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– Tensor decompositions algorithms are complex 
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• High performance is crucial as well

– Existing tensor tools are based on C/C++ and 
OpenMP+MPI
• No implementations within Chapel (or similar 
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1.) Background: SPLATT
• SPLATT: The Surprisingly ParalleL spArse Tensor Toolkit
– Developed by University of Minnesota (Smith, Karypis)
– Written in C with OpenMP+MPI hybrid parallelism

• Current state of the art in tensor decomp.
• We focus on SPLATT’s the shared-memory (single 

locale) implementation of CP-ALS for this work
• Porting SPLATT to Chapel serves as a “stress test” for 

Chapel
– File I/O, BLAS/LAPACK interface, custom data structures 

and non-trivial parallelized routines
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2.) Porting SPLATT to Chapel: Overview
• Goal: simplify SPLATT code when applicable 

but preserve original implementation and 
design

• Single-locale port
– Multi-locale port left for future work

• Mostly a straightforward port
– However, there were some cases that required 

extra effort to port: mutex/locks, work sharing 
constructs, jagged arrays



2.) Porting SPLATT to Chapel: 
Mutex Pool

• SPLATT uses a mutex pool for some of the parallel 
MTTKRP routines to synchronize access to matrix rows

• Chapel currently does not have a native lock/mutex
module
– Can recreate behavior with sync or atomic variables
– We originally used sync variables, but later switched to 
atomic (see Performance Evaluation section).
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4.) Performance Evaluation: Set Up
• Compare performance of Chapel port of 

original C/OpenMP code
• Default Chapel 1.16 build (Qthreads, 

jemalloc)
• OpenBLAS for BLAS/LAPACK
• Ensured both C and Chapel code utilize same 

# of threads for each trial
– OMP_NUM_THREADS
– CHPL_RT_NUM_THREADS_PER_LOCALE



4.) Performance Evaluation : Datasets
Name Dimensions Non-Zeros Density Size on Disk

YELP 41k x 11k x 75k 8 million 1.97E-7 240 MB

RATE-BEER 27k x 105k x 262k 62 million 8.3E-8 1.85 GB

BEER-ADVOCATE 31k x 61k x 182k 63 million 1.84E-7 1.88 GB

NELL-2 12k x 9k x 29k 77 million 2.4E-5 2.3 GB

NETFLIX 480k x 18k x 2k 100 million 5.4E-6 3 GB 

See paper for more details on data sets



4.) Performance Evaluation: Summary
• Profiled and analyzed Chapel code
– Initial code exhibited very poor performance

• Identified 3 major bottlenecks
– MTTKRP: up to 163x slower than C code
– Matrix inverse: up to 20x slower than C code 
– Sorting (refer to paper for details)

• After modifications to initial code
– Achieved competitive performance to C code
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MTTKRP Optimizations: Matrix Row Accessing

Original C: number of cols is small (35)
but number of rows is large (tensor dims)
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Original C: number of cols is small (35)
but number of rows is large (tensor dims)

Initial Chapel: use slicing to get row 
reference à very slow since cost of slicing is 
not amortized by computation on each slice

2D Index: use (i,j) index into original matrix 
instead of getting row reference à 17x
speed up over initial MTTKRP code

Pointer: more direct C translation à 1.26x
speed up over 2D indexing
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4.) Performance Evaluation : 
MTTKRP Optimizations: Mutex/Locks

• YELP requires the use of locks during the MTTKRP and 
NELL-2 does not
– Decision whether to use locks is highly dependent on 

tensor properties and number of threads used
• Initially used sync vars
– MTTKRP critical regions are short and fast 

• Not well suited for how sync vars are implemented in Qthreads
– Switched to atomic vars

• Up to 14x improvement on YELP
• FIFO w/ sync vars competitive with Qthreads w/ 

atomic vars
– Troubling: simple recompilation of code can drastically 

alter performance
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4.) Performance Evaluation : 
Matrix Inverse (OpenBLAS/OpenMP)
• SPLATT uses LAPACK routines to compute 

matrix inverse
– Experiments used OpenBLAS, parallelized via 

OpenMP

• Observed 15x slow down in runtime for 
Chapel when using 32 threads (OpenMP and 
Qthreads)

• Issue: interaction of Qthreads and OpenMP is 
messy
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4.) Performance Evaluation : 
Matrix Inverse (OpenBLAS/OpenMP) cont.
• Problem: OpenMP and Qthreads stomp over 

each other
• Reason: Default à Qthreads pinned to cores
– OpenMP threads all end up on 1 core due to how 

Qthreads uses sched_setaffinity
• Result: Huge performance loss for OpenMP

routine



4.) Performance Evaluation : 
Matrix Inverse (OpenBLAS/OpenMP) cont.
• Try: Explicitly bind OpenMP threads to cores
• Result: Chapel will fall back to only using 1 

thread
• Reason: Same as OpenMP in previous slide
– Difference: Chapel detects this over subscription and 

will prevent it by only using 1 thread
• Problem: Not always clear to users
– If CHPL_RT_NUM_THREADS_PER_LOCALE is set, then 

a warning is displayed about falling back to 1 thread
– If not, users expect default (# threads == # cores) but 

only a single thread is used and no warning given
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4.) Performance Evaluation : 
Matrix Inverse (OpenBLAS/OpenMP) cont.
• Attempted solutions:
– 1.) QT_AFFINITY=no, QT_SPINCOUNT=300
– 2.) Remove Chapel over subscription 

warning/check and allow both Qthreads and 
OpenMP threads to bind to cores

• Overall Results:
– (1) and (2) provided roughly equal improvement 

of OpenMP runtime but still 4x slower than the C 
code
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Matrix Inverse (OpenBLAS/OpenMP) cont.
• Another issue:
– Improving OpenMP runtime caused a 7 to 13x slow 

down in a Chapel routine that followed
– Still resource contention on cores

• No clear solution to overcome issues
– We set OMP_NUM_THREADS=1 for Chapel runs 

since OpenMP runtime is generally negligible
• Brings up crucial question regarding library 

integration: 
– When does it make sense to provide native Chapel 

implementations rather than integrate with existing 
libraries?
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5.) Conclusions
• Implemented parallel sparse tensor decomposition in Chapel
• Identified bottlenecks in code

– Array slicing
– sync vs atomic variables for locks
– Conflicts between OpenMP and Qthreads

• Achieved 83-96% of the original C/OpenMP performance after 
modifications to initial port

• Suggestions for Chapel:
– Create a mutex/lock library 
– More documentation/experiments with integrating 3rd party code 

that utilize different threading libraries
• Future work: 

– Multi-locale version
– Closer inspection of code to make it more Chapel-like

• Will the performance suffer or improve?



Questions

Contact: tbrolin@cs.umd.edu

mailto:tbrolin@cs.umd.edu
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Kronecker and Khatri-Rao Prodcuts

Kronecker Product

Khatri-Rao Product



4.) Performance Evaluation : 
Sorting Optimizations

• Profiled customized sorting routine in Chapel code and 
found two bottlenecks:
– Creation of small array in recursive routine

• Created millions of times due to recursion and large tensors: 
consumed up to 10% of the sorting runtime

• Solution: just declare local ints rather than an array (possible since 
this array was only of length 2)

– Reassignment of array of arrays
• C code: array of pointers à simple pointer assignment
• Chapel code:

– Initially 2D matrix à used slicing for reassignment (slow due to large size of 
slices)

– Changed to array of arrays à whole array assignment (slow due to copying 
the arrays)

– Final: get pointer to arrays and use pointer reassignment (similar to C code)

• Modifications resulted in roughly 4x improvement
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Runtimes for CP-ALS Routines
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4.) Performance Evaluation : 
Initial Results: CP-ALS Routines Runtimes

Data set Threads/tasks Code MTTKRP Sort Mat 
A^TA

Mat
Norm

CPD Fit Inverse

YELP
1

C 13.31 0.82 0.34 0.14 0.04 0.94
Chapel-Initial 225.11 7.21 0.36 0.14 0.04 0.98

32
C 0.73 0.07 0.41 0.01 0.01 0.05

Chapel-Initial 118.93 0.47 0.56 0.06 0.01 0.98

NELL-2
1

C 109.25 7.9 0.13 0.06 0.01 0.37
Chapel-Initial 1999 69.04 0.14 0.06 0.01 0.39

32
C 5.81 0.63 0.24 0.01 0.01 0.04

Chapel-Initial 88.3 5.01 0.19 0.02 0.01 0.39

Times shown in seconds



4.) Performance Evaluation : 
MTTKRP Optimizations: Mutex/Locks

• YELP requires the use of locks during the MTTKRP and 
NELL-2 does not
– Decision whether to use locks is highly dependent on tensor 

properties and number of threads used
Sync vars (Qthreads) Atomic vars (Qthreads) Sync vars (FIFO)
- Tasks put to sleep
- Suitable for long-

held heavily 
contended locks

- Tasks spin-wait
- Suitable for short,

non-intensive 
critical reigions

- Tasks spin-wait, 
similar to atomic 
vars in Qthreads

• Initially used sync vars
– MTTKRP critical regions are short and fast
– Switching to atomic vars gave huge improvement for YELP

• FIFO w/ sync vars competitive with Qthreads w/ atomic vars
– troubling: simple recompilation of code can drastically alter performance



4.) Performance Evaluation : 
Initial Results: CP-ALS Routines Runtimes

Data set Threads/tasks Code MTTKRP Inverse

YELP
1

C 13.31 0.94
Chapel 225.11à15.15 0.98

32
C 0.73 0.05

Chapel 118.93à0.88 0.98

NELL-2
1

C 109.25 0.37
Chapel 1999à130.54 0.39

32
C 5.81 0.04

Chapel 88.3à6.03 0.39

Times shown in seconds
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3.) Porting SPLATT to Chapel: 
Work Sharing Constructs

≠
Solution: Manually compute loop 
bounds for each task



3.) Porting SPLATT to Chapel: 
Work Sharing Constructs (cont.)

Specific case of perfectly nested loops 
and partial reduction à clean and 
concise Chapel translation


