
 Implementation of a
Multi-locale Chapel Profiler

Hui Zhang, Jeffrey K. Hollingsworth

{hzhang86, hollings}@cs.umd.edu
Department of Computer Science, University of Maryland-

College Park

1

Motivation

 Chapel is an emerging PGAS language with
productive parallel programming features

 Potential for performance improvement
(especially in multi-locale) and few Chapel-
specific profilers for its end users

 Insights for the language evolvement in the
future and same idea can be applied to other
parallel programming paradigms

2

Data-centric Profiling

3

int busy(int *x) {
 // hotspot function
 *x = complex();
 return *x;
}

int main() {
 for (i=0; i<n; i++) {
 A[i] = busy(&B[i]) +
 busy(&C[i-1]) +
 busy(&C[i+1]);
 }
}

Data-centric Profiling

main: 100%
busy: 100%
complex: 100%

main: 100%
busy: 100%
complex: 100%

Code-centric Profiling

A: 100%
B: 33.3%
C: 66.7%

A: 100%
B: 33.3%
C: 66.7%

Multi-locale Challenges

4

• 1st Challenge:

Aggregate blame of many temporary
variables that point/refer to the distributed
variables through remote data accesses.

• Solution: Link variable PvID (privatized id) with

different objects accessed through specifc Chapel
runtime functions: chpl_getPrivatizedCopy, and
chpl_getPrivatizedClass.

Multi-locale Challenges

5

• 2nd Challenge:

Recover the hidden and interrupted data-flow
information from Chapel runtime and internal
module function calls (chpl_gen_comm_get,
chpl_taskListAddBegin, etc.)

• Solution: Conduct simplified blame analysis for
Chapel standard modules; resolve actual wrapper
task function statically through function pointers

Multi-locale Challenges

6

• 3rd Challenge:

Reconstruct the full calling context for each
sample and handle asynchronous&remote
tasking features

• Solution: Instrument Chapel tasking and
communication layer; log “fID, sID and rID” for
each remote task; iteratively glue stacktraces
before the current calling context until “main”

New Tool Functionality
Load Imbalance Check

7

Node information for Ab of HPL on 32 locales

Experiment – ISx

8

Name original localization

myBucketedKeys 41.11% 17.78%

sendOffsets 27.28% 6.02%

bucketOffsets 26.85% 5.46%

bucketizeLocalKeys 40.24% 24.54%

1. Optimize “Barrier” module
2. Apply “local” clause

Data-centric 2-loc 8-loc

myBucketedKeys 41.1% 22.9%

myKeys 36.9% 20.9%

sendOffsets 27.3% 15.4%

bucketOffsets 26.9% 15.2%

barrier 10.3% 20.8%

Code-centric 2-loc 8-loc

bucketSort 80.9% 64.2%

bucketizeLocalKeys 40.2% 22.3%

countLocalKeys 11.4% 6.4%

pthread_spin_lock 16.7% 29.3%

chpl_comm_barrier 0 3.46%

Experiment - LULESH

9

Variable Type Blame Context

Elems Struct 74.3% chpl_gen_main

elemToNode Struct 60.4% chpl_gen_main

xd/yd/zd Struct 48.0% chpl_gen_main

x/y/z Struct 37.0% chpl_gen_main

fx/fy/fz Struct 35.6% chpl_gen_main

dvdx/dvdy/dvdz Struct 33.4% CalcHourglassControlForElems

x8n/y8n/z8n Struct 33.3% CalcHourglassControlForElems

elemMass Struct 29.5% chpl_gen_main

hgfx/hgfy/hgfz Array 26.7% CalcFBHourglassForceForElems

shx/shy/shz Double 26.7% CalcElemFBHourglassForce

hx/hy/hz Array 26.6% CalcElemFBHourglassForce

dxx/dyy/dzz Struct 12.2% CalcLagrangeElements

10

Variable Blame Context

Elems 74.3% chpl_gen_main

elemToNode 60.4% chpl_gen_main

xd/yd/zd 48.0% chpl_gen_main

x/y/z 37.0% chpl_gen_main

fx/fy/fz 35.6% chpl_gen_main

dvdx/dvdy/dvdz 33.4% CalcHourglassControlForElems

x8n/y8n/z8n 33.3% CalcHourglassControlForElems

elemMass 29.5% chpl_gen_main

hgfx/hgfy/hgfz 26.7% CalcFBHourglassForceForElems

shx/shy/shz 26.7% CalcElemFBHourglassForce

hx/hy/hz 26.6% CalcElemFBHourglassForce

dxx/dyy/dzz 12.2% CalcLagrangeElements

LULESH Optimization:
Globalization

Problem:

Solution:

Result:

proc CalcHourglassControlForElems (determ) {
 var dvdx, dvdy, dydz, x8n, y8n, z8n: [Elems] 8*real;
…

Hoisting distributed local variables to the global
space so that they won’t be dynamically
allocated frequently.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

2 4 8 16 32

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Original

Globalization

#nodes

11

Variable Blame Context

Elems 74.3% chpl_gen_main

elemToNode 60.4% chpl_gen_main

xd/yd/zd 48.0% chpl_gen_main

x/y/z 37.0% chpl_gen_main

fx/fy/fz 35.6% chpl_gen_main

dvdx/dvdy/dvdz 33.4% CalcHourglassControlForElems

x8n/y8n/z8n 33.3% CalcHourglassControlForElems

elemMass 29.5% chpl_gen_main

hgfx/hgfy/hgfz 26.7% CalcFBHourglassForceForElems

shx/shy/shz 26.7% CalcElemFBHourglassForce

hx/hy/hz 26.6% CalcElemFBHourglassForce

dxx/dyy/dzz 12.2% CalcLagrangeElements

LULESH Optimization:
Replication
Problem:

Solution:

Frequent calls to “localizeNeighborNodes ” on
these variables which incurs sequential remote
data accesses.

Allocate global maps to prestore neighboring
nodes for each element using the same
domain: var x_map: [Elems] nodesPerElem*real

for i in 1..nodesPerElem
{
 const noi =
 elemToNode[eli][i];
 x_local[i] = x[noi];
 y_local[i] = y[noi];
 z_local[i] = z[noi];
}

Conclusion

 Data-centric Profiling and Blame Analysis

 Multi-locale Support and New Features

 Benchmark Profiling and Optimization

 Full paper will be published at ICS’18
(“ChplBlamer: A Data-centric and Code-centric Combined Profiler for Multi-locale Chapel Programs”)

12

move from having
slowdown as more locales

were added to having
speedups!

move from having
slowdown as more locales

were added to having
speedups!

0.00

5.00

10.00

15.00

20.00

25.00

30.00

2 4 8 16 32

Ti
m

e
 (

se
c)

LULESH

Original

Globalization

Globalization+Replication

nodes

4x

