CrayAI HPO

• Hyperparameter optimization framework (HPO)
 • Portable
 • Runs on desktops to clusters to cloud to supercomputers
 • Lightweight
 • Supports multiple ML toolkits
 • Distributed
 • Supports distributed HPO
 • Supports distributed model training
• Backend implemented in Chapel
• User-facing Python interface
Background: Hyperparameter Optimization
Background: Hyperparameters

- **Model parameters** – internal values in a model determined from data
 - In neural networks: weights (connection, bias)

- **Model hyperparameters** – external values to model that influence model capacity
 - In neural networks:
 - **Topology**:
 - Number of neurons in fully connected layers
 - Filters, kernel sizes, convolutional / pooling strides
 - **Training**:
 - Learning rate, batch size, momentum
 - Dropout probability, batch normalization
Background: Hyperparameter Optimization

- Manual HPO (by hand)
 - Hyperparameters are selected and tuned manually
 - Guided by intuition and rules of thumb
- Automated HPO
 - Brute-force of entire search space intractable
 - Evaluate a subspace
 - Grid search
 - Random search
 - Bayesian
 - Genetic / evolutionary algorithms
Background: Hyperparameter Optimization

• Finding a good set of hyperparameters can have a big impact:
 • Accuracy
 • Time-to-accuracy
 • Preventing overfitting
CrayAI HPO: Features & Interface
Components of CrayAI HPO workflow

• **Training kernel**
 • Model training program to be optimized
 • Hyperparameters exposed through command line arguments
 • *Figure of merit* exposed through stdout with a unique identifier
 • Can be written in *anything*
 • e.g., python + {TensorFlow, PyTorch, Keras,…}, R, Julia, …

• **HPO driver**
 • Program used to optimize hyperparameters of *training kernel*
 • This program calls the crayai.hpo library
 • Must be written in Python
Training Kernel

```
parser = argparse.ArgumentParser()
parser.add_argument('--lr', '-l', default=0.01, type=float, help='Learning Rate')
parser.add_argument('--dropout', '-d', nargs='?', default=0.5, type=float, help='Drop rate for layers')
args = parser.parse_args()

# constructing hidden layer 1
layer1 = tf.layers.Dense(units=layerSize[0], activation=tf.nn.relu, use_bias=True)
layer1out = tf.layers.dropout(inputs=layer1(inputs=trainInput), rate=FLAGS.dropout)

# constructing hidden layer 2
layer2 = tf.layers.Dense(units=layerSize[1], activation=tf.nn.sigmoid, use_bias=True)
layer2out = tf.layers.dropout(inputs=layer2(inputs=layer1out), rate=FLAGS.dropout)

trainOperation = tf.train.GradientDescentOptimizer(learning_rate=FLAGS.lr).minimize(loss=loss)
prediction = tf.argmax(output, 1)
evalPrediction = tf.argmax(evalOut, 1)

print("FoM: %e" % lossVal)
```
HPO Driver

```
#!/usr/bin/env python3
# encoding: utf-8

from crayai import hpo

evaluator = hpo.Evaluator('python source/train_model.py')

params = hpo.params([['--lr', 0.001, (1e-5, 0.1)],
                     ['--dropout', 0.5, (0.01, 1)]]

optimizer = hpo.genetic.Optimizer(evaluator,
                                   generations=20,
                                   pop_size=10,
                                   num_demes=4,
                                   log_fn='genetic.log')

optimizer.optimize(params)

print(optimizer.best_fom)
print(optimizer.best_params)
```
CrayAI HPO Feature Overview

Traditional HPO
- Grid
- Random
- Genetic

Schedule HPO
- Population Based Training
Results & Outlook
Example 1: LeNet and MNIST

• LeNet-5, 7 layers, 5 hidden:

• MNIST, 70k 28x28 greyscale images, 10 classes:
Example: LeNet and MNIST

- HPs Trained:
 - momentum
 - dropout
 - topology
 - c1sz, c1ft
 - c2sz, c2ft
 - fcSz

![Genetic Algorithm Hyperparameter Optimization
LeNet-5 Convolutional Deep Neural Network on MNIST](image)

- Shift Left: Reduce Time to Accuracy
- Original
- Evolved
- Fully Trained (99.3%)
Why Chapel?

• Chance to put weight on Chapel and demonstrate it is production-ready
• Motivates features in Chapel
 • Random sampling (available in 1.19)
 • Iterator tools (work in progress)
 • Launcher interfaces (work in progress)
• HPO implementation benefits from Chapel’s ease of use and modern features
 • Shared-memory parallelism
 • Atomics
 • Interoperability
 • Generics, type inference, memory-management…
What about performance and distributions?

- HPO algorithms are typically bottlenecked by evaluation
 - Majority of time spent on actual model training (kernel) and I/O
 - Each iteration is embarrassingly parallel
- CrayAI HPO interfaces with launchers rather than using distributed Chapel
 - Chapel assumes it owns a locale and could compete against model training
 - Launching a subprocess on a subset of locales is not yet supported
 - Current interface can create or use an existing allocation
- Distributed Chapel and performance will matter for future work
HPO as a Cray Product

• First Cray product developed in Chapel
 • Available in Urika XC 1.2 and Urika CS 1.1
 • Accessible through analytics module or crayai module:
 > module load crayai
 > module load analytics
• Receiving contributions from a growing list of Crayons outside of Chapel
• Being tested by Cray customers and partners
Chapel in a Cray Product

• Ramping up non-Chapel developers has been easy
• Language-breaking changes do occur
 • They have been relatively painless
 • Typically mechanical fixes
• We pro-actively test against last release and master branch to catch changes
Ongoing Work
Next Steps

• Continue improving HPO features and stability
 • Support more launchers
 • Improved Jupyter integration
 • Many feature requests from users
• Implement new strategies
 • Bayesian (PR currently under review)
• Open source
• Implement other AI workflow components
Next Steps: Bigger Picture

• Develop other pieces of the AI workflow
THANK YOU

QUESTIONS?

balbrecht@cray.com

github.com/ben-albrecht
References

• Population Based Training of Neural Networks
• Recombination of Artificial Neural Networks
 • https://arxiv.org/abs/1901.03900
• Random Search for Hyper-parameter Optimization
• The MNIST Database of Handwritten Digits (MNIST Dataset)
 http://yann.lecun.com/exdb/mnist/
• Gradient Based Learning Applied to Document Recognition (LeNet CNN)