
APAN QASEM
TEXAS STATE UNIVERSITY

ASHWIN M. AJI, MICHAEL L. CHU
AMD RESEARCH

Investigating Data Layout
Transformations in Chapel

CHIUW 2018

2 | CHIUW 2018 | MAY 25, 2018

EMERGENCE OF HETEROGENEOUS NODE ARCHITECTURES

0%

5%

10%

15%

20%

25%

2009 2010 2011 2012 2013 2014 2015 2016 2017

P
e

rc
e

n
ta

ge
 o

f
To

p
5

0
0

 S
ys

te
m

s
w

it
h

 A
cc

e
le

ra
to

rs

3 | CHIUW 2018 | MAY 25, 2018

THE DATA ORGANIZATION PROBLEM

struct-of-arrays
(SoA)

struct imgs {
int r[N];
int g[N];
int b[N];

};

array-of-structs
(AoS)

struct pixel {
int r; int g; int b;

}
struct pixel imgs[N];

Declaration

t0 tnt1 t2

spatial locality
within thread

Layout
coalesced access

for adjacent threadst0 tnt1 t2

Placement

placement?

GPU GPUCPU CPU

HBM HBMDDR DDR

4 | CHIUW 2018 | MAY 25, 2018

PERFORMANCE IMPACT OF DATA LAYOUT

0

1

2

3

4

5

6

7

Nbody Seismic MRI-gridding SRAD Medical
imaging

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

SoA AoS

5 | CHIUW 2018 | MAY 25, 2018

OTHER EXAMPLES OF DATA LAYOUT ISSUES

 Access to non-contiguous array locations

__global__ void conv2D(float *A, float *B) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
float c11, c12, c13;
c11 = +0.2; c21 = +0.5; c31 = -0.8;
int j;
for (j = 0; j < NJ - 1; j++)
B[i * NJ + j] = c11 * A[(i-1) * NJ + (j-1)] +

c12 * A[i * NJ + (j–1)] +
c13 * A[(i+1) * NJ + (j-1)]

...
}

void conv2D(float** A, float** B) {
int i, j;
float c11, c12, c13;
c11 = +0.2; c21 = +0.5; c31 = -0.8;
...
for (i = 1; i < NI - 1; ++i) {
for (j = 1; j < NJ - 1; ++j) {
B[i][j] = c11 * A[i - 1][j - 1] +

c12 * A[i][j - 1] +
c13 * A[i + 1][j - 1]

...
}

Serial C Parallel CUDA

6 | CHIUW 2018 | MAY 25, 2018

OTHER EXAMPLES OF DATA LAYOUT ISSUES

 Sparse Data Access

‒ Non-unit stride access to data structure

mb_sad_calc(unsigned short *blk_sad,
unsigned short *frame, ...) {

int tx = f(threadIdx.x)
int ty = f(threadIdx.x);
...
int cur_o = f(tx, ty, width, …);
...
for(int y = 0; y < 4; y++)
for (int x = 0; x < 4; x++)
sad4x4 += abs(ty, tx, x, y, ..)

- frame[cur_o + y * width + x]);
}

7 | CHIUW 2018 | MAY 25, 2018

THIS WORK

 Investigates mechanisms for data layout transformations in Chapel

 Leverages Chapel-specific features

‒ Index sets

‒ Domain maps

 Explores both automatic and semi-automatic transformations

‒ No change to the core language (as yet)

8 | CHIUW 2018 | MAY 25, 2018

Chapel Source
Code

Standard
Modules

(in Chapel)

Chapel Compiler

Chapel Executable
Generated C

Code
Standard C

Compiler & Linker
Chapel-to-C

Compiler

Internal Modules
(in Chapel)

Runtime Support Library
(in C)

APU Locale Model ROCm

Generated
OpenCL Code

OpenCL
Compiler

CHAPEL COMPILATION FRAMEWORK WITH GPU EXTENSIONS

9 | CHIUW 2018 | MAY 25, 2018

DATA LAYOUT TRANSFORMATION 1: COLUMN-MAJOR TRANSFORMATION

var domRowMajor : domain(2) = {rows, cols};
var domColMajor : domain(2) dmapped ColMajor() = {rows, cols};

var A : [domRowMajor] real ;
var B : [domColMajor] real ;

for i in rows {
for j in cols {

A[i,j] = 17.0; // accessed as row−major
B[i,j] = 0.0; // accessed as col−major

}
}

 Implemented ColMajor as a domain map

 Modeled after DefaultRectangular module

 Constructor redefinition: remap index sets

 Adjustment of dsiAccess() methods

10 | CHIUW 2018 | MAY 25, 2018

d(1)

d1(1) d2(1) d3(1)

Transpose

d'(2)

d'(2)

record aos {
var x: real;
var y: real;
var z: real;

}

var D: domain(1) = 1..3;
var A: [D] aos;

AoS

var N = 1..3;
record soa {
var x : [N] real;
var y : [N] real;
var z : [N] real;

}

var A = new soa();

SoA

Declaration Domain Representation Transformed
2D domain

DATA LAYOUT TRANSFORMATION 2: AOS-TO-SOA TRANSFORMATION

Represent AoS as a rectangular domain

 Transpose domain to get from AoS to SoA

11 | CHIUW 2018 | MAY 25, 2018

EXAMPLE AOS TO SOA IN CHAPEL

use LayoutTransposed; // layout transform module

record pixel {
var r: real; var g: real; var b: real;

}

var DomSoA : domain(2) dmapped Transposed() = {1..3, 1..N};

var src : [DomSoA] real; // array of element type
var dst : [DomSoA] real; // array of element type

on Locales[0].GPU do {
forall i in 1..N

dst[1,i] = src[1,i] * v0 - src[2,i] * v1;
...

}

var D: domain(1) = 1 .. N;
record pixel {

var r: real;
var g: real;
var b: real;

}

var src : [D] pixel;
var dst : [D] pixel;

on Locales[0].GPU do {
forall i in 1..N {

dst[i].r = src[i].r * v0 – src[i].g * v1;
...

}

Before After

12 | CHIUW 2018 | MAY 25, 2018

DATA LAYOUT TRANSFORMATION 3: COMPRESSED ARRAY LAYOUT

X Y

2N0 1 N 2N+22 3 N+2 2N+44 5 N+4

1 2 3 N

AoS

CA

 Fields within an AoS are coalesced to reduced memory divergence and improve register usage

 Tiling for improved cache locality and local memory usage

 Repositioning to handle sparse access of data

 All three done within the same Compressed Array (CA) domain map

13 | CHIUW 2018 | MAY 25, 2018

EXAMPLE CA TRANSFORMATION IN CHAPEL

use LayoutCA; // layout transform module

record pixel {
var r: real; var g: real; var b: real;

}

param t = getTileSize(); // source code analysis
param s = getSparsity(); // source code analysis

var DomCA : domain(2) dmapped CA(t,s) = {1..3, 1..N};

var src : [DomCA] real; // array of element type
var dst : [DomCA] real; // array of element type

on (Locales[0]:LocaleModel).GPU do {
forall i in 1..N

dst[1,i] = src[1,i] * v0 - src[2,i] * v1;
...

}

var D: domain(1) = 1 .. N;
record pixel {

var r: real;
var g: real;
var b: real;

}

var src : [D] pixel;
var dst : [D] pixel;

on (Locales[0]:LocaleModel).GPU do {
forall i in 1 .. N {

dst[i].r = src[i].r * v0 – src[i].g * v1;
...

}

Before

After

14 | CHIUW 2018 | MAY 25, 2018

IMPLICATIONS OF DATA LAYOUT ON MEMORY DIVERGENCE

 Platform:

 AMD A10-8700B APU

 Running synthetic micro-kernels tunable for

 Arithmetic intensity

 Problems size

 Data access patterns

 Potential Memory Divergence (PMD) =
estimate of expected memory divergence
based on access patterns

 Performance normalized to CA at PMD of 3
(higher is better)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

3 4 5 6 7 8 9 10 11 12 13

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

fields accessed (memory divergence)

Potential Memory Divergence

AOS SOA CA

15 | CHIUW 2018 | MAY 25, 2018

CONCLUSIONS AND FUTURE WORK

 We demonstrate that the domain map feature of Chapel can be useful in implementing
sophisticated data layout transformations
‒ Column Major

‒ AoS to SoA

‒ Compressed Array

 Future work
‒ Explore fully automatic approaches for data layout transformation

‒ Explore collaborative design patterns

‒ Extend work to discrete GPU nodes

17 | CHIUW 2018 | MAY 25, 2018

DISCLAIMER & ATTRIBUTION

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new
model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise
this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS
INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR
OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2018 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names
are for informational purposes only and may be trademarks of their respective owners.

