Iterator-Based Optimization of Imperfectly-Nested Loops

DANIEL FESHBACH, MARY GLASER, MICHELLE STROUT, DAVID WONNACOTT
Overview

- Motivation: Approaches to Performance Tuning
- Quick overview of Polyhedral Model
- Quick review of Chapel Iterators
- Detailed Discussion of Deriche Image Processing Example
- Details of Nussinov are in paper (and past work)
- Details of FFT may be in future paper (we hope)
Performance tuning of compute-intensive code...

// Example (benchmark, simplified Physics)
// iterative Jacobi stencil

// Repeatedly update each A[i,j], based on
// previous values of it and neighbors

for t in 0..T-1 do
 for x in 1..N-2 do
 for y in 1..N-2 do
 A[(t+1)%2, x, y] =
 (A[t%2,x-1,y] + A[t%2,x,y-1] +
 A[t%2,x,y] + A[t%2,x,y+1] +
 A[t%2,x+1,y]) / 5;

// note: t%2 stores two time steps
Basic Approaches to Code Optimization

- Performance tuning of compute-intensive code...
- Compiler-writer: this is a compiler problem, fix compiler
 - Replace % operation with bit-mask, or hoist out of loop
 - Perform loop tiling to improve memory performance
 - Perform loop skewing to ensure loop tiling is legal
 - Also introduce vector instructions

// Example (benchmark, simplified Physics)
// iterative Jacobi stencil

// Repeatedly update each A[i,j], based on previous values of it and neighbors

for t in 0..T-1 do
 for x in 1..N-2 do
 for y in 1..N-2 do
 A[(t+1)%2, x, y] =
 (A[t%2,x-1,y] + A[t%2,x,y-1] +
 A[t%2,x ,y] + A[t%2,x,y+1] +
 A[t%2,x+1,y]) / 5;
 // note: t%2 stores two time steps
Basic Approaches to Code Optimization

- Performance tuning of compute-intensive code...

- Compiler-writer: this is a compiler problem, fix compiler
 - Replace % operation with bit-mask, or hoist out of loop
 - Perform loop tiling to improve memory performance
 - Perform loop skewing to ensure loop tiling is legal
 - Also introduce vector instructions
 - Then, update compiler to tile for multicore systems
 - Then, write another compiler for distributed memory
 - Then, write another compiler for GPGPU's

```cpp
// Example (benchmark, simplified Physics)
// iterative Jacobi stencil

// Repeatedly update each A[i,j], based on previous values of it and neighbors

for t in 0..T-1 do
  for x in 1..N-2 do
    for y in 1..N-2 do
      A[(t+1)%2, x, y] =
        (A[t%2,x-1,y] + A[t%2,x,y-1] +
         A[t%2,x ,y] + A[t%2,x,y+1] +
         A[t%2,x+1,y]) / 5;
    // note: t%2 stores two time steps
```
Basic Approaches to Code Optimization

- Performance tuning of compute-intensive code...

- Compiler-writer: this is a compiler problem, fix compiler
 - Replace % operation with bit-mask, or hoist out of loop
 - Perform loop tiling to improve memory performance
 - Perform loop skewing to ensure loop tiling is legal
 - Also introduce vector instructions
 - Then, update compiler to tile for multicore systems
 - Then, write another compiler for distributed memory
 - Then, write another compiler for GPGPU's

// Example (benchmark, simplified Physics)
// iterative Jacobi stencil

// Repeatedly update each A[i,j], based on previous values of it and neighbors

for t in 0..T-1 do
 for x in 1..N-2 do
 for y in 1..N-2 do
 A[(t+1)%2, x, y] =
 (A[t%2,x-1,y] + A[t%2,x,y-1] +
 A[t%2,x,y] + A[t%2,x,y+1] +
 A[t%2,x+1,y]) / 5;
// note: t%2 stores two time steps
Basic Approaches to Code Optimization

- Performance tuning of compute-intensive code...
- Compiler-writer: this is a compiler problem, fix compiler
 - Replace % operation with bit-mask, or hoist out of loop
 - Perform loop tiling to improve memory performance
 - Perform loop skewing to ensure loop tiling is legal
 - Also introduce vector instructions
 - Then, update compiler to tile for multicore systems
 - Then, write another compiler for distributed memory
 - Then, write another compiler for GPGPU's

// Example (benchmark, simplified Physics)
// iterative Jacobi stencil

```
// Repeatedly update each A[i,j], based on
// previous values of it and neighbors

for t in 0..T-1 do
  for x in 1..N-2 do
    for y in 1..N-2 do
      A[(t+1)%2, x, y] =
        (A[t%2,x-1,y] + A[t%2,x,y-1] +
         A[t%2,x   ,y] + A[t%2,x,y+1] +
         A[t%2,x+1,y]) / 5;
    // note: t%2 stores two time steps
```
Basic Approaches to Code Optimization

- Performance tuning of compute-intensive code...
- Compiler-writer: this is a compiler problem, fix compiler
- Physicist: this is a coding problem, give to grad student

// Example (actual code is more complex)
// iterative Jacobi stencil

// Repeatedly update each A[i,j], based on previous values of it and neighbors

for t in 0..T-1 do
 for x in 1..N-2 do
 for y in 1..N-2 do
 A[(t+1)%2, x, y] =
 (A[t%2,x-1,y] + A[t%2,x,y-1] +
 A[t%2,x,y] + A[t%2,x,y+1] +
 A[t%2,x+1,y]) / 5;
 // note: t%2 stores two time steps
Performance tuning of compute-intensive code...

Compiler-writer: this is a compiler problem, fix compiler

Physicist: this is a coding problem, give to grad student
 ✔ Grad student replaces or hoists %

// Example (actual code is more complex)
// iterative Jacobi stencil

// Repeatedly update each A[i,j], based on
// previous values of it and neighbors

for t in 0..T-1 do
 for x in 1..N-2 do
 for y in 1..N-2 do
 A[(t&1), x, y] = // t&1 == t%2

// note: t%2 stores two time steps
Basic Approaches to Code Optimization

- Performance tuning of compute-intensive code...
- Compiler-writer: this is a compiler problem, fix compiler
- Physicist: this is a coding problem, give to grad student
 - Grad student replaces or hoists %
 - Grad student may have heard of loop tiling, may try it

// Example (actual code is more complex)
// iterative Jacobi stencil

// Repeatedly update each A[i,j], based on previous values of it and neighbors

// Loop over tile wavefronts.
for kt in ceild(3,tau) .. floord(3*T,tau) {
 // The next two loops iterate within a tile wavefront.
 // Assumes a square iteration space.
 var k1_lb: int = floord(3*L+2+(kt-2)*tau, tau*3);
 var k1_ub: int = floord(3*U+(kt+2)*tau-2, tau*3);
 var k2_lb: int = floord((2*kt-2)*tau-3*U+2, tau*3);
 var k2_ub: int = floord((2+2*kt)*tau-3*L-2, tau*3);

 // Loops over tile coordinates within a parallel wavefront of
 forall k1 in k1_lb .. k1_ub {
 for x in k2_lb .. k2_ub {
 var k2 = x-k1;
 // Loop over time within a tile.
 for t in max(1,floord(kt*tau,3)) .. min(T,floord((3+kt)*tau-3,3)){
 write = t & 1; // equivalent to t mod 2
 read = 1 - write;
 // Loops over the spatial dimensions within each tile.
 for i in max(L,max((kt-k1-k2)*tau-t, 2*t-(2+k1+k2)*tau+2)) .. min(U,min((1+kt-k1-k2)*tau-t-1, 2*t-(k1+k2)*tau)) {
 for j in max(L,max(tau*k1-t, t-i-(1+k2)*tau+1)) .. min(U,min((1+kt-k1-k2)*tau-t-1, 2*t-(k1+k2)*tau)) {
 // note: t%2 stores two time steps
 }
 }
 }
 }
 }
}
Basic Approaches to Code Optimization

- Performance tuning of compute-intensive code...

- Compiler-writer: this is a compiler problem, fix compiler

- Physicist: this is a coding problem, give to grad student
 - Grad student replaces or hoists %
 - Grad student may have heard of loop tiling, may try it
 - Grad student spends nights reading about vectorization

// Example (actual code is more complex)
// iterative Jacobi stencil

// Repeatedly update each A[i,j], based on previous values of it and neighbors

// Loop over tile wavefronts.
for kt in ceil(3,tau) .. floor(3*T,tau) {
 // The next two loops iterate within a tile wavefront.
 // Assumes a square iteration space.
 var k1_lb: int = floor(3*L+2-(kt-2)*tau, tau*3);
 var k1_ub: int = floor(3*U+(kt+2)*tau-2, tau*3);
 var k2_lb: int = floor((2*kt-2)*tau-3*U+2, tau*3);
 var k2_ub: int = floor((2+2*kt)*tau-3*L-2, tau*3);
 // Loops over tile coordinates within a parallel wavefront of tiles.
 forall k1 in k1_lb .. k1_ub {
 for x in k2_lb .. k2_ub {
 var k2 = x-k1;
 // Loop over time within a tile.
 for t in max(1,floor((kt+3)*tau,3)) .. min(T,floor((3+kt)*tau-3,3)) {
 write = t & 1; // equivalent to t mod 2
 read = 1 - write;
 // Loops over the spatial dimensions within each tile.
 for i in max(L,max((kt-k1-k2)*tau-t, 2*t-(2+k1+k2)*tau)) .. min(U,min((1+kt-k1-k2)*tau-t-1, 2*t-(k1+k2)*tau)) {
 for j in max(L,max(tau*k1-t, t-i-(1+k2)*tau+1)) .. min(U,min((1+k1)*tau-t-1, t-i-k2*tau)) {
 }
 }
 }
 }
}

// iterative Jacobi stencil

// Repeatedly update each A[i,j], based on previous values of it and neighbors

// Loop over tile wavefronts.
for kt in ceil(3,tau) .. floor(3*T,tau) {
 // The next two loops iterate within a tile wavefront.
 // Assumes a square iteration space.
 var k1_lb: int = floor(3*L+2-(kt-2)*tau, tau*3);
 var k1_ub: int = floor(3*U+(kt+2)*tau-2, tau*3);
 var k2_lb: int = floor((2*kt-2)*tau-3*U+2, tau*3);
 var k2_ub: int = floor((2+2*kt)*tau-3*L-2, tau*3);
 // Loops over tile coordinates within a parallel wavefront of tiles.
 forall k1 in k1_lb .. k1_ub {
 for x in k2_lb .. k2_ub {
 var k2 = x-k1;
 // Loop over time within a tile.
 for t in max(1,floor((kt+3)*tau,3)) .. min(T,floor((3+kt)*tau-3,3)) {
 write = t & 1; // equivalent to t mod 2
 read = 1 - write;
 // Loops over the spatial dimensions within each tile.
 for i in max(L,max((kt-k1-k2)*tau-t, 2*t-(2+k1+k2)*tau)) .. min(U,min((1+kt-k1-k2)*tau-t-1, 2*t-(k1+k2)*tau)) {
 for j in max(L,max(tau*k1-t, t-i-(1+k2)*tau+1)) .. min(U,min((1+k1)*tau-t-1, t-i-k2*tau)) {
 }
 }
 }
 }
}
Basic Approaches to Code Optimization

- Performance tuning of compute-intensive code...
- Compiler-writer: this is a compiler problem, fix compiler
- Physicist: this is a coding problem, give to grad student
 - Grad student replaces or hoists %
 - Grad student may have heard of loop tiling, may try it
 - Grad student spends nights reading about vectorization
 - Next grad students can work on multicore, cluster, and GPGPU versions
- Formal or Ad-Hoc approach to software management

// Example (actual code is more complex)
// iterative Jacobi stencil

// Repeatedly update each A[i,j], based on previous values of it and neighbors

// Loop over tile wavefronts.
for kt in cell(d(3,tau) .. floor(3*T,tau)) {
 // The next two loops iterate within a tile wavefront.
 // Assumes a square iteration space.
 var k1_lb: int = floor((3*L+2+(kt-2)*tau, tau*3));
 var k1_ub: int = floor((3*U+(kt+2)*tau-2, tau*3));
 var k2_lb: int = floor((2*kt-2)*tau-3*U+2, tau*3);
 var k2_ub: int = floor((2+2*kt)*tau-3*L-2, tau*3);

 // Loops over tile coordinates within a parallel wavefront of tiles.
 forall k1 in k1_lb .. k1_ub {
 for x in k2_lb .. k2_ub {
 var k2 = x-k1;
 // Loop over time within a tile.
 for t in max(1,floor(k1*tau,3)) .. min(1,floor((3+kt)*tau-3,3)) {
 write = t & 1; // equivalent to t mod 2
 read = 1 - write;
 // Loops over the spatial dimensions within each tile.
 for i in max(L,max((kt-k1-k2)*tau-t, 2*t-(2+k1+k2)*tau+2)) .. min(U,min((1+kt-k1-k2)*tau-t-1, 2*t-(k1+k2)*tau)) {
 for j in max(L,max(tau*k1-t,t-i-(1+k2)*tau+1)) .. min(U,min((1+k1)*tau-t-1,t-i-k2*tau)) {
 }
 }
 }
 }
 }
}
Goal: Best of Both Worlds (in Chapel)

- Performance tuning of compute-intensive code...
- Compiler-writer: this is a compiler problem, fix compiler
- Physicist: this is a coding problem, give to grad student
- Can we combine the best elements of both worlds?
 - Think of compiler optimizer as a way to make clean code run fast (rather than a way to make some code run fast)
 - Not primarily a language/compiler comparison, but Chapel does seem appealing
 - first, a quick review of technologies...

```plaintext
// Example
// iterative Jacobi stencil

// Repeatedly update each A[i,j], based on previous values of it and neighbors

for (t, x, y) in Jacobi2d(T, N, N) do

  A_2s[t+1, x, y] =
    (A_2s[t,x-1,y] + A_2s[t,x,y-1] +
     A_2s[t,x,y] + A_2s[t,x,y+1] +
     A_2s[t,x+1,y]) / 5;

// note: A_2s stores two time steps
```
Polyhedral Model and Optimization

- Linear constraints on integer variables
- Integer Linear Programming/Presburger Arithmetic
- Efficient for simple subscripts and loop bounds

// Example success:
// iterative Jacobi stencil

// Repeatedly update each A[i,j], based on
// previous values of it and neighbors

for t in 0..T-1 do
 for x in 1..N-2 do
 for y in 1..N-2 do
 A[(t+1)%2, x, y] =
 (A[t%2, x-1, y] + A[t%2, x, y-1] +
 A[t%2, x, y] + A[t%2, x, y+1] +
 A[t%2, x+1, y]) / 5;
"Polyhedral Model" and Optimization

- Linear constraints on integer variables
 - Integer Linear Programming/Presburger Arithmetic
 - Efficient for simple subscripts and loop bounds

- Exact instance-wise array dataflow
 - For any execution of a line, which execution(s) of which line(s) produce the value under what conditions?

 e.g., iteration (1, 5, 10), i.e. when t=7, x=5, y=10
 the algorithm writes to A[1, 5, 10]
 using values from iterations (0, 4, 10), (0, 5, 9),
 (0, 5, 10), (0, 5, 11),
 and (0, 6, 10)
 if T-1 >= 1 and N-2 >= 5 and N-2 >= 10

 // Example success:
 // iterative Jacobi stencil

 // Repeatedly update each A[i,j], based on
 // previous values of it and neighbors

 for t in 0..T-1 do
 for x in 1..N-2 do
 for y in 1..N-2 do
 A[(t+1)%2, x, y] =
 (A[t%2,x-1,y] + A[t%2,x,y-1] +
 A[t%2,x ,y] + A[t%2,x,y+1] +
 A[t%2,x+1,y]) / 5;
"Polyhedral Model" and Optimization

- Linear constraints on integer variables
 - Integer Linear Programming/Presburger Arithmetic
 - Efficient for simple subscripts and loop bounds

- Exact instance-wise array dataflow
 - For any execution of a line, which execution(s) of which line(s) produce the value under what conditions?

- Extends beyond unimodular loop transformations by allowing imperfectly nested loops

// Example success:
// iterative Jacobi stencil

```plaintext
for t in 0..T-1 do
  for x in 1..N-2 do
    for y in 1..N-2 do
      A[(t+1)%2, x, y] = (A[t%2, x-1, y] + ...) / 5
```

// Equivalently, two arrays
```plaintext
for t in 0..T-1 do {
  for x in 1..N-2 do
    for y in 1..N-2 do
      new_A[x, y] = (A[x-1, y] + ...) / 5
  for x in 1..N-2 do
    for y in 1..N-2 do
      A[x, y] = new_A[x, y]
```
"Polyhedral Model" and Optimization

- Linear constraints on integer variables
 - Integer Linear Programming/Presburger Arithmetic
 - Efficient for **simple subscripts and loop bounds**

- Exact **Instance-wise** array dataflow
 - For any execution of a line, which execution(s) of which line(s) produce the value under what conditions?

- Extends beyond unimodular loop transformations by allowing **imperfectly nested loops**

- Allows search for/deduction of efficient schedules for many codes, but...

```plaintext
// Example success:
// iterative Jacobi stencil
for t in 0..T-1 do
  for x in 1..N-2 do
    for y in 1..N-2 do
      A[(t+1)%2, x, y] =
        (A[t%2,x-1,y] + A[t%2,x,y-1] +
        A[t%2,x  ,y] + A[t%2,x,y+1] +
        A[t%2,x+1,y]) / 5;

// Also handles imperfectly-nested code
// that builds new_A[i,j] from A[i,j]
// and neighbors (identical dataflow)
```
"Polyhedral Model" Limitations

- Allows search for/deduction of efficient schedules for many codes, but limited success with
 - non-linear subscript expressions,
 - e.g. fast fourier transform (Dataflow figure from Polat, Gokhan, et al., 2015, ETRI Journal, vol. 37, no. 4.)

```plaintext
// FFT
proc butterfly(wk1, wk2, wk3, X: D) {
    const i0 = D.low,
        i1 = i0 + D.stride,
        i2 = i1 + D.stride,
        i3 = i2 + D.stride;
    var x0 = X(i0) + X(i1),
        x1 = X(i0) - X(i1),
        x2 = X(i2) + X(i3),
        x3rot = (X(i2) - X(i3))*1.0i;
    X(i0) = x0 + x2;
    x0 -= x2;
    X(i2) = wk2 * x0;
    /// etc...
```
"Polyhedral Model" Limitations

- Allows search for/deduction of efficient schedules for many codes, but limited success with
 - non-linear subscript expressions, e.g. fast fourier transform
 - cases outside assumptions/search-space of optimizer, e.g. Nussinov's Algorithm (or Zuker's)

```plaintext
// Nussinov's Algorithm
// for predicting RNA secondary structure

for i in 1..(size-1) do
    for j in (size-i)..(size-1) do {
        for k in (size-1-i)..(j-1) do
            N[size-1-i,j] = max(N[size-1-i,j],
                N[size-1-i,k]+N[k+1,j]);
            N[size-i-1,j] = max(N[size-i-1,j],
                N[size-i,j-1]+ /* ... */);
    }
```
"Polyhedral Model" Limitations

- Allows search for/deduction of efficient schedules for many codes, but limited success with
 - non-linear subscript expressions,
 - e.g. fast fourier transform
 - cases outside assumptions/search-space of optimizer
 - e.g. Nussinov’s Algorithm (or Zuker’s)
 - cases that require data-space transformation
 - e.g. Deriche image filtering algorithm

```c
// Deriche.c [YP15], Chapel-ized [Glaser '18]
for i in 0..w-1 {
    ym1 = 0.0; ym2 = 0.0; xm1 = 0.0;
    for j in 0..h-1 {
        y1[i,j] = a1*imgIn[i,j]+a2*xm1+b1*ym1+b2*ym2;
        xm1=imgIn[i,j]; ym2=ym1; ym1=y1[i,j];
    }
}
// for i in 0..w-1
// for j in 0..h-1 by -1
// build y2, similarly to above
for i in 0..w-1
    for j in 0..h-1
        imgOut[i,j] = c1 * (y1[i,j] + y2[i,j]);
// three j/i loop nests for horizontal sweep
```
Varying Execution Order without Iterators

Faster in Machine 1:
for row = 1 to N {
 for col = 1 to N {
 a[row][col] = b[row][col] + c[row][col]; }
}

Faster in Machine 2:
for col = 1 to N {
 for row = 1 to N {
 a[row][col] = b[row][col] + c[row][col]; }
}

if Machine 1 {
 for row = 1 to N {
 for col = 1 to N {
 a[row][col] = b[row][col] + c[row][col]; }
 }
} else if Machine 2 {
 for col = 1 to N {
 for row = 1 to N {
 a[row][col] = b[row][col] + c[row][col]; }
 }
}
Iterators to Abstract Execution Order

```python
iter rowMajor(N) {
    for row = 1 to N {
        for col = 1 to N {
            yield (row, col);
        }
    }
}

iter colMajor(N) {
    for col = 1 to N {
        for row = 1 to N {
            yield (row, col);
        }
    }
}

if Machine 1 {
    bestMatrixOrder = rowMajor;
} else if Machine 2 {
    bestMatrixOrder = colMajor;
}

for (row, col) in bestMatrixOrder(N) {
    a[row][col] = b[row][col] + c[row][col];
}
```
Iterators for Imperfect Loop Nests

for \(i \) in \([0..w-1]\) {
 \(ym1 = 0.0; \ ym2 = 0.0; \ xm1 = 0.0; \)
for \(j \) in \([0..h-1]\) {
 \(y1[i,j] = a1*imgIn[i,j] + a2*xm1 \)
 + \(b1*ym1 + b2*ym2; \)
 \(xm1 = imgIn[i,j]; \ ym2 = ym1; \ ym1 = y1[i,j]; \)
}
Iteration-Space Performance Tuning

- **Loop body** expresses core computation
- **Iterator** expresses the loop transformation
- **Record** (or class) expresses the storage transformation
- This lets the **programmer** explore possible optimizations
- It needs limited help from the **compiler**
 - Enables performance (good basic optimizations, emphasis on a few specifics)
 - Could confirm legality of transformations in most cases (easier than optimizing)
Deriche Image Processing Algorithm

- PolyBench suite: challenge problems for Polyhedral compilers
- Edge detection and smoothing to 2D images
- Computational core: six doubly-nested loops
- Challenges:
 - (No problem with non-affine subscripts.)
 - May be hard to find best iteration order?
 - Best iteration order requires data transform

```c
// Deriche.c [YP15], Chapel-ized [Glaser '18]
for i in 0..w-1 {
    ym1 = 0.0;  ym2 = 0.0;  xm1 = 0.0;
    for j in 0..h-1 {
        y1[i,j] = a1*imgIn[i,j]+a2*xm1+b1*ym1+b2*ym2;
        xm1=imgIn[i,j];  ym2=ym1;  ym1=y1[i,j];  }
}

// for i in 0..w-1
//   for j in 0..h-1 by -1
//      build y2, similarly to above
for i in 0..w-1
    for j in 0..h-1
        imgOut[i,j] = c1 * (y1[i,j] + y2[i,j]);

// three j/i loop nests for horizontal sweep
```
Deriche Data Flow

column by column passes

row by row passes
Two Phases

iter deriche_iterations(w: int, h: int): (int, int, int) {
 for i in 0..w-1 {
 for j in 0..h-1
 yield (0, i, j);
 for j in 0..h-1 by -1
 yield (1, i, j);
 for j in 0..h-1
 yield (2, i, j);
 }
 for j in 0..h-1 {
 for i in 0..w-1
 yield (3, i, j);
 for i in 0..w-1 by -1
 yield (4, i, j);
 for i in 0..w-1
 yield (5, i, j);
 }
}
Two Phases (Detail)

Phase One: column by column pass
Note: store only one column of each array at a time
Storage Transformations: Chapel Records

y_1 abstraction:
A 2-dimensional image

(y_2, x_1, x_2 are similar)

y_1 representation:
Could be 2-d array
Could be 1-d vector
Could be per-core vector

(y_2, x_1, x_2 can be similar)

This one is more likely to fit in cache!
Main Code for Optimizable Deriche

// Deriche.c [YP15], Chapel-ized [Glaser '18]

for i in 0..w-1 {
 ym1 = 0.0; ym2 = 0.0; xm1 = 0.0;
 for j in 0..h-1 {
 y1[i,j] = a1*imgIn[i,j] + a2*xm1 + b1*ym1 + b2*ym2;
 xm1 = imgIn[i,j];
 ym2 = ym1;
 ym1 = y1[i,j];
 }
}

// for i in 0..w-1
// for j in 0..h-1 by -1
// build y2, similarly to above

for i in 0..w-1
 for j in 0..h-1
 imgOut[i,j] = c1 * (y1[i,j] + y2[i,j]);

// three j/i loop nests for horizontal sweep

// Optimizable Deriche [Glaser '18]

for (statement,i,j) in deriche_iterations(w,h) {
 if (statement == 0)
 y1.set(i,j, a1*imgIn.get(i,j) + a2*imgIn.jlower(i,j) + b1*y1.jlower(i,j) + b2*y1.jlowerlower(i,j));
 else if (statement == 1)
 y2.set(i,j, a3*imgIn.jhigher(i,j) + ...);
 else if (statement == 2)
 imgMid.set(i,j, c1*(y1.get(i,j)+y2.get(i,j)));
}

// stmts 3,4 build intermediate arrays from imgMid
// stmt 5 then builds final imgOut from those

Checking for Correctness

- Static Check possible in Compiler
 - Apply Polyhedral Model's tests
 - Assume simplest iterator/storage is correct
- Dynamic check via "careful arrays"
 - Check correctness at runtime
- See paper for details

"Careful Array" [Feshbach]
stores value at each row, e.g. 1.1
stores index of last write, e.g. (3, 5)

read y1[3,5]: good
read y1[2,5]: error
read y1[4,5]: error
Table of Results (See Mary Glaser's thesis)

<table>
<thead>
<tr>
<th>Array sizes</th>
<th>Original C</th>
<th></th>
<th>Original Chapel</th>
<th></th>
<th>Two phases, scalars</th>
<th></th>
<th>Two phases, vectors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Seconds</td>
<td>MFLOPS</td>
<td>Seconds</td>
<td>MFLOPS</td>
<td>Seconds</td>
<td>MFLOPS</td>
<td>Seconds</td>
<td>MFLOPS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wxh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64x64</td>
<td>0.000110</td>
<td>1192.53</td>
<td>0.000036</td>
<td>3641.71</td>
<td>5.90e-5</td>
<td>2221.56</td>
<td>6.20e-5</td>
<td>2114.06</td>
</tr>
<tr>
<td>192x128</td>
<td>0.000682</td>
<td>1152.93</td>
<td>0.000265</td>
<td>2966.91</td>
<td>4.40e-4</td>
<td>1787.35</td>
<td>3.19e-4</td>
<td>2465.30</td>
</tr>
<tr>
<td>720x480</td>
<td>0.009089</td>
<td>1216.77</td>
<td>0.012636</td>
<td>875.23</td>
<td>1.49e-2</td>
<td>741.03</td>
<td>5.01e-3</td>
<td>2209.19</td>
</tr>
<tr>
<td>1680x1320</td>
<td>0.071262</td>
<td>995.81</td>
<td>0.087314</td>
<td>812.74</td>
<td>8.74e-2</td>
<td>812.32</td>
<td>2.94e-2</td>
<td>2415.85</td>
</tr>
<tr>
<td>4000x4000</td>
<td>0.544893</td>
<td>939.63</td>
<td>0.670132</td>
<td>764.03</td>
<td>8.10e-1</td>
<td>631.93</td>
<td>2.41e-1</td>
<td>2122.64</td>
</tr>
<tr>
<td>8000x6600</td>
<td>1.922052</td>
<td>879.06</td>
<td>2.124119</td>
<td>795.44</td>
<td>2.22</td>
<td>762.17</td>
<td>7.37e-1</td>
<td>2293.51</td>
</tr>
<tr>
<td>7700x9900</td>
<td>2.922805</td>
<td>834.60</td>
<td>3.177009</td>
<td>767.82</td>
<td>2.59</td>
<td>778.59</td>
<td>9.30e-1</td>
<td>2167.27</td>
</tr>
</tbody>
</table>
MFLOPS Graph (see Mary Glaser's Thesis)
Conclusions/Take-Away Messages

- Iterator-based Performance Tuning of Dense Array Codes:
 - When polyhedral approach works, Chapel matches C using best known tiling
 - [Bertolacci et. al, ICS '15]
 - Works fine for imperfectly nested loops
 - Allows manual search for good (best?) iteration order in Deriche
 - Associated record definition can express data transformation
 - (In principle, should work for non-affine subscripts ... work in progress)
 - Iterator/record abstractions allow static or run-time correctness checking
 - Our Iterator/record combination runs faster than automatically-optimized C
Related and Future Work

Related Work

- Improving polyhedral compilers
 - good, but not done yet, at least three distinct major challenges
- Programmer-directed tools (AlphaZ, CHILL, etc.)
 - good, but requires tool-specific learning, additional software to update

Future Work

- More benchmarks, including FFT
- Implement static correctness check
- More optimizations: multi-core, distributed/cluster computing, vectorizing
- Sparse computations
- Questions?