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This talk will detail performance improvements made to Chapel in recent releases and will showcase several 
benchmarks that now perform as well as hand-coded C, OpenMP, and MPI reference versions. Historically, poor 
performance has been a stumbling block to Chapel’s adoption, but we believe these performance advances 
demonstrate that Chapel is sufficiently fast for early adopters and show that a productive programing language like 
Chapel can still achieve high performance without sacrificing elegance or readability. 
 
As a result of improving array access times, reducing task-spawning overheads, and improving NUMA affinity, 
Chapel's performance for the Livermore Compiler Analysis Loop Suite (LCALS) is now on par with the reference C 
and OpenMP implementations for most serial and parallel kernels (Figure 1). LCALS is a collection of loop kernels 
that emphasize floating-point operations, dense array manipulation, and other operations commonly found at the heart 
of many HPC applications. 
 

                   
 

Figure 1: Execution Times for Chapel version 1.16 (in orange) on the LCALS serial and parallel loop kernels, normalized to the 
reference C+OpenMP times (in blue). 

 
 

As another point of comparison for single-locale applications, Chapel's entries in the Computer Language Benchmarks 
Game tend to be as concise as the entries in scripting languages like Python, Ruby, and Javascript while resulting in 
performance that competes with or beats C, C++, and Fortran, as well as more modern languages like Go, Rust, and 
Swift (see Figure 2). For our entries, we strove to submit elegant and non-heroic implementations to demonstrate that 
productive and concise code can still perform well.  
 

    
 

Figure 2: Scatter plots of the geometric means of the fastest and smallest Computer Language Benchmarks Game entries in 
dozens of languages, normalized to the fastest and smallest programs in any language.  Being closer to the x-axis means that a 

language’s programs are faster.  Being closer to the y-axis suggests that they are more compact.  Note Chapel’s unique position 
down and to the left relative to other languages, indicating a unique combination of performance and conciseness. 
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For multi-locale applications, Chapel implementations of Stream Triad, Random Access (RA), the Intel Parallel 
Research Kernels (PRK) Stencil benchmark, and ISx (a bucket-exchange sort/histogram proxy application) perform 
on par with reference versions that are written in C+MPI or C+SHMEM (Figure 3). 
 
Performance parity for these benchmarks was achieved through a variety of optimizations including remote task-
spawning improvements, bulk-communication enhancements, dynamic memory registration, runtime optimizations, 
and array locality tuning. 
 
The graphs in Figure 3 show results up to 256 nodes (36 cores per node) on a Cray XC. For the talk, we plan to gather 
results at even higher node counts on a Cray XC at NERSC (between 512 and 2056 nodes depending on machine 
availability.)  
 
 

     
 

  
 

Figure 3: Performance scalability graphs for HPCC STREAM Triad, HPCC Random Access, PRK Stencil, and ISx as compared 
to C + MPI/SHMEM [+OpenMP]. 

 

HPCC Stream Triad: Chapel vs. MPI+OpenMP
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HPCC RA Performance: Chapel vs. MPI
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Isx Peformance: Chapel vs. MPI, SHMEM
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