
Parallel Sparse Tensor
Decomposition in Chapel

Thomas B. Rolinger, Tyler A. Simon,
Christopher D. Krieger

IPDPSW 2018
CHIUW

Outline
1. Motivation and Background
2. Porting SPLATT to Chapel
3. Performance Evaluation: Experiments,

modifications and optimizations
4. Conclusions

Motivation and
Background

1.) Motivation: Tensors + Chapel

• Why focus on Chapel for this work?
– Tensor decompositions algorithms are complex

and immature
• Expressiveness and simplicity of Chapel would promote

maintainable and extensible code
• High performance is crucial as well

– Existing tensor tools are based on C/C++ and
OpenMP+MPI
• No implementations within Chapel (or similar

framework)

1.) Motivation: Tensors + Chapel

• Why focus on Chapel for this work?
– Tensor decompositions algorithms are complex

and immature
• Expressiveness and simplicity of Chapel would promote

maintainable and extensible code
• High performance is crucial as well

– Existing tensor tools are based on C/C++ and
OpenMP+MPI
• No implementations within Chapel (or similar

framework)

1.) Background: Tensors
• Tensors: Multidimensional arrays
– Typically very large and sparse
• Can have billions of non-zeros and densities on the

order of 10-10

• Tensor Decomposition:
– Higher-order extension of matrix singular value

decomposition (SVD)
– CP-ALS: Alternating Least Squares
• Critical routine: Matricized tensor times Khatri-Rao

product (MTTKRP)

1.) Background: Tensors
• Tensors: Multidimensional arrays
– Typically very large and sparse
• Can have billions of non-zeros and densities on the

order of 10-10

• Tensor Decomposition:
– Higher-order extension of matrix singular value

decomposition (SVD)
– CP-ALS: Alternating Least Squares
• Critical routine: Matricized tensor times Khatri-Rao

product (MTTKRP)

1.) Background: SPLATT
• SPLATT: The Surprisingly ParalleL spArse Tensor Toolkit
– Developed by University of Minnesota (Smith, Karypis)
– Written in C with OpenMP+MPI hybrid parallelism

• Current state of the art in tensor decomp.
• We focus on SPLATT’s the shared-memory (single

locale) implementation of CP-ALS for this work
• Porting SPLATT to Chapel serves as a “stress test” for

Chapel
– File I/O, BLAS/LAPACK interface, custom data structures

and non-trivial parallelized routines

Porting SPLATT to Chapel

2.) Porting SPLATT to Chapel: Overview
• Goal: simplify SPLATT code when applicable

but preserve original implementation and
design

• Single-locale port
– Multi-locale port left for future work

• Mostly a straightforward port
– However, there were some cases that required

extra effort to port: mutex/locks, work sharing
constructs, jagged arrays

2.) Porting SPLATT to Chapel:
Mutex Pool

• SPLATT uses a mutex pool for some of the parallel
MTTKRP routines to synchronize access to matrix rows

• Chapel currently does not have a native lock/mutex
module
– Can recreate behavior with sync or atomic variables
– We originally used sync variables, but later switched to
atomic (see Performance Evaluation section).

Performance Evaluation

4.) Performance Evaluation: Set Up
• Compare performance of Chapel port of

original C/OpenMP code
• Default Chapel 1.16 build (Qthreads,

jemalloc)
• OpenBLAS for BLAS/LAPACK
• Ensured both C and Chapel code utilize same

of threads for each trial
– OMP_NUM_THREADS
– CHPL_RT_NUM_THREADS_PER_LOCALE

4.) Performance Evaluation : Datasets
Name Dimensions Non-Zeros Density Size on Disk

YELP 41k x 11k x 75k 8 million 1.97E-7 240 MB

RATE-BEER 27k x 105k x 262k 62 million 8.3E-8 1.85 GB

BEER-ADVOCATE 31k x 61k x 182k 63 million 1.84E-7 1.88 GB

NELL-2 12k x 9k x 29k 77 million 2.4E-5 2.3 GB

NETFLIX 480k x 18k x 2k 100 million 5.4E-6 3 GB

See paper for more details on data sets

4.) Performance Evaluation: Summary
• Profiled and analyzed Chapel code
– Initial code exhibited very poor performance

• Identified 3 major bottlenecks
– MTTKRP: up to 163x slower than C code
– Matrix inverse: up to 20x slower than C code
– Sorting (refer to paper for details)

• After modifications to initial code
– Achieved competitive performance to C code

4.) Performance Evaluation :
MTTKRP Optimizations: Matrix Row Accessing

Original C: number of cols is small (35)
but number of rows is large (tensor dims)

4.) Performance Evaluation :
MTTKRP Optimizations: Matrix Row Accessing

Original C: number of cols is small (35)
but number of rows is large (tensor dims)

Initial Chapel: use slicing to get row
reference à very slow since cost of slicing is
not amortized by computation on each slice

4.) Performance Evaluation :
MTTKRP Optimizations: Matrix Row Accessing

Original C: number of cols is small (35)
but number of rows is large (tensor dims)

Initial Chapel: use slicing to get row
reference à very slow since cost of slicing is
not amortized by computation on each slice

2D Index: use (i,j) index into original matrix
instead of getting row reference à 17x
speed up over initial MTTKRP code

4.) Performance Evaluation :
MTTKRP Optimizations: Matrix Row Accessing

Original C: number of cols is small (35)
but number of rows is large (tensor dims)

Initial Chapel: use slicing to get row
reference à very slow since cost of slicing is
not amortized by computation on each slice

2D Index: use (i,j) index into original matrix
instead of getting row reference à 17x
speed up over initial MTTKRP code

Pointer: more direct C translation à 1.26x
speed up over 2D indexing

1
2
4
8

16
32
64

128
256
512

1024
2048

1 2 4 8 16 32

tim
e

-s
ec

on
ds

threads/tasks

NELL-2

Initial 2D Index Pointer

1

4

16

64

256

1 2 4 8 16 32

tim
e

-s
ec

on
ds

MTTKRP Runtime: Chapel Matrix Access Optimizations

Initial 2D Index Pointer

YELP

1
2
4
8

16
32
64

128
256
512

1024
2048

1 2 4 8 16 32

tim
e

-s
ec

on
ds

threads/tasks

NELL-2

Initial 2D Index Pointer

1

4

16

64

256

1 2 4 8 16 32

tim
e

-s
ec

on
ds

MTTKRP Runtime: Chapel Matrix Access Optimizations

Initial 2D Index Pointer

YELP

YELP: virtually no scalability after 2 tasks

NELL-2: near linear speed-up

4.) Performance Evaluation :
MTTKRP Optimizations: Mutex/Locks

• YELP requires the use of locks during the MTTKRP and
NELL-2 does not
– Decision whether to use locks is highly dependent on

tensor properties and number of threads used
• Initially used sync vars
– MTTKRP critical regions are short and fast

• Not well suited for how sync vars are implemented in Qthreads
– Switched to atomic vars

• Up to 14x improvement on YELP
• FIFO w/ sync vars competitive with Qthreads w/

atomic vars
– Troubling: simple recompilation of code can drastically

alter performance

4.) Performance Evaluation :
MTTKRP Optimizations: Mutex/Locks

• YELP requires the use of locks during the MTTKRP and
NELL-2 does not
– Decision whether to use locks is highly dependent on

tensor properties and number of threads used
• Initially used sync vars
– MTTKRP critical regions are short and fast

• Not well suited for how sync vars are implemented in Qthreads
– Switched to atomic vars

• Up to 14x improvement on YELP
• FIFO w/ sync vars competitive with Qthreads w/

atomic vars
– Troubling: simple recompilation of code can drastically

alter performance

4.) Performance Evaluation :
MTTKRP Optimizations: Mutex/Locks

• YELP requires the use of locks during the MTTKRP and
NELL-2 does not
– Decision whether to use locks is highly dependent on

tensor properties and number of threads used
• Initially used sync vars
– MTTKRP critical regions are short and fast

• Not well suited for how sync vars are implemented in Qthreads
– Switched to atomic vars

• Up to 14x improvement on YELP
• FIFO w/ sync vars competitive with Qthreads w/

atomic vars
– Troubling: just recompiling the code can drastically alter

performance

0.5

1

2

4

8

16

1 2 4 8 16 32

tim
e

-s
ec

on
ds

threads/tasks

Chapel MTTKRP Runtime
sync vars VS atomic vars

YELP

Sync Atomic FIFO-sync

NO CODE DIFFERENCE: just
recompiled for different tasking
layer

4.) Performance Evaluation :
Matrix Inverse (OpenBLAS/OpenMP)
• SPLATT uses LAPACK routines to compute

matrix inverse
– Experiments used OpenBLAS, parallelized via

OpenMP

• Observed 15x slow down in runtime for
Chapel when using 32 threads (OpenMP and
Qthreads)

• Issue: interaction of Qthreads and OpenMP is
messy

4.) Performance Evaluation :
Matrix Inverse (OpenBLAS/OpenMP)
• SPLATT uses LAPACK routines to compute

matrix inverse
– Experiments used OpenBLAS, parallelized via

OpenMP

• Observed 15x slow down in matrix inverse
runtime for Chapel when using 32 threads
(OpenMP and Qthreads)

• Issue: interaction of Qthreads and OpenMP is
messy

4.) Performance Evaluation :
Matrix Inverse (OpenBLAS/OpenMP) cont.
• Problem: OpenMP and Qthreads stomp over

each other
• Reason: Default à Qthreads pinned to cores
– OpenMP threads all end up on 1 core due to how

Qthreads uses sched_setaffinity
• Result: Huge performance loss for OpenMP

routine

4.) Performance Evaluation :
Matrix Inverse (OpenBLAS/OpenMP) cont.
• Try: Explicitly bind OpenMP threads to cores
• Result: Chapel will fall back to only using 1

thread
• Reason: Same as OpenMP in previous slide
– Difference: Chapel detects this over subscription and

will prevent it by only using 1 thread
• Problem: Not always clear to users
– If CHPL_RT_NUM_THREADS_PER_LOCALE is set, then

a warning is displayed about falling back to 1 thread
– If not, users expect default (# threads == # cores) but

only a single thread is used and no warning given

4.) Performance Evaluation :
Matrix Inverse (OpenBLAS/OpenMP) cont.
• Try: Explicitly bind OpenMP threads to cores
• Result: Chapel will fall back to only using 1

thread
• Reason: Same as OpenMP in previous slide
– Difference: Chapel detects this over subscription and

will prevent it by only using 1 thread
• Problem: Not always clear to users
– If CHPL_RT_NUM_THREADS_PER_LOCALE is set, then

a warning is displayed about falling back to 1 thread
– If not, users expect default (# threads == # cores) but

only a single thread is used and no warning given

4.) Performance Evaluation :
Matrix Inverse (OpenBLAS/OpenMP) cont.
• Try: Explicitly bind OpenMP threads to cores
• Result: Chapel will fall back to only using 1

thread
• Reason: Same as OpenMP in previous slide
– Difference: Chapel detects this over subscription and

will prevent it by only using 1 thread
• Problem: Not always clear to users
– If CHPL_RT_NUM_THREADS_PER_LOCALE is set, then

a warning is displayed about falling back to 1 thread
– If not, users expect default (# threads == # cores) but

only a single thread is used and no warning given

4.) Performance Evaluation :
Matrix Inverse (OpenBLAS/OpenMP) cont.
• Attempted solutions:
– 1.) QT_AFFINITY=no, QT_SPINCOUNT=300
– 2.) Remove Chapel over subscription

warning/check and allow both Qthreads and
OpenMP threads to bind to cores

• Overall Results:
– (1) and (2) provided roughly equal improvement

of OpenMP runtime but still 4x slower than the C
code

4.) Performance Evaluation :
Matrix Inverse (OpenBLAS/OpenMP) cont.
• Attempted solutions:
– 1.) QT_AFFINITY=no, QT_SPINCOUNT=300
– 2.) Remove Chapel over subscription

warning/check and allow both Qthreads and
OpenMP threads to bind to cores

• Overall Results:
– (1) and (2) provided roughly equal improvement

of OpenMP runtime but still 4x slower than the C
code

4.) Performance Evaluation :
Matrix Inverse (OpenBLAS/OpenMP) cont.
• Another issue:
– Improving OpenMP runtime caused a 7 to 13x slow

down in a Chapel routine that followed
– Still resource contention on cores

• No clear solution to overcome issues
– We set OMP_NUM_THREADS=1 for Chapel runs

since OpenMP runtime is generally negligible
• Brings up crucial question regarding library

integration:
– When does it make sense to provide native Chapel

implementations rather than integrate with existing
libraries?

4.) Performance Evaluation :
Matrix Inverse (OpenBLAS/OpenMP) cont.
• Another issue:
– Improving OpenMP runtime caused a 7 to 13x slow

down in a Chapel routine that followed
– Still resource contention on cores

• No clear solution to overcome issues
– We set OMP_NUM_THREADS=1 for Chapel runs

since OpenMP runtime is generally negligible
• Brings up crucial question regarding library

integration:
– When does it make sense to provide native Chapel

implementations rather than integrate with existing
libraries?

4.) Performance Evaluation :
Matrix Inverse (OpenBLAS/OpenMP) cont.
• Another issue:
– Improving OpenMP runtime caused a 7 to 13x slow

down in a Chapel routine that followed
– Still resource contention on cores

• No clear solution to overcome issues
– We set OMP_NUM_THREADS=1 for Chapel runs

since OpenMP runtime is generally negligible
• Brings up crucial question regarding library

integration:
– When does it make sense to provide native Chapel

implementations rather than integrate with existing
libraries?

0.5
1
2
4
8

16
32
64

128
256

1 2 4 8 16 32

tim
e

-s
ec

on
ds

MTTKRP Runtime
YELP

C Chapel-initial Chapel-optimize

1
2
4
8

16
32
64

128
256
512

1024
2048

1 2 4 8 16 32

tim
e

-s
ec

on
ds

threads/tasks

NELL-2

C Chapel-initial Chapel-optimize

Final Results

5.) Conclusions
• Implemented parallel sparse tensor decomposition in Chapel
• Identified bottlenecks in code

– Array slicing
– sync vs atomic variables for locks
– Conflicts between OpenMP and Qthreads

• Achieved 83-96% of the original C/OpenMP performance after
modifications to initial port

• Suggestions for Chapel:
– Create a mutex/lock library
– More documentation/experiments with integrating 3rd party code

that utilize different threading libraries
• Future work:

– Multi-locale version
– Closer inspection of code to make it more Chapel-like

• Will the performance suffer or improve?

Questions

Contact: tbrolin@cs.umd.edu

mailto:tbrolin@cs.umd.edu

Back up Slides

Matricizing a Tensor

Kronecker and Khatri-Rao Prodcuts

Kronecker Product

Khatri-Rao Product

4.) Performance Evaluation :
Sorting Optimizations

• Profiled customized sorting routine in Chapel code and
found two bottlenecks:
– Creation of small array in recursive routine

• Created millions of times due to recursion and large tensors:
consumed up to 10% of the sorting runtime

• Solution: just declare local ints rather than an array (possible since
this array was only of length 2)

– Reassignment of array of arrays
• C code: array of pointers à simple pointer assignment
• Chapel code:

– Initially 2D matrix à used slicing for reassignment (slow due to large size of
slices)

– Changed to array of arrays à whole array assignment (slow due to copying
the arrays)

– Final: get pointer to arrays and use pointer reassignment (similar to C code)

• Modifications resulted in roughly 4x improvement

0
10
20
30
40
50
60
70
80

1 2 4 8 16 32

tim
e

-s
ec

on
ds

threads/tasks

Chapel Sorting Runtime
NELL-2

Initial Array-opt Slices-opt All-opts

13.13

0.002
2.03

0.34 0.14 0.04 0.82

15.16

0.003
2.99

0.36 0.14 0.04 0.93
0

5

10

15

20

MTTKRP INVERSE MAT MULT MAT A^TA MAT NORM CPD FIT SORT

tim
e

-s
ec

on
ds

YELP: 1 thread/task

C Chapel-optimize

0.73

0.003
0.10

0.41

0.01 0.01 0.07

0.89

0.010
0.17

0.43

0.02 0.01
0.15

0

0.2

0.4

0.6

0.8

1

MTTKRP INVERSE MAT MULT MAT A^TA MAT NORM CPD FIT SORT

tim
e

-s
ec

on
ds

YELP: 32 threads/tasks

C Chapel-optimize

Runtimes for CP-ALS Routines

Runtimes for CP-ALS Routines

109.25

0.002 0.78 0.13 0.06 0.01 7.90

130.55

0.003 1.17 0.14 0.05 0.01 9.86
0

50

100

150

MTTKRP INVERSE MAT MULT MAT A^TA MAT NORM CPD FIT SORT

tim
e

-s
ec

on
ds

NELL-2: 1 thread/task

C Chapel-optimize

5.81

0.003 0.06 0.24 0.01 0.01
0.63

6.03

0.008 0.13 0.19 0.02 0.01

1.45

0
1
2
3
4
5
6
7

MTTKRP INVERSE MAT MULT MAT A^TA MAT NORM CPD FIT SORT

tim
e

-s
ec

on
ds

NELL-2: 32 threads/tasks

C Chapel-optimize

4.) Performance Evaluation :
Initial Results: CP-ALS Routines Runtimes

Data set Threads/tasks Code MTTKRP Sort Mat
A^TA

Mat
Norm

CPD Fit Inverse

YELP
1

C 13.31 0.82 0.34 0.14 0.04 0.94
Chapel-Initial 225.11 7.21 0.36 0.14 0.04 0.98

32
C 0.73 0.07 0.41 0.01 0.01 0.05

Chapel-Initial 118.93 0.47 0.56 0.06 0.01 0.98

NELL-2
1

C 109.25 7.9 0.13 0.06 0.01 0.37
Chapel-Initial 1999 69.04 0.14 0.06 0.01 0.39

32
C 5.81 0.63 0.24 0.01 0.01 0.04

Chapel-Initial 88.3 5.01 0.19 0.02 0.01 0.39

Times shown in seconds

4.) Performance Evaluation :
MTTKRP Optimizations: Mutex/Locks

• YELP requires the use of locks during the MTTKRP and
NELL-2 does not
– Decision whether to use locks is highly dependent on tensor

properties and number of threads used
Sync vars (Qthreads) Atomic vars (Qthreads) Sync vars (FIFO)
- Tasks put to sleep
- Suitable for long-

held heavily
contended locks

- Tasks spin-wait
- Suitable for short,

non-intensive
critical reigions

- Tasks spin-wait,
similar to atomic
vars in Qthreads

• Initially used sync vars
– MTTKRP critical regions are short and fast
– Switching to atomic vars gave huge improvement for YELP

• FIFO w/ sync vars competitive with Qthreads w/ atomic vars
– troubling: simple recompilation of code can drastically alter performance

4.) Performance Evaluation :
Initial Results: CP-ALS Routines Runtimes

Data set Threads/tasks Code MTTKRP Inverse

YELP
1

C 13.31 0.94
Chapel 225.11à15.15 0.98

32
C 0.73 0.05

Chapel 118.93à0.88 0.98

NELL-2
1

C 109.25 0.37
Chapel 1999à130.54 0.39

32
C 5.81 0.04

Chapel 88.3à6.03 0.39

Times shown in seconds

3.) Porting SPLATT to Chapel:
Work Sharing Constructs

≠

3.) Porting SPLATT to Chapel:
Work Sharing Constructs

≠
Solution: Manually compute loop
bounds for each task

3.) Porting SPLATT to Chapel:
Work Sharing Constructs (cont.)

Specific case of perfectly nested loops
and partial reduction à clean and
concise Chapel translation

