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Motivation 

 Chapel is an emerging PGAS language with 
productive parallel programming features 

 Potential for performance improvement 
(especially in multi-locale) and few Chapel-
specific profilers for its end users 

 Insights for the language evolvement in the 
future and same idea can be applied to other 
parallel programming paradigms 
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Data-centric Profiling 
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int busy(int *x) { 
  // hotspot function 
  *x = complex();  
  return *x; 
} 
 
int main() { 
  for (i=0; i<n; i++) { 
    A[i] = busy(&B[i]) + 
 busy(&C[i-1]) + 
 busy(&C[i+1]); 
  } 
} 

Data-centric Profiling 

main:       100%  
busy:        100%  
complex: 100% 

main:       100%  
busy:        100%  
complex: 100% 

Code-centric Profiling 

A:     100%  
B:    33.3%  
C:    66.7% 

A:     100%  
B:    33.3%  
C:    66.7% 



Multi-locale Challenges 
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• 1st Challenge: 

Aggregate blame of many temporary 
variables that point/refer to the distributed 
variables through remote data accesses. 

• Solution: Link variable PvID (privatized id) with 

different objects accessed through specifc Chapel 
runtime functions: chpl_getPrivatizedCopy, and 
chpl_getPrivatizedClass.  

 



Multi-locale Challenges 
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• 2nd  Challenge: 

Recover the hidden and interrupted data-flow 
information from Chapel runtime and internal 
module function calls (chpl_gen_comm_get, 
chpl_taskListAddBegin, etc.) 

• Solution: Conduct simplified blame analysis for 
Chapel standard modules; resolve  actual wrapper 
task function statically through function pointers 

 



Multi-locale Challenges 
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• 3rd  Challenge: 

Reconstruct the full calling context for each 
sample and handle asynchronous&remote 
tasking features 

• Solution: Instrument Chapel tasking and 
communication layer; log “fID, sID and rID” for 
each remote task; iteratively glue stacktraces 
before the current calling context until “main” 



New Tool Functionality 
Load Imbalance Check 
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Node information for Ab of HPL on 32 locales 



Experiment – ISx 
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Name original localization 

myBucketedKeys 41.11% 17.78% 

sendOffsets 27.28% 6.02% 

bucketOffsets 26.85% 5.46% 

bucketizeLocalKeys 40.24% 24.54% 

1. Optimize “Barrier” module  
2. Apply “local” clause 

Data-centric 2-loc 8-loc 

myBucketedKeys 41.1% 22.9% 

myKeys 36.9% 20.9% 

sendOffsets 27.3% 15.4% 

bucketOffsets 26.9% 15.2% 

barrier 10.3% 20.8% 

Code-centric 2-loc 8-loc 

bucketSort 80.9% 64.2% 

bucketizeLocalKeys 40.2% 22.3% 

countLocalKeys 11.4% 6.4% 

pthread_spin_lock 16.7% 29.3% 

chpl_comm_barrier 0 3.46% 



Experiment - LULESH 

9 

Variable Type Blame Context 

Elems Struct 74.3% chpl_gen_main 

elemToNode Struct 60.4% chpl_gen_main 

xd/yd/zd Struct 48.0% chpl_gen_main 

x/y/z Struct 37.0% chpl_gen_main 

fx/fy/fz Struct 35.6% chpl_gen_main 

dvdx/dvdy/dvdz Struct 33.4% CalcHourglassControlForElems 

x8n/y8n/z8n Struct 33.3% CalcHourglassControlForElems 

elemMass Struct 29.5% chpl_gen_main 

hgfx/hgfy/hgfz Array 26.7% CalcFBHourglassForceForElems 

shx/shy/shz Double 26.7% CalcElemFBHourglassForce 

hx/hy/hz Array 26.6% CalcElemFBHourglassForce 

dxx/dyy/dzz Struct 12.2% CalcLagrangeElements 
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Variable Blame Context 

Elems 74.3% chpl_gen_main 

elemToNode 60.4% chpl_gen_main 

xd/yd/zd 48.0% chpl_gen_main 

x/y/z 37.0% chpl_gen_main 

fx/fy/fz 35.6% chpl_gen_main 

dvdx/dvdy/dvdz 33.4% CalcHourglassControlForElems 

x8n/y8n/z8n 33.3% CalcHourglassControlForElems 

elemMass 29.5% chpl_gen_main 

hgfx/hgfy/hgfz 26.7% CalcFBHourglassForceForElems 

shx/shy/shz 26.7% CalcElemFBHourglassForce 

hx/hy/hz 26.6% CalcElemFBHourglassForce 

dxx/dyy/dzz 12.2% CalcLagrangeElements 

LULESH Optimization: 
Globalization 

Problem: 

Solution: 

Result: 

proc CalcHourglassControlForElems (determ) { 
      var dvdx, dvdy, dydz, x8n, y8n, z8n: [Elems] 8*real; 
…  

Hoisting distributed local variables to the global 
space so that they won’t be dynamically 
allocated  frequently.  
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Variable Blame Context 

Elems 74.3% chpl_gen_main 

elemToNode 60.4% chpl_gen_main 

xd/yd/zd 48.0% chpl_gen_main 

x/y/z 37.0% chpl_gen_main 

fx/fy/fz 35.6% chpl_gen_main 

dvdx/dvdy/dvdz 33.4% CalcHourglassControlForElems 

x8n/y8n/z8n 33.3% CalcHourglassControlForElems 

elemMass 29.5% chpl_gen_main 

hgfx/hgfy/hgfz 26.7% CalcFBHourglassForceForElems 

shx/shy/shz 26.7% CalcElemFBHourglassForce 

hx/hy/hz 26.6% CalcElemFBHourglassForce 

dxx/dyy/dzz 12.2% CalcLagrangeElements 

LULESH Optimization: 
Replication 
Problem: 

Solution: 

Frequent calls to “localizeNeighborNodes ” on 
these variables which incurs sequential remote 
data accesses. 

Allocate global maps to prestore neighboring 
nodes for each element using the same 
domain: var x_map: [Elems] nodesPerElem*real 

for i in 1..nodesPerElem 
{ 
    const noi  =  
    elemToNode[eli][i]; 
    x_local[i] = x[noi]; 
    y_local[i] = y[noi]; 
    z_local[i] = z[noi]; 
} 



Conclusion 

 

 

 

 
 Data-centric Profiling and Blame Analysis  

 Multi-locale Support and New Features 

 Benchmark Profiling and Optimization 

 Full paper will be published at ICS’18 
(“ChplBlamer: A Data-centric and Code-centric Combined Profiler for Multi-locale Chapel Programs”) 
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move from having 
slowdown as more locales 

were added to having 
speedups! 

move from having 
slowdown as more locales 

were added to having 
speedups! 
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