
Tales from the Trenches: Whipping Chapel Performance into Shape
Ben Harshbarger, Elliot Ronaghan, Greg Titus

Chapel team, Cray Inc., Seattle WA, USA
{bharshbarg, eronagha, gbt}@cray.com

This talk will detail performance improvements made to Chapel in recent releases and will showcase several
benchmarks that now perform as well as hand-coded C, OpenMP, and MPI reference versions. Historically, poor
performance has been a stumbling block to Chapel’s adoption, but we believe these performance advances
demonstrate that Chapel is sufficiently fast for early adopters and show that a productive programing language like
Chapel can still achieve high performance without sacrificing elegance or readability.

As a result of improving array access times, reducing task-spawning overheads, and improving NUMA affinity,
Chapel's performance for the Livermore Compiler Analysis Loop Suite (LCALS) is now on par with the reference C
and OpenMP implementations for most serial and parallel kernels (Figure 1). LCALS is a collection of loop kernels
that emphasize floating-point operations, dense array manipulation, and other operations commonly found at the heart
of many HPC applications.

Figure 1: Execution Times for Chapel version 1.16 (in orange) on the LCALS serial and parallel loop kernels, normalized to the
reference C+OpenMP times (in blue).

As another point of comparison for single-locale applications, Chapel's entries in the Computer Language Benchmarks
Game tend to be as concise as the entries in scripting languages like Python, Ruby, and Javascript while resulting in
performance that competes with or beats C, C++, and Fortran, as well as more modern languages like Go, Rust, and
Swift (see Figure 2). For our entries, we strove to submit elegant and non-heroic implementations to demonstrate that
productive and concise code can still perform well.

Figure 2: Scatter plots of the geometric means of the fastest and smallest Computer Language Benchmarks Game entries in
dozens of languages, normalized to the fastest and smallest programs in any language. Being closer to the x-axis means that a

language’s programs are faster. Being closer to the y-axis suggests that they are more compact. Note Chapel’s unique position
down and to the left relative to other languages, indicating a unique combination of performance and conciseness.

0
0.2
0.4
0.6
0.8
1

1.2
1.4

LCALS	Serial	Loops:	Normalized	Execution	Time
(long	size)

reference

Chapel	1.16

0

0.5

1

1.5

2

2.5

3

LCALS	Parallel	Loops:	Normalized	Execution	Time
(Long	Size)

reference

Chapel	1.16

For multi-locale applications, Chapel implementations of Stream Triad, Random Access (RA), the Intel Parallel
Research Kernels (PRK) Stencil benchmark, and ISx (a bucket-exchange sort/histogram proxy application) perform
on par with reference versions that are written in C+MPI or C+SHMEM (Figure 3).

Performance parity for these benchmarks was achieved through a variety of optimizations including remote task-
spawning improvements, bulk-communication enhancements, dynamic memory registration, runtime optimizations,
and array locality tuning.

The graphs in Figure 3 show results up to 256 nodes (36 cores per node) on a Cray XC. For the talk, we plan to gather
results at even higher node counts on a Cray XC at NERSC (between 512 and 2056 nodes depending on machine
availability.)

Figure 3: Performance scalability graphs for HPCC STREAM Triad, HPCC Random Access, PRK Stencil, and ISx as compared
to C + MPI/SHMEM [+OpenMP].

HPCC Stream Triad: Chapel vs. MPI+OpenMP

Copyright 2017 Cray Inc.
14
0

�

����

�����

�����

�����

�����

�� �� �� ��� ���

�
�
��

�������

����������� �� ������
���������������������

���������
���� ��

���� ��
���� ������

���� ������

b
et

te
r

�

���

�

���

�

���

�� �� �� ��� ���

�
�
�
��

�������

����������� �� �� ���������

��� ��� ������������
��� ��� ���������

���� ���
���� ��� ��������������

HPCC RA Performance: Chapel vs. MPI

Copyright 2017 Cray Inc.

(x 36 cores per locale)

14
1

b
et

te
r

Stencil PRK Scalability

Copyright 2017 Cray Inc.
11
0

be
tt

er

0

2000

4000

6000

8000

10000

12000

16 32 64 128 256

G
Fl
o
p
s/
s

Locales

Stencil PRK Performance (weak scaling)

MPI+OpenMP Chapel

Isx Peformance: Chapel vs. MPI, SHMEM

Copyright 2017 Cray Inc.
14
2

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64

T
im

e
 (

s
e
c
o
n
d
s
)

Nodes

ISx weakISO Total Time

SHMEM

Chapel

MPI

(x 36 cores per node)

b
e
tt

e
r

