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1.) Motivation: Tensors + Chapel

* Why focus on Chapel for this work?

— Tensor decompositions algorithms are complex
and immature

* Expressiveness and simplicity of Chapel would promote
maintainable and extensible code

* High performance is crucial as well
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1.) Motivation: Tensors + Chapel

* Why focus on Chapel for this work?

— Tensor decompositions algorithms are complex
and immature

* Expressiveness and simplicity of Chapel would promote
maintainable and extensible code

* High performance is crucial as well

— Existing tensor tools are based on C/C++ and
OpenMP+MPI

* No implementations within Chapel (or similar
framework)
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1.) Background: Tensors

* Tensors: Multidimensional arrays

— Typically very large and sparse

* Can have billions of non-zeros and densities on the
order of 10-10

COMPUTER SCIENCE - RN
VVVVVVVVVVVVVVVVVVVV X ‘.» X
The Laboratory for Physical Scie




1.) Background: Tensors

* Tensors: Multidimensional arrays

— Typically very large and sparse

* Can have billions of non-zeros and densities on the
order of 10-10

* Tensor Decomposition:

— Higher-order extension of matrix singular value
decomposition (SVD)

— CP-ALS: Alternating Least Squares

e Critical routine: Matricized tensor times Khatri-Rao
product (MTTKRP)
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1.) Background: SPLATT

* SPLATT: The Surprisingly ParalleL spArse Tensor Toolkit
— Developed by University of Minnesota (Smith, Karypis)
— Written in C with OpenMP+MPI hybrid parallelism

* Current state of the art in tensor decomp.

* We focus on SPLATT’s the shared-memory (single
locale) implementation of CP-ALS for this work

* Porting SPLATT to Chapel serves as a “stress test” for
Chapel

— File 1/0O, BLAS/LAPACK interface, custom data structures
and non-trivial parallelized routines
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Porting SPLATT to Chapel




2.) Porting SPLATT to Chapel: Overview

* Goal: simplify SPLATT code when applicable
but preserve original implementation and
design

* Single-locale port
— Multi-locale port left for future work

* Mostly a straightforward port

— However, there were some cases that required
extra effort to port: mutex/locks, work sharing
constructs, jagged arrays




2.) Porting SPLATT to Chapel:

Mutex Pool

e SPLATT uses a mutex pool for some of the parallel
MTTKRP routines to synchronize access to matrix rows

* Chapel currently does not have a native lock/mutex
module
— Can recreate behavior with sync or atomic variables

— We originally used sync variables, but later switched to
atomic (see Performance Evaluation section).

—

proc set(pool : [] atomic bool, lockID : int) {
while pool[lockID].testAndSet () {
chpl_task_yield();
}
}
proc unset (pool : [] atomic bool, lockID : int) {
pool[lockID] .clear();
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4.) Performance Evaluation: Set Up

* Compare performance of Chapel port of
original C/OpenMP code

* Default Chapel 1.16 build (Qthreads,
jemalloc)

* OpenBLAS for BLAS/LAPACK

* Ensured both C and Chapel code utilize same
# of threads for each trial

— OMP_NUM_THREADS
— CHPL_RT_NUM_THREADS_PER_LOCALE




4.) Performance Evaluation : Datasets

e e )

YELP 41k x 11k x 75k 8 million 1.97E-7 240 MB
RATE-BEER 27k x 105k x 262k 62 million 8.3E-8 1.85 GB
BEER-ADVOCATE 31k x 61k x 182k 63 million 1.84E-7 1.88 GB
NELL-2 12k x 9k x 29k 77 million 2.4E-5 2.3GB
NETFLIX 480k x 18k x 2k 100 million 5.4E-6 3 GB

See paper for more details on data sets
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4.) Performance Evaluation: Summary

* Profiled and analyzed Chapel code

— Initial code exhibited very poor performance

* |dentified 3 major bottlenecks
— MTTKRP: up to 163x slower than C code
— Matrix inverse: up to 20x slower than C code
— Sorting (refer to paper for details)

» After modifications to initial code

— Achieved competitive performance to C code




4.) Performance Evaluation :
MTTKRP Optlmlzatlons Matrix Row Accessing

1 double xmat = ...; // row—-major 1D array
2 double xrow = mat + (ix ~ols) Original C: number of cols is small (35)
: ‘Orr(gﬁjjj - 0 § < cols; 3+4) | but number of rows is large (tensor dims)

5 }



4.) Performance Evaluation :
MTTKRP Optimizations: Matrix Row Accessing

double =xmat row-major 1D array

2 double srow = mat + (ixcols); Original C: number of cols is small (35)
’ ‘F‘Ir(é;tmj = 0i ] < colsi J++) { but number of rows is large (tensor dims)

5 }

2 ref row = mat[i,0..cols-1];

5}

var mat [0..rows-1,0..cols-1] = ...; . . .
Initial Chapel: use slicing to get row

3 for j in 0..cols-1 { reference = very slow since cost of slicing is
row[J]... not amortized by computation on each slice




4.) Performance Evaluation :
MTTKRP Optimizations: Matrix Row Accessing

double =xmat

r e A < L 1L - Al L

2 double srow = mat + (ixcols); | Original C: number of cols is small (35)
3 for(int j = 0; 3 cols; Jj+ i i
, B Sl e i but number of rows is large (tensor dims)
5 )
var mat [0..rows-1,0..cols-1] = ...; . . .
2 ref row = mat[i,0..cols—1]; Initial Chapel: use slicing to get row

3 for j in 0..cols-1 { reference = very slow since cost of slicing is
row[Jl... not amortized by computation on each slice

}

s ?at 1 [8' 'rg‘fs‘i' C{] LRI 2D Index: use (i,j) index into original matrix
2 ITO ir « « Cf S—
rowli,3]... instead of getting row reference = 17x

} speed up over initial MTTKRP code
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4.) Performance Evaluation :
MTTKRP Optimizations: Matrix Row Accessing

double =xmat

r e a < L 1L - Al L

double xrow = mat + (ixcols); Original C: number of cols is small (35)
‘léé:t[j]j = 0i J < colsi J++) { but number of rows is large (tensor dims)
}
var mat [0..rows-1,0..cols-1] = ...; . . .
ref row = matl[i,O0..cols—11; Initial Chapel: use slicing to get row
for j in 0..cols-1 { reference = very slow since cost of slicing is
: rowl]l... not amortized by computation on each slice
s Tat _1 [g 'rg’fs‘i' :{] cela=l ) = oo 2D Index: use (i,j) index into original matrix
2 TO J 1I - - S— . q

rowli,3]... instead of getting row reference = 17x
} speed up over initial MTTKRP code
var mat [0..rows-1,0..cols-1] = ...;
var matPtr = c_ptrTo(mat);
var row = matPtr + (ixcols); Pointer: more direct C translation 2 1.26x
for j in 0..cols-1 { speed up over 2D indexing

row[]j]...
}
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4.) Performance Evaluation :

MTTKRP Optimizations: Mutex/Locks

* YELP requires the use of locks during the MTTKRP and
NELL-2 does not

— Decision whether to use locks is highly dependent on
tensor properties and number of threads used
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4.) Performance Evaluation :

MTTKRP Optimizations: Mutex/Locks

* YELP requires the use of locks during the MTTKRP and
NELL-2 does not

— Decision whether to use locks is highly dependent on
tensor properties and number of threads used

* [|nitially used sync vars
— MTTKRP critical regions are short and fast
* Not well suited for how sync vars are implemented in Qthreads

— Switched to atomic vars
* Up to 14x improvement on YELP
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4.) Performance Evaluation :

MTTKRP Optimizations: Mutex/Locks

* YELP requires the use of locks during the MTTKRP and
NELL-2 does not

— Decision whether to use locks is highly dependent on
tensor properties and number of threads used

* [|nitially used sync vars
— MTTKRP critical regions are short and fast
* Not well suited for how sync vars are implemented in Qthreads

— Switched to atomic vars
* Up to 14x improvement on YELP

* FIFO w/ sync vars competitive with Qthreads w/
atomic vars

— Troubling: just recompiling the code can drastically alter
performance
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time - seconds

Chapel MTTKRP Runtime
sync vars VS atomic vars
YELP
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4.) Performance Evaluation :

Matrix Inverse (OpenBLAS/OpenMP)

* SPLATT uses LAPACK routines to compute
matrix inverse

— Experiments used OpenBLAS, parallelized via
OpenMP




4.) Performance Evaluation :

Matrix Inverse (OpenBLAS/OpenMP)

* SPLATT uses LAPACK routines to compute
matrix inverse

— Experiments used OpenBLAS, parallelized via
OpenMP
* Observed 15x slow down in matrix inverse
runtime for Chapel when using 32 threads
(OpenMP and Qthreads)

* Issue: interaction of Qthreads and OpenMP is
messy




4.) Performance Evaluation :
Matrix Inverse (OpenBLAS/OpenMP) cont.

* Problem: OpenMP and Qthreads stomp over
each other
* Reason: Default =2 Qthreads pinned to cores

— OpenMP threads all end up on 1 core due to how
Qthreads uses sched_setaffinity

* Result: Huge performance loss for OpenMP
routine




4.) Performance Evaluation :

Matrix Inverse (OpenBLAS/OpenMP) cont.
* Try: Explicitly bind OpenMP threads to cores

* Result: Chapel will fall back to only using 1
thread




4.) Performance Evaluation :

Matrix Inverse (OpenBLAS/OpenMP) cont.

* Try: Explicitly bind OpenMP threads to cores

* Result: Chapel will fall back to only using 1
thread

* Reason: Same as OpenMP in previous slide

— Difference: Chapel detects this over subscription and
will prevent it by only using 1 thread




4.) Performance Evaluation :

Matrix Inverse (OpenBLAS/OpenMP) cont.
* Try: Explicitly bind OpenMP threads to cores

* Result: Chapel will fall back to only using 1
thread

* Reason: Same as OpenMP in previous slide

— Difference: Chapel detects this over subscription and
will prevent it by only using 1 thread

* Problem: Not always clear to users

— |f CHPL_RT_NUM_THREADS PER _LOCALE is set, then
a warning is displayed about falling back to 1 thread

— If not, users expect default (# threads == # cores) but
only a single thread is used and no warning given
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4.) Performance Evaluation :
Matrix Inverse (OpenBLAS/OpenMP) cont.

* Attempted solutions:
—1.) QT_AFFINITY=no, QT_SPINCOUNT=300

— 2.) Remove Chapel over subscription
warning/check and allow both Qthreads and
OpenMP threads to bind to cores




4.) Performance Evaluation :
Matrix Inverse (OpenBLAS/OpenMP) cont.

* Attempted solutions:
—1.) QT_AFFINITY=no, QT_SPINCOUNT=300

— 2.) Remove Chapel over subscription
warning/check and allow both Qthreads and
OpenMP threads to bind to cores

* Overall Results:

— (1) and (2) provided roughly equal improvement
of OpenMP runtime but still 4x slower than the C
code




4.) Performance Evaluation :

Matrix Inverse (OpenBLAS/OpenMP) cont.

 Another issue:

— Improving OpenMP runtime caused a 7 to 13x slow
down in a Chapel routine that followed

— Still resource contention on cores
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4.) Performance Evaluation :

Matrix Inverse (OpenBLAS/OpenMP) cont.

 Another issue:

— Improving OpenMP runtime caused a 7 to 13x slow
down in a Chapel routine that followed

— Still resource contention on cores

* No clear solution to overcome issues

— We set OMP_NUM_THREADS=1 for Chapel runs
since OpenMP runtime is generally negligible

COMPUTER SCIENCE - RN
|||||||||||||||||||| X ‘.» X
The Laboratory for Physical Scie




4.) Performance Evaluation :

Matrix Inverse (OpenBLAS/OpenMP) cont.

 Another issue:

— Improving OpenMP runtime caused a 7 to 13x slow
down in a Chapel routine that followed

— Still resource contention on cores

* No clear solution to overcome issues

— We set OMP_NUM_THREADS=1 for Chapel runs
since OpenMP runtime is generally negligible

* Brings up crucial question regarding library
integration:

— When does it make sense to provide native Chapel
implementations rather than integrate with existing
libraries?
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5.) Conclusions

Implemented parallel sparse tensor decomposition in Chapel
Identified bottlenecks in code

— Array slicing

— sync vs atomic variables for locks

— Conflicts between OpenMP and Qthreads

* Achieved 83-96% of the original C/OpenMP performance after
modifications to initial port

* Suggestions for Chapel:
— Create a mutex/lock library

— More documentation/experiments with integrating 3" party code
that utilize different threading libraries

*  Future work:
— Multi-locale version

— Closer inspection of code to make it more Chapel-like
*  Will the performance suffer or improve?
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Questions

Contact: tbrolin@cs.umd.edu



mailto:tbrolin@cs.umd.edu
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Matricizing a Tensor

1 4 7 10 13 16 19 22
Xi1=12 5 8 11|, Xo= |14 17 20 23
3 6 9 12 15 18 21 24
1 4 7 10 13 16 19 22
Xpy=|[2 5 8 11 14 17 20 23|,
3 6 9 12 15 18 21 24
1 2 3 13 14 15]
X 4 5 6 16 17 18
@~ 17 8 9 19 20 21
10 11 12 22 23 24
<. _[1 2 3 4 5 - 9 10 11 12
G)7 113 14 15 16 17 --- 21 22 23 24
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Kronecker and Khatri-Rao Prodcuts

Kronecker Product

—(L11B a-lgB Tt (l-ljB-
a1B ayB --- a9yB

apnB apB --- ap/B

— [al 09 b1 a; ¥ bQ a; @ b3 JCICI > § V%Y bL—l aj x bL]

Khatri-Rao Product

A©B= [81 ®by ag®by .-+ ag @by ]
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4.) Performance Evaluation :
Sorting Optimizations

* Profiled customized sorting routine in Chapel code and

found two bottlenecks:

— Creation of small array in recursive routine

* Created millions of times due to recursion and large tensors:
consumed up to 10% of the sorting runtime

 Solution: just declare local ints rather than an array (possible since
this array was only of length 2)

— Reassignment of array of arrays
* C code: array of pointers = simple pointer assignment

* Chapel code:

— Initially 2D matrix = used slicing for reassignment (slow due to large size of

slices)
— Changed to array of arrays = whole array assignment (slow due to copying

the arrays)
— Final: get pointer to arrays and use pointer reassignment (similar to C code)

* Modifications resulted in roughly 4x improvement
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time - seconds
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Chapel Sorting Runtime
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time - seconds
[ERY
o

0.8
0.6
0.4
0.2

time - seconds

Runtimes for CP-ALS Routines
YELP: 1 thread/task

15.16

A 034 036 0.14 0.14 0.82 0.93
0.002 0.003 -. : : . : 0.04 0.04
MTTKRP INVERSE MAT MULT MAT AATA MAT NORM CPD FIT SORT
mC m Chapel-optimize
YELP: 32 threads/tasks
0.89
0.41 043
0.15
0.003 0.010 0.01 002 o001 001 29 -
MTTKRP INVERSE MAT MULT MAT AATA MAT NORM CPD FIT SORT

mC m Chapel-optimize



time - seconds

time - seconds

Runtimes for CP-ALS Routines

NELL-2: 1 thread/task

150 130.55
100
50
7.90 9.86
0 0.002 0.003 0.78 1.17 0.13 0.14 0.06 0.05 0.01 0.01
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B C ™ Chapel-optimize
NELL-2: 32 threads/tasks
/ 6.03
6 5.81 ©
5
4
3
2 1.45
1 0.63
0 0.003 0.008 0.06 0.13 0.24 0.19 0.01 0.02 0.01 0.01
eeeees NN
MTTKRP INVERSE MAT MULT MAT AATA  MAT NORM CPD FIT SORT

M C M Chapel-optimize



4.) Performance Evaluation :
Initial Results: CP-ALS Routines Runtimes

ANTA

13.31 082 034 0.14 0.04 0.94

1 Chapel-lnitial  225.11 721 036 014 0.04 098

YELP C 073 007 041 001 001  0.05
32 Chapel-lnitial  118.93 0.47 0.56 0.06 001  0.98

C 109.25 7.9 013 006 001  0.37

1 Chapel-lnitial 1999  69.04 0.14 006 001  0.39

NEL-2 C 581 063 024 001 001  0.04
32 Chapel-lnitial 883 501 0.9 002 001  0.39

Times shown in seconds
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4.) Performance Evaluation :
MTTKRP Optimizations: Mutex/Locks

* YELP requires the use of locks during the MTTKRP and
NELL-2 does not

— Decision whether to use locks is highly dependent on tensor
properties and number of threads used

Sync vars (Qthreads) Atomic vars (Qthreads) | Sync vars (FIFO)

- Tasks put to sleep - Tasks spin-wait - Tasks spin-wait,

- Suitable for long- - Suitable for short, similar to atomic
held heavily non-intensive vars in Qthreads
contended locks critical reigions

* Initially used sync vars
— MTTKRP critical regions are short and fast
— Switching to atomic vars gave huge improvement for YELP
* FIFO w/ sync vars competitive with Qthreads w/ atomic vars
— troubling: simple recompilation of code can drastically alter performance

COMPUTER SCIENCE
UNIVERSITY OF MARYLAND

R

The Laboratory for Physical Sciences



4.) Performance Evaluation :

Initial Results: CP-ALS Routines Runtimes
m

13.31 0.94
1 Chapel 225.11>15.15 0.98
YELP

C 0.73 0.05

32 Chapel 118.93->0.88 0.98

C 109.25 0.37

1 Chapel 1999->130.54 0.39

NELL-2

C 5.81 0.04

32 Chapel 88.3-6.03 0.39

Times shown in seconds
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3.) Porting SPLATT to Chapel:
Work Sharing Constructs

coforall tid in 0..1 {
A[tid] = foo(tid);
b.barrier();
forall i in 0..15 {
B[i] = bar (i, A);

1 #pragma omp parallel shared(A,B) num_threads(2)

2 int tid = omp_get_thread num();

3 A[tid] = foo(tid);

4 fpragma omp barrier

5 #pragma omp for

6 for(int i = 0; 1 < 16; i++) { i
7

8

9

B[i] = bar(i, A);
} }
} l l

coforall tid in 0..1

-1 o n R I ] —

#pragma omp parallel shared (A,B) num_threads(2) tid=1
tid=1 \ \
\ \ A[tid] = foo(tid)
A[tid] = foo(tid) b.barrier()
#pragma omp barrier foralliin0..15
#pragma omp for \ tid=1
for(inti=0;i<16; i++)

\ N R T SR

Bi] = bar(i,A) BIi] = bar(i,A) B[i] = bar(i,A) B[i] = bar(i,A)
B[i] = bar(i,A)




3.) Porting SPLATT to Chapel:
Work Sharing Constructs

1 #pragma omp parallel shared(A,B) num_threads (2) i coforall tid in 0..1 {
2 int tid = omp_get_thread_num(); 2 A[tid] = foo(tid);
3 Altid] = foo(tid);. 3 b.barrier();
4 #pragma omp barrier . forall i in 0..15 {
5 #pragma omp for ‘1 - b s .
6 for(int i = 0; i < 16; i++) { 3 B[1] = bar(i, A);
7 B[i] = bar(i, A); 6 }
8 }
0 } l Solution: Manually compute loop l

bounds for each task

\ coforall tid in 0..1

#pragma omp parallel shared (A,B) num_threads(2) tid=1
tid=1 \ \
\ \ A[tid] = foo(tid)
A[tid] = foo(tid) b.barrier()
foralliin0..15

#pragma omp barrier

#pragma omp for tid=1

for(inti=0;i<16; i++)

\
\ N R T SR

B[i] = bar(i,A) B[i] = bar(i,A) B[i] = bar(i,A) B[i] = bar(i,A)
B[i] = bar(i,A)




3.) Porting SPLATT to Chapel:
Work Sharing Constructs (cont.)

#pragma omp parallel
{

1
2

3 int tid = omp_get_thread_num();

4 double smyVals = thdDatal[tid];

5 #pragma omp for

" for (int i = 0; i < rows; i++) {

7 for (int j = 0; j < cols; j++) {
8 myVals[]j] += vals[i] []] * 2;

9 }

10 }
1 // do reduction on myVals

12}

1 var myVals: [cols] real;

2 forall r in rows with (+ reduce myVals) do
3 for ¢ in cols do

4 myVals[c] += vals[r,c] * 2



