running on nl032
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2 running on nl032

Task Parallelism and Locality, by example

Abstraction of

System Resources

taskParallel.chpl

coforall loc in Locales do

on loc
const numTasks =

coforall tid in 1..numTasks
writef ("Hello from task
"running on %s\n",

tid, numTasks,

here.numPUs () ;

do

sn of

SN

here.name) ;

”+

prompt> chpl taskParallel.chpl

./taskParallel --numLocales=2
task 1 of 2 nl0
task 2 of 2 nl0
task 2 of 2 nl0
task 1 of 2 nl0

prompt>
Hello
Hello
Hello
Hello

from running on

from running on
from running on

from running on

33
32
33
32

CRANY

Task Parallelism and Locality, by example

High-Level
Task Parallelism

taskParallel.chpl

~-coforall loc in Locales do

on loc {

coforall tid in 1..numTasks
writef ("Hello from task
"running on %s\n",

tid, numTasks,

const numTasks = here.numPUs () ;

do

sn of

SN

here.name) ;

”+

prompt> chpl taskParallel.chpl

./taskParallel --numLocales=2
of 2 nl0
of 2 nl0
of 2 nl0
of 2 nl0

prompt>
Hello
Hello
Hello
Hello

from task 1 running on

from task 2 running on
from task 2 running on

from task 1 running on

33
32
33
32

CRANY

Task Parallelism and Locality, by example

Control of Locality/Affinity

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks =
coforall tid in 1..numTasks
writef ("Hello from task
"running on %s\n",

tid, numTasks,

here.numPUs () ;

do

sn of

SN

here.name) ;

”+

prompt> chpl taskParallel.chpl

./taskParallel --numLocales=2
task 1 of 2 nl0
task 2 of 2 nl0
task 2 of 2 nl0
task 1 of 2 nl0

prompt>
Hello
Hello
Hello
Hello

from running on

from running on
from running on

from running on

33
32
33
32

CRANY

Task Parallelism and Locality, by example S

taskParallel.chpl

coforall loc in Locales do
on loc {
const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %$n of %n "+
"running on %s\n",

tid, numTasks, here.name);

prompt> chpl taskParallel.chpl

prompt> ./taskParallel --numLocales=2

Hello from task 1 of 2 running on nl033
Hello from task 2 of 2 running on nl032
Hello from task 2 of 2 running on nl033
Hello from task 1 of 2 running on nl032

Other Task Parallel Features cmas

« atomic / synchronized variables: for sharing data & coordination
* begin / cobegin statements: other ways of creating tasks
« task intents: for specifying how outer-scope variables are passed to tasks

©2019 Cray Inc. (@ 31

Data Parallelism in Chapel Smas

Chapel language concepts

C Domain Maps
D Higher-level
Task Parallelism Chapel

Base Language
Locality Control

Target Machine

©2019 Cray Inc. (@ 32

Data Parallelism, by example SR

dataParallel.chpl

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do
Afi,j] =i + (J - 0.5)/n;

writeln (2) ;

prompt> chpl dataParallel.chpl
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

2
3.
4
5

1 2.7
.1 3.7
.1 4.7
1 5.7

Data Parallelism, by example SR

Domains (Index Sets) dataParallel.chpl

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do
Ali,3] =1 + (3 - 0.5)/n;

writeln (2) ;

prompt> chpl dataParallel.chpl
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

2.7
3.7
4.7
5.7

12
.1 3.
.1 4.
15

Data Parallelism, by example SR

dataParallel.chpl

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

Ali,J] =1 4+ (J - 0.5)/n;
writeln (2) ;

prompt> chpl dataParallel.chpl
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

2
3.
4
5

1 2.7
.1 3.7
.1 4.7

1 5.7

Data Parallelism, by example SR

dataParallel.chpl

config const n = 1000;
var D = {1..n, 1..n};

Data-Parallel Forall Loops

var A: [D] real;
forall (i,j) in D do
Afi,j] =i + (J - 0.5)/n;

writeln (2) ;

prompt> chpl dataParallel.chpl
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

12
.1 3.
1 4
15

2.7
3.7
4.7
5.7

Data Parallelism, by example SR

dataParallel.chpl

config const n = 1000;

var D = {1..n, 1..n};
So far, this is a shared memory program o Ay (D] raceils
Nothing refers to remote locales, forall (i,3j) in D do
explicitly or implicitly Ali,j] =i+ (3 - 0.5)/n;

writeln (2) ;

prompt> chpl dataParallel.chpl
prompt> ./dataParallel --n=5
1.1 1.3 1.5 1.7 1.9

12
.1 3.
1 4
15

2.7
3.7
4.7
5.7

Distributed Data Parallelism, by example

Domain Maps
(Map Data Parallelism to the System)

dataParallel.chpl

use CyclicDist;
config const n = 1000;

forall (i,j) in D do
Afi,j]1 =i+ (3 - 0.5)/n;

var D = {l1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1));
va : [D] real;

prompt> chpl dataParallel.chpl
prompt> ./dataParallel --n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2
3.
4
5

1 2.7
.1 3.7
.1 4.7

1 5.7

CRANY

Distributed Data Parallelism, by example S

dataParallel.chpl

use CyclicDist;
config const n = 1000;
var D = {l1l..n, 1..n}
dmapped Cyclic(startIdx = (1,1));
var A: [D] real;
forall (i,j) in D do
Afi,j]1 =i+ (3 - 0.5)/n;

writeln (2) ;

prompt> chpl dataParallel.chpl
prompt> ./dataParallel --n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2
3.
4
5

1 2.7
.1 3.7
.1 4.7

1 5.7

Other Data Parallel Features cmas

 Parallel Iterators and Zippering

« Slicing: refer to subarrays using ranges / domains

* Promotion: execute scalar functions in parallel using array arguments
* Reductions: collapse arrays to scalars or subarrays

« Scans: parallel prefix operations T “steve”
. | [“lee”

- Several Domain/Array Types: " |“sung”
| | || |] | |] |) I I TTTTTT]T] '_'“_daVid”
5 D oD O @ o _IIlIIlHIH] _“Jacob”
| O O O O O - - [“albert”
b o o o oo | R R __["brad”

dense strided sparse associative

© 2019 Cray Inc. C 40

Chapel
Evaluations

© 2019 Cray Inc.

Computer Language Benchmarks Game (cLgG)

The Computer Language
Benchmarks Game

Which programs are faster?

Will your toy benchmark program be faster if you write it in

it!

Ada C

Chapel C# C++ Dart

Erlang F#

Fortran Go Hack

Haskell Java JavaScript Lisp Lua

OCaml Pascal Perl PHP Python

Racket Ruby Rust Smalltalk Swift

TypeScript

Which are fast? Trust, and verify

{ for researchers }

a different programming language? It depends how you write

© 2019 Cray Inc.

CRANY

Website supporting cross-language comparisons
* 10 toy benchmark programs x
~27 languages %
several implementations

* specific approach prescribed

Chapel’s approach to the CLBG:
« striving for elegance over heroism

* ideally: “Want to learn how program xyz works?
Read the Chapel version.”

C 42

CLBG: Website

Can sort results by various metrics: execution time, code size,

The Computer Language

© 2019 Cray Inc.

1.0
1.0
1.1

e
e e e

1.2
1.3
1.3
1.3

Benchmarks Game

pidigits

description

program source code, command-line and

measurements

source

Chapel #2
Chapel

Free Pascal #3
Rust #3

Rust

Rust #2

Cgcc

Ada 2012 GNAT #2
Swift #2

Lisp SBCL #4
C++ g++ #4
Go #3

PHP #5

PHP #4

secs
1.62
1.62
1.73
1.74
1.74
1.74
1.75
1.75
1.76
1.79
1.89
2.04
2.12
2.12

mem
6,484
6,488
2,428
4,488
4,616
4,636
2,728
4,312
8,492
20,196
4,284
8,976
10,664
10,512

423
501
530
1366
1420
1306
452
1068
601

513
603
399
389

cpu
1.63
1.63
1.72
1.74
1.74
1.74
1.74
1.75
1.76
1.79
1.88
2.04
2.11
2.12

cpu load

99% 1% 1% 2%
99% 1% 1% 1%
0% 2% 100% 1%
1% 100% 1% 0%
1% 100% 1% 0%
1% 100% 0% 0%
1% 2% 0% 100%
1% 0% 100% 0%
1% 100% 1% 0%
1% 2% 1% 100%
5% 0% 1% 100%
1% 0% 100% 0%
100% 0% 1% 1%

100% 0% 0% 2%

1.0
1.5
1.5
1.5
1.5
1.6
1.7
1.7
1.8
1.8
1.9
1.9
1.9
1.9

The Computer Language

Benchmarks Game

pidigits

description

CRANY

memory use, CPU use:

program source code, command-line and

measurements

source
Perl #4
Python 3 #2
PHP #4

Perl #2

PHP #5
Chapel #2
Cgce
Racket
OCaml #5
Perl

Ruby #5
Lisp SBCL #3
Chapel

PHP #3

secs
3.50
3.51
2.12
3.83
2.12
1.62
1.75
27.58
6.72
15.45
3.29
11.99
1.62
2.14

m
7,348
10,500
10,512
7,320
10,664
6,484
2,728
124,156
19,836
10,876
277,496
325,776
6,488
10,672

423
452
453
458
463
485
493
501
504

cpu load
100% 1% 1% 1%

1% 1% 0% 100%

gz == code size metric
strip comments and extra
whitespace, then gzip

81% o 1%

8% 63% 32% 100%

0% 1% 100% 0%

99% 1% 1% 1%

1% 0% 0% 100%

€

=

43

CLBG: Website cRas

Can also compare languages pair-wise:

 but only sorted by

The Computer Language The Computer Language
Benchmarks Game Benchmarks Game
.
execution speed...
Chapel versus C++ g++ fastest programs Chapel versus Python 3 fastest programs
vs C vsC++ vs Go vs Java vs Python vs C vs C++ vs Go vs Java vs Python
by faster benchmark performance by faster benchmark performance
reverse-complement mandelbrot
source secs mem gz cpu cpu load source secs mem gz cpu cpu load
Chapel 2.20 1,497,876 707 5.10 96% 42% 58% 38% Chapel 5.09 36,328 620 20.09 99% 99% 99% 99%
C++g++ 295 980,472 2280 4.56 50% 41% 16% 50% Python 3 279.68 49,344 688 1,117.29 100% 100% 100% 100%
pidigits spectral-norm
source secs mem gz cpu cpu load source secs mem gz cpu cpu load
Chapel 1.62 6,488 501 1.63 99% 1% 1% 1% Chapel 3.97 5,488 310 15.75 99% 99% 99% 99%
C++g++ 1.89 4,284 513 1.88 5% 0% 1% 100% Python 3 193.86 50,556 443 757.23 98% 98% 99% 99%
fannkuch-redux fannkuch-redux
source secs mem gz cpu cpu load source secs mem gz cpu cpu load
Chapel 12.07 4,556 728 48.05 100% 100% 100% 100% Chapel 12.07 4,556 728 48.05 100% 100% 100% 100%
C++g++ 10.62 2,040 980 41.91 100% 95% 100% 100% Python 3 547.23 48,052 950 2,162.70 99% 100% 97% 100%
© 2019 Cray Inc. \@_«/ 44

CRANY

CLBG: Qualitative Code Comparisons

Can also browse program source code (but this requires actual thought!):

proc main() {
printColorEquations();

void get_affinity(int* is_smp, cpu_set_t* affinityl, cpu_set_t* affinity2)

cpu_set_t active_cpus;
const groupl = [i in 1..popSizel)] new Chameneos(i, ((i-1)%3):Color); FILE* £ -
const group2 = [i in l..popSize2) new Chameneos(i, colorslO[i]); char buf [2048);
char const* pos;
cobegin { int cpu_idx;
holdMeetings(groupl, n); int physical id;
holdMeetings(group2, n); int core_id;_
} int cpu_cores;
. int apic_id;
print(groupl); size_t cpu_count;
print(group2); size_t i;

for ¢ in groupl do delete c;

char const* processor_str = "processor”;
for ¢ in group2 do delete c; size_t processor str_len = strlen(processor str);

} char const* physical_id_str = "physical id";
size_t physical_id str len = strlen(physical_id str);
char const* core_id_str = "core id";

/" . . size_t core_id_str_len = strlen(core_id_str);

.ft/ Print the results of getNewColor() for all color pairs. char const* cpu_cores_str = "cpu cores”;

/" size_t cpu_cores_str_len = strlen(cpu_cores_str);

proc printColorEquations() {
for cl in Color do
for c2 in Color do
writeln(el, " + ", €2, " -> ", getNewColor(cl, c2));
writeln();

}

/!
// Hold meetings among the population by creating a shared meeting
// place, and then creating per-chameneos tasks to have meetings.
//
proc holdMeetings(population, numMeetings) {

const place = new MeetingPlace(numMeetings);

coforall ¢ in population do
c.haveMeetings(place, population);

// create a task per chameneos

delete place;

excerpt from 1210 gz Chapel entry

© 2019 Cray Inc.

CPU_ZERO(&active_cpus);

sched_getaffinity(0, sizeof(active_cpus), &active_cpus);

cpu_count = 0;

for (i = 0; i != CPU_SETSIZE; i += 1)

if (CPU_ISSET(i, &active_cpus))
{

cpu_count += 1;
}

if (cpu_count == 1)
{
is_smp[0] = 0;
return;

}

is_smp[0]) = 1;
CPU_ZERO(affinityl);

excerpt from 2863 gz C gcc entry

45

CLBG: Qualitative Code Comparisons SR

Can also browse program source code (but this requ:res actual thought!):

proc main() { * i , cpu_set_t* affinityl, cpu_set_t* affinity2)
printColerEquatiens(); L ueeen
. 2= 1 P iy ::;"' " b . active_cpus;
const groupl = [i in |..pepSi¥el] new Chameneos(i, £;
conl:."g-z_qqpl eyt o1, .popSize2] new Chameneos(i, ¢ co egln { buf [2048];
gus® .
pos;
cobegin { holdMeetings(groupl, n); Sou. ddx;
hoi:::etings(qroupl, n); . physical_id;
ho etings(group2, n); id;
) ge(groupt, n); holdMeetings(group2, n); core_id;
cpu_cores;
e apic_id;
prihtygmoupl);, } cpu_count;
print(group2); """ttresaa.,,, . i;
for c in groupl do delete c¢; o tTttses.... pr _str = "processor”;
for c in group2 do delete c; size_t processor_str_len = strlen(processor str);
} char const* physical_id_ str = "physical id";
size_t physical_id str len = strlen(physxcal id str);
char const* core id str = "core id"
// Print the results of getNewColor() for all co \,x.‘"a h l . l . . ;(l:g;?gld_stl’);
o proc holdMeetings(population, numMeetings) { (epn_cores str);
proc printColorEquations() { W : .
for cl in Color do const place = new MeetingPlace(numMeetings);
for c2 in Color do .
writeln(cl, " + ", c2, ",-> » getNewColor(cl, d
writeln(); ot
. . .
coforall c in population do // creat
“‘ . .
7 c.haveMeetings(place, population);
// Hold ;m‘ rLr s among the population by Crl.‘dLl]’l\j a sH
// :L\ﬂ(and then creating per-chameneos tasks to ha
proc holdMeetings(population, numMeetings) .
const place = new MeetingPlace(numMeetings); delete place 4
coforall ¢ in population do // creatp a te }
c.haveMeetings(place, population);

delete place;

excerpt from 1210 gz Chapel entry excerpt from 2863 gz C gcc entry

©2019 Cray Inc. C 46

CLBG: Qualitative Code Comparisons SR

Can also browse program source code (but this requires actual thought!):

proc main() { void get_affinity(int* is_smp, cpu_set_t* affinityl, cpu_set_t* affinity2)

. . {
char const* core id str = "core id"} cpu_set_t active_cpus;
-_— % * £f;
size t core_id str len = strlen(cof char but (204817
char const* cpu_cores_str = "cpu core{ % e o P 1dxs
: —_ s i hysical id;
size_t cpu_cores_str len = strlen(cpy L Y P P
. int cpu_cores;
. int apic_id;
CPU _ZERO(&active cpus); Y sise_t cpu_count;
- . Py . s . . size_f i;
sched getaffinity(0, sizeof(active cpus), &active cpus); %

— - - char const* processor_str = "processor”;
cpu_count = 0; "‘ size_t processor_str_len = strlen(processor_str);
P . 3 _ . 3 _ % ch > hysical id st = "physical id";
for (l = 0 r il= CPU_SETSI ZE’ 1 += 1) . :i::_:on' :h;u;z:l_;d_:t;_len - asr{:?;hy:ical_id_str);

{ [Char consctr TOre_1d_Btr =core 1§°;
size_t core_id_str_len = strlen(qore_id_str);
1 1 1 h t* t =" "
if (CPU_ISSET(i, &active cpus)) e e O, I
(CPU_ZERO(&active_cpus);
cpu count += 1; sched_getaffinity(0, sizeof(active _cpus), &active cpus);
- cpu_count = 0;
} for (i = 0; i != CPU_SETSIZE; i += 1)
{
} if (CPU_ISSET(i, &active_cpus))
{
cpu_count += 1;
if (cpu_count == 1)) }

{

) if (cpu_count == 1)
is smp[0] = 0; {
— r is_smp[0] = 0;
return; return;
} }
et is_smp[0] = 1;
. CPU_ZERO(affinityl);

excerpt from 1210 gz Chapel entry excerpt from 2863 gz C gcc entry

©2019 Cray Inc. C o

CLBG: Chapel Entries (May 14, 2019) Smas

=
(V] ‘G:J .
? .
E 3 @ Bam chapel
o
c O [0 smallest
'-8-9 5 O fastest
273 [] gmean-smallest
L%-C_NU () gmean-fastest
€
[
o
L=

. m O et .
1 2 3
Compressed Code Size (normalized to smallest entry)

©2019 Cray Inc. C 48

CLBG Cross-Language Summary (may 14, 2019)

—~
>
-
)
T
£ 3
P(D 60
c O
O o0
154—!
RS
i
=
[-
(@]
[
N

© 2019 Cray Inc.

80 |--i

49 |-}

20 |-}

—
JRuby Lua
[R

Pyhh@n 0 \
; .\ b .

RS ® Smalltalk -
Perl . ;

. Erlang '\\?\
PHP l}'!RaQ'Set

B chapel
Il csharpcore
B dart
fpascal
gcc

ghc
gnat

g0

gpp
hipe
ifc
java
jruby
julia
lua

node
ocaml
perl
php
python3
racket
rust
shcl
swift
Il typescript
Y

.. W yarv

[] emean-smallest
(O emean-fastest

1.6 1.5 2.6 2.5 3.0

Compressed Code Size (normalized to smallest entry)

CRANY

49

CLBG Cross-Language Summary (May 14, 2019, zoomed) ===

B chapel

Il csharpcore

m dart

fpascal

gecc

ghc

gnat

g0

£pp

hipe

ifc

java

jruby

julia

lua

node

ocaml

perl

php

python3

racket

fust

sbcl Lngp

swift

“typescript

v
yarv' .

[] gmean-smallest

C#
c o Rust'C++‘

1.6 1.5 2.0 2.5 3.5

Compressed Code Size (normalized to smallest entry)

: Typescrlpt
. o B
Julla -

Execution Time
(normalized to fastest entry)

s

I/

=

© 2019 Cray Inc. (@ 50

CLBG Cross-Language Summary (May 14, 2019, zoomed) ===

B chapel

Il csharpcore

m dart

fpascal

gecc

ghc

gnat

g0

£pp

hipe

ifc

java

jruby

julia

lua

node

ocaml

perl

php

python3

racket

fust

sbcl Lngp

swift

“typescript

v
yarv .

[] gmean-smallest

C#
c o Rust'C++‘

1.6 1.5 2.0 2.5 3.5

Compressed Code Size (normalized to smallest entry)

, Typescrlpt
. o B
Julla -

Execution Time
(normalized to fastest entry)

s

I/

=

© 2019 Cray Inc. (@ 51

CLBG Cross-Language Summary (may 14, 2019)

B chapel
Il csharpcore
B dart
fpascal
gcc

ghc
gnat

g0

gpp
hipe
ifc
java
jruby
julia
lua

—
JRuby Lua
[R

80 |eeieneeeeinaeee e PR O SO . 4000 e RS SO
g & : :

Pyhh@n 0 \
“Ruby e g
| RS ® Smalltalk -
Perl . ;

e [

node
ocaml
perl
php
python3

N : : : racket
Erlang %° | | =
~ ;] : shcl
: b. oy O : : swift
PHP .:*\\\‘\Ra\c\ket ‘\‘\\ : : Il typescript
: i ~ : S : : [_ "7
: R S : : [] emean-smallest

\“\\‘ \\\\;. gmean-fastest
Julia .J@m@ﬂmDart c#.%@DO el | O

TypescriptWy oy g e

Execution Time
(normalized to fastest entry)

Chapel ® ¢ = " BRGtacs A i ===ca SO SPLEEF PN

Compressed Code Size (normalized to smallest entry)

© 2019 Cray Inc. @

CRANY

52

STREAM Triad: a trivial parallel computation S

Given: m-element vectors A, B, C
Compute: Vi€ 1.m, A; = B; + a-C;

In pictures:

© 2019 Cray Inc. C 53

STREAM Triad: a trivial parallel computation S

Given: m-element vectors A, B, C
Compute: Vi€ 1.m, A; = B; + a-C;

In pictures, in parallel (shared memory / multicore):

© 2019 Cray Inc. C 54

STREAM Triad: a trivial parallel computation S

Given: m-element vectors A, B, C
Compute: Vi€ 1.m, A; = B; + a-C;

In pictures, in parallel (distributed memory):
|

© 2019 Cray Inc. C 55

STREAM Triad: a trivial parallel computation S

Given: m-element vectors A, B, C
Compute: Vi€ 1.m, A; = B; + a-C;

In pictures, in parallel (distributed memory multicore):
|

s (T T T T T T T T T T T
+ 7+ 01+ [+ 01 4+ +1 + | +

) .D.E.D.E.D.i .|:|.

© 2019 Cray Inc. C 56

STREAM Triad: C + MPI

#include <hpcc.h>

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;

errCount;

MPI COMM WORLD;

int rv,
MPI Comm comm =

MPI Comm size(comm, &commSize);

MPI Comm rank(comm, &myRank);

rv = HPCC Stream(params, 0 == myRank);

MPI Reduce(&rv, &errCount, 1, MPI INT, MPI SUM, 0, comm);

return errCount;

}

int HPCC Stream(HPCC Params *params, int doIO) ({
register int j;

double scalar;

VectorSize = HPCC LocalVectorSize(params, 3, sizeof (double), 0);
a = HPCC XMALLOC (double, VectorSize);

b = HPCC_ XMALLOC(double, VectorSize);

c = HPCC_ XMALLOC (double, VectorSize);

© 2019 Cray Inc.

if (la
if
if
if
if

I
(c)

b I le)
HPCC_free (c

(b) HPCC free(b

(a) HPCC free(a

(doIO0) {
fprintf (outFile
fclose(outFile
}

return 1;

for (j3=0;
b[j] =
cljl =
}

scalar = 3.

2.0;
1.0;

0;

for (3=0;
aljl =

HPCC free(c);
HPCC free(b);
HPCC free(a);

return O;

C

’
’

’

{
)
)
)

’

)

j<VectorSize;

j<VectorSize;
b[jl+scalar*c[j];

"Failed to allocate

j++) |

j++)

memory

(

3

S

d) .\n",

CRANY

VectorSize);

57

STREAM Triad: C + MPI + OpenMP

#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI Comm comm = MPI COMM WORLD;

MPI Comm size(comm, &commSize);
MPI Comm rank(comm, &myRank);

rv = HPCC Stream(params, 0 == myRank);
MPI Reduce(&rv, &errCount, 1, MPI INT, MPI SUM, O,

return errCount;

}

int HPCC Stream(HPCC Params *params, int doIO) ({
register int j;
double scalar;

VectorSize = HPCC LocalVectorSize(params, 3, sizeof (double),

a = HPCC XMALLOC (double, VectorSize);
b = HPCC_ XMALLOC(double, VectorSize);
c = HPCC_ XMALLOC (double, VectorSize);

© 2019 Cray Inc.

comm) ;

if (la || b || !c) {
if (c) HPCC free(c);
if (b) HPCC free(b);
if (a) HPCC free(a)
if (doIO) {
fprintf (outFile, "Failed to allocate memory (%
fclose (outFile);
}
return 1;

}

’

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 1.0;

}

scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; Jj++)
alj]l = bljl+scalar*cl[j];

HPCC free(c);
HPCC free(b);
HPCC free(a);

return O;

C

d) .\n",

CRANY

VectorSize);

58

STREAM Triad: Chapel =

use ..;

The special sauce:
How should this index

config const m = 1000,

alpha = 3.0;
set—and any arrays and

const ProblemSpace = {1..m}(dmapped ..; Computations over it—be

mapped to the system?

var A, B, C: [ProblemSpace] real;

B
€

g=
I
o)
+
Q
'_l
Ho)
-y
Q
*
(@)

© 2019 Cray Inc. C 59

HPCC STREAM Triad: Chapel vs. C+MPI+OpenMP ===~

STREAM Performance (GB/s)

30000 [- - - - - oo m-mmmm s
Reference MPI+OpenMP —%¢—
25000 Chapel 1.19 —— ~ — — = = = = o oo

20000
15000
10000

5000

GB/s

Locales (x 36 cores / locale)

© 2019 Cray Inc. 60

HPC Patterns: Chapel vs. Reference SRa~

LCALS HPCC RA
Global Random
Local loop kernels Updates
STREAM PRK
Triad ISx Stencil
Embarrassing/Pleasing Bucket-Exchange Stencil Boundary
Parallelism Pattern Exchanges

Nightly performance tickers online at:
© 2019 Cray Inc. C https://chapel-lang.org/perf-nightly.html 61

https://chapel-lang.org/perf-nightly.html

HPC Patterns: Chapel vs. Reference

LCALS: Chapel vs. Reference e

Serial Kernels (long)

14
2 l
I IR S
P F© S P S &
& DA \$

LCALS

STREAM
Triad

|Sx

HPCC RA

CRANY

HPCC RA: Chapel vs. C+MPI

RA Performance (GUPS)

GUPS

PRK T

Stencil

Locales (x 36 cores / locale)

cRas

HPCC STREAM Triad: Chapel vs. Reference e

Locales (x 36 cores / locale)

ISx: Chapel vs. Reference

cRas

Locales (x 36 cores / locale)

PRK Stencil: Chapel vs. Reference

PRK Stencil Performance (Gflopls)

Locales (x 36 cores / locale)

G

cRas

© 2019 Cray Inc.

Nightly performance tickers online at:
https://chapel-lang.org/perf-nightly.html

62

https://chapel-lang.org/perf-nightly.html

Summary and
Resources

© 2019 Cray Inc.

Summarizing this Talk cmas

Chapel cleanly and orthogonally supports...
...expression of parallelism and locality
...specifying how to map computations to the system

Chapel is powerful:
* supports succinct, straightforward code
« can result in performance that competes with (or beats) C+MPI+OpenMP

©2019 Cray Inc. (@) o

Chapel Central

https://chapel-lang.orqg
e download Chapel

e presentations

papers

resources

e documentation

© 2019 Cray Inc.

CRANY

Home
What is Chapel?

What's New?
Upcoming Events
Job Opportunities

How Can | Learn Chapel?
Contributing to Chapel

Documentation
Downioad Chapel
Try it Now

Release Notes

User Resources
Educator Resources
Developer Resources

Social Media / Blog Posts
Press

Publications and Papers

CHIUW
CHUG

Contributors / Credits
Research / Collaborations

chapel-ang.org
chapel_info@cray.com

The Chapel Parallel Programmi

age

What is Chapel?

Chapel is @ modern programming language that is...
« parallel: contains first-class concepts for concurrent and parallel computation
« productive: designed with programmability and performance in mind
« portable: runs on laptops, clusters, the cloud, and HPC systems
« scalable: supports locality-oriented features for distributed memory systems
« open-source: hosted on GitHub, permissively licensed

New to Chapel?

As an introduction to Chapel, you may want to...

« read a blog_article or book chapter
« watch an overview talk or browse its slides

+ download the release

+ browse sample programs

« view other resources to learn how to trivially write distributed programs like this:

use CyclicDist; // use the Cyclic distribution Library
config const n « 109; // use --ne<val> when executing to override this defoult

forall {1 in {1..n) dmapped Cyclic(startldx=1) do
writeln("Hello from iteration *, i, " of “, n, ™ running on node *, here.id);

What's Hot?

« Chapel 1.17 is now available—download a copy or browse its release notes

« The advance program for CHIUW 2018 is now available—hope to see you there!

+ Chapel is proud to be a Rails Girls Summer of Code 2018 organization

« Watch talks from ACCU 2017, CHIUW 2017, and ATPESC 2016 on YouTube

« Browse slides from SIAM PP18, NWCPP, SealLang, SC17, and other recent talks
 Also see: What's New?

65

https://chapel-lang.org/

Chapel Online Documentation e~

https://chapel-lang.org/docs: ~200 pages, including primer examples

Chapel Documentation

Docs » Chapel Documentation View page source

version 117 ¥

Chapel Documentation

Compiling and Running Chapel

« Quickstart Instructions
+ Using Chapel
+ Platform-Specific Notes version 117 ¥

Chapel Documentation

Docs » Using Chapel View page source

« Technical Notes _ . Docs » Primers » Task Paralieism View page source
« Tools Using Chapel

=0) Task Parallelism
Writing Chapel Programs Contents: ey

& Using Chapel

Chapel Prerequisit

This primer illustrates Chape's paraliel tasking features, namely the segin , cobegin ,and coforall

Quick Reference
Hello World Variants
Primers

Chapel Prerequisites Setting up Your Environment for Cl Astements.

« Buildin apel

Setting up Your Environment for
Chape!

pil pel Programs

P3

M3

Language Specification
Built-in Types and Functions
Standard Modules
Package Modules
Standard Layouts and Distributions
Chapel Users Guide (WIP)

Building Chapel

« Executing Chapel Programs Begin Statements

+ Multilocale Chapel Execution

The segin sEatement sauwns 3 thread of enncution that is independent of the curren (=ais) thresd

+ Chapel Launchers

of exection

Executing Chapel Programs + Chapel Tasks

Multilocale Chapel Execution Debugging Chapel Prog

Reporting Chape

Chapel Launchers [pe— fren spmred tast)

The main thread of exseution continues & 1o the next statement. Ther
statement will execite first

O Previous uirantes a5 1o which

Language History

Debx

g8ing Chapel Programs

Reporting Chapel Iss

+ Chapel Evolution
« Archived Language Specifications

Cobegin Statements

© 2019 Cray Inc. (@ 66

https://chapel-lang.org/docs

Chapel Community cmas

S Questions DeveloperJobs Tags Users [chapel] vz O 9B 0 S

Tagged Questions votns

Chapel is a portable, open-source parallel programming language. Use this tag o ask questions about the Chapel
language of its implementaton
Leam more . improve tag #lo Top Users Synonyms

chapel-lang | chapel

6 Tuple Concatenation in Chapel Coce @ Issues 292 Pull requests 26 Projects © Settings Insights «
— Let's say tuples and | want theen as they come. How do | do this? The followings
does slemant-wise additon: If ts = (Yo", "cat’), = ("bar", "dog”) 1s += 1 pives ts =
Filters « iscissue is:open Labels Milestones Chaoe! sromararnis s [Fesk
tuples concaleraion addtion hpc chapel asked Jan 2 x apel programming language | Peal
Tahi
7 385 @ 2020pen v 77 Closed Author « Labels « Projects - Brian Dolan
\\/ h e what is the syntax for making a copy (not a reference] to an array?
T - oforall” for remote coforalls s Comper VWIICIC
6 Is there a way to use non-scalar values in functions with where clauses in Chapel? ‘type: Pertormance oy W Michael Ferguson
vorms T've beon trying out Chapel off and on over 1he past year or 50. | have used C and C++ briey in the past, bul #6257 cpened 13 hours ago by renswho ymmu ﬂltleS R new variable?
most of my experience is with dynamic languages such as Python, Ruby, and Erlang more . X -
D Consider using processor atomics for remote coforalls EndCount area: Comgiler th rive
chapel mshed Apr 23 8t 23:18 type: Pertormance Vs
ﬁ,"‘ g #6368 opaned 13 hours ago by romewho B0
=® 3303
7 v 1 make uninstall s BTR e Feture Regusst - Brian Dolan @buddt
#6353 cpened 14 hours ags by mop! oh, got it, thanks!
Is there any writef{) format specifier for a bool?
6 1 make check doe Michael Ferguson

't work with jconfigure sme 0TR

spened 16 hours &g

-

e 1locked at the writed() documentasion for any bool specifier and there didn't seem 10 be any. In a Chapel .
E program | have: .. config const veriy = false; /* that works but | want 1o use writef()

- . N L N () p.“iﬂﬂ variable via in intent to a forall loop seems to create an iteration-private variable,
Spel D Mo ain ot a task-private one ses: Compier

pened a day ago by cassela

https://stackoverflow.com/questions/tagged/chapel

Remove chpl_comm_make_progress ams: Runtime easy fpe Design

#6349 ooened & day o

Brian Dolan 314
isn'tthere a proc f(ref arr) {} aswell?

D Runtime error after make on Linux Mint amai8TR user issue

#6348 opaned 3 day o5 cians

Michael Ferguson
yes. The default intent for array is ref’ or ‘const ref” depending on if the function body modifies
it. S0 that's effectively the default.

m o
https://qitter.im/chapel-lang/chapel

https://github.com/chapel-lang/chapel/issues

read-only mailing list: chapel-announce@lists.sourceforge.net (~15 mails / year)

©2019 Cray Inc. C 67

=

https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues
https://gitter.im/chapel-lang/chapel

Chapel Social Media (no account required cRas

W Home

G Moments

Password

Emall o Phone
Likes Go to Facebook Home
200 ficenook P ——

 Chapel highlights

Following

48

Fallowors

278

— 74 76

Tweets Tueessrtes Mo | 22, ——
Chapel Language N
@ChapelLanguage # Poned Tweet -] =
. Sio Chapel Language ©ChapelLangu 0 L
Crmnr e e) o (\ , Unfamiiar with Chapet? Road a new int e N -
programming language designed = - Home. =
productive parallel kanguage on the *This is -/ @ ?hapel Parallel Programming Language
development is being led by Gcray inc tamonadtutodeloon — & Trending 72 subscribers
S Interview with Brad Cha} Programming e — T
3 256 Photos and videos productive parallel pro Language AL =4+ (3 - 0.5 /m)
S called Chapel @ChapelLanguage _-m.um, D Haory A playast of festured Chape presentations

Home P || e | @D ® Vchivier CHIUW 2017 keynote: Chapel's Home in the New Landscape of
Scientific Frameworks, Jonathan Dursi

e - 348 views 10m

Posts SUBSCRIPTIONS

Photos Posts

Q searel © Popularon YouTu
About
7% Chapel Programming Language Chapel B O e
i . Community Kt/ July 133t 10:14 AM - @ Software
http://twitter.com/ChapelLanguage | s wasc il Compuing Py PoerSound @ =
Programming Python User Group) meet-up, we'll be giving an Gaming
Info and Ads introduction to the Chapel language. Join us! Commul O
meetup. 19582/ e 228p

MORE FROM YOUTUBE

O YouTubeRed

Il Movies & Shows
0 Semigs -
™ Report history

https://www.youtube.com/channel/UCHmMmM27bYjhknKEmU7ZzPGsQ/

© 2019 Cray Inc. @ .

http://twitter.com/ChapelLanguage
http://facebook.com/ChapelLanguage
https://www.youtube.com/channel/UCHmm27bYjhknK5mU7ZzPGsQ/

Suggested Reading: Chapel history and overview ===~

Chapel chapter from Programming Models for Parallel Computing

» a detailed overview of Chapel’s history, motivating themes, features
 published by MIT Press, November 2015
« edited by Pavan Balaji (Argonne)

» chapter is also available online

© 2019 Cray Inc. C 69

https://mitpress.mit.edu/books/programming-models-parallel-computing
https://chapel-lang.org/publications/PMfPC-Chapel.pdf

Suggested Rea

IN

Chapel Comes of Age: Making

Progr ing P i

Bradford L. Chamberlain, Elliot Ronaghan, Ben Albrecht, Lydia Duncan, Michael Ferguson,
Ben Harshbarger, David Iten, David Keaton, Vassily Litvinov, Preston Sahabu, and Greg Titus
Chapel Team

Cray Inc.
Seattle, WA, USA
chapel_info@cray.com

Abmw_cmpd h 3 progrumming language whoeo goo
to support general-purpose parallel computing.
s ch-pel" lnvmd: can be thought of as combining
the strengths of Python, Fortran, C/C++, and MPI in a
single language. Five years ago, the DARPA High Productivity
Computing mmm (HPCS) program that launched Chapel
wnpvped p, the team embarked on a five-year effort
to improve peﬁnppu.lmendnnn ‘This paper follows
up on our CUG 2013 paper by summarizing the progress
made by the Chapel project since that time. Specifically,
Chapel’s performance now competes with or beats hand-coded
C+MPUSHMEM+OpenMP:; its suite of standard libraries has
grown to include FFTW, BLAS, LAPACK, MPI, ZMQ, and
other key technologies; its documentation has been modernized
and fleshed out; and the set of tools available to Chapel users
has grown. This paper also characterizes the experiences of
early adopters from communities as diverse as astrophysics
and artificial intelligence.

Keywords-Parallel programming; Computer languages
1. INTRODUCTION

Chapel is a programming language designed to support
productive, general-purpose parallel computing at scale.
Chapel’s approach can be thought of as striving to create
a language whose code is as attractive to read and write as
Python, yet which supports the performance of Fortran and
the scalability of MPL Chapel also aims to compete with C
in terms of portability, and with C++ in terms of flexibility
and extensibility. Chapel is designed to be general-purpose
in the sense that when you have a parallel algorithm in mind
and a parallel system on which you wish to run it, Chapel
should be able to handle that scenario.

Chapel’s design and implementation are led by Cray Inc.
with feedback and code contributed by users and the open-
source community. Though developed by Cray, Chapel’s
design and implementation are portable, permitting its pro-
grams o scale up from multicore laptops to commaodity
clusters to Cray systems. In addition, Chapel programs can
be run on cloud-computing platforms and HPC systems
from other vendors. Chapel is being developed in an open-
source manner under the Apache 2.0 license and is hosted
at GitHub.!

" hutps:/github.convchapel-lang/chapel

The development of the Chapel language was undertaken
by Cray Inc. as part of its participation in the DARPA High
Productivity Computing Systems program (HPCS). HPCS

up in late 2012, at which point Chapel was a com-
pelling prototype, having successfully demonstrated several
key research challenges that the project had undertaken.
Chief among these was supporting data- and task-parallelism
in a unified manner within a single language. This was
accomplished by supporting the creation of high-level data-
parallel abstractions like parallel loops and arrays in terms
of lower-level Chapel features such as classes, iterators, and

tasks.

Under HPCS, Chapel also successfully supported the ex-
pression of parallelism using distinct language features from
those used to control locality and affinity—that is, Chapel

programmers specify which computations should run in
parallel distinetly from specifying where those computations
should be run. This permits Chapel programs to support
multicore, multi-node, and heterogeneous computing within
a single unified language.

Chapel’s implementation under HPCS demonstrated that
the language could be implemented portably while still being
optimized for HPC-specific features such as the RDMA
support available in Cray® Gemini™ and Aries™ net-
works. This allows Chapel to take advantage of native
hardware support for remote puts, gets, and atomic memory
operations.

Despite these successes, at the close of HPCS, Chapel was
not at all ready to support production codes in the field. This
was not surprising given the language’s aggressive design
and modest-sized research team. However, reactions from
potential users were sufficiently positive that, in early 2013,
Cray embarked on a follow-up effort to improve Chapel
and move it towards being a production-ready language.
Colloquially, we refer to this effort as “the five-year push.”

‘This paper’s contribution is to describe the results of this
five-year effort, providing readers with an understanding of
Chapel’s progress and achievements since the end of the
HPCS program. In doing so, we directly compare the status
of Chapel version 1.17, released last month, with Chapel
version 1.7, which was released five years ago in April 2013.

Recent Progress (CUG 2018) ===~

available at chapel-lang.org

CRANY

Chapel Comes of Age:
Productive Parallelism at Scale
CUG 2018

Brad Chamberlain, Chapel Team, Cray Inc.

© 2019 Cray Inc.

=

€

70

https://chapel-lang.org/publications/cug2018-chapel.pdf
https://chapel-lang.org/publications/ChapelForCUG2018.pdf

et |

Y, / : T o
SAFE HARBOR <.'%éf€” SR
STATEMENT it :

This presentation may contain forward-looking
statements that are based on our current
expectations. Forward looking statements may
include statements about our financial
guidance and expected operating results, our
opportunities and future potential, our product
development and new product introduction
plans, our ability to expand and penetrate our
addressable markets and other statements
that are not historical facts.

These statements are only predictions and
actual results may materially vary from those
projected. Please refer to Cray's documents
filed with the SEC from time to time
concerning factors that could affect the
Company and these forward-looking
statements.

© 2019 Cray Inc.

Wapel-lang.

QUESTIONS?

cray.com

@cray_inc

linkedin.com/company/cray-inc-/

5 ¢ &

