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EMERGENCE OF HETEROGENEOUS NODE ARCHITECTURES
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THE DATA ORGANIZATION PROBLEM

struct-of-arrays
(SoA)

struct imgs { 
int r[N];
int g[N];
int b[N];

};

array-of-structs
(AoS)

struct pixel {
int r; int g; int b;

}
struct pixel imgs[N];

Declaration

t0 tnt1 t2

spatial locality 
within thread 

Layout
coalesced access

for adjacent threadst0 tnt1 t2

Placement

placement?
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PERFORMANCE IMPACT OF DATA LAYOUT
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OTHER EXAMPLES OF DATA LAYOUT ISSUES

 Access to non-contiguous array locations

__global__ void conv2D(float *A, float *B) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
float c11, c12, c13;
c11 = +0.2; c21 = +0.5; c31 = -0.8;
int j; 
for (j = 0; j < NJ - 1; j++ )
B[i * NJ + j] = c11 * A[(i-1) * NJ + (j-1)] +

c12 * A[i * NJ + (j–1)] +
c13 * A[(i+1) * NJ + (j-1)]

...
}

void conv2D(float** A, float** B) {
int i, j;
float c11, c12, c13;
c11 = +0.2; c21 = +0.5; c31 = -0.8;
... 
for (i = 1; i < NI - 1; ++i) {
for (j = 1; j < NJ - 1; ++j) {
B[i][j] = c11 * A[i - 1][j - 1] + 

c12 * A[i][j - 1] + 
c13 * A[i + 1][j - 1]

... 
}

Serial C Parallel CUDA
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OTHER EXAMPLES OF DATA LAYOUT ISSUES

 Sparse Data Access

‒ Non-unit stride access to data structure 

mb_sad_calc(unsigned short *blk_sad,
unsigned short *frame, ... ) {

int tx = f(threadIdx.x)
int ty = f(threadIdx.x);
...
int cur_o = f(tx, ty, width, …);
...
for(int y = 0; y < 4; y++) 
for (int x = 0; x < 4; x++) 
sad4x4 += abs(ty, tx, x, y, ..) 

- frame[cur_o + y * width + x]);
}
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THIS WORK

 Investigates mechanisms for data layout transformations in Chapel

 Leverages Chapel-specific features

‒ Index sets

‒ Domain maps

 Explores both automatic and semi-automatic transformations

‒ No change to the core language (as yet)
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Chapel Source 
Code

Standard 
Modules 

(in Chapel)

Chapel Compiler

Chapel Executable
Generated C 

Code
Standard C 

Compiler & Linker
Chapel-to-C 

Compiler

Internal Modules 
(in Chapel)

Runtime Support Library 
(in C)

APU Locale Model ROCm

Generated 
OpenCL Code

OpenCL
Compiler

CHAPEL COMPILATION FRAMEWORK WITH GPU EXTENSIONS
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DATA LAYOUT TRANSFORMATION 1: COLUMN-MAJOR TRANSFORMATION

var domRowMajor : domain(2) = {rows, cols};
var domColMajor : domain(2) dmapped ColMajor() = {rows, cols}; 

var A : [domRowMajor] real ; 
var B : [domColMajor] real ; 

for i in rows { 
for j in cols { 

A[i,j] = 17.0; // accessed as row−major 
B[i,j] = 0.0; // accessed as col−major 

} 
}

 Implemented ColMajor as a domain map 

 Modeled after DefaultRectangular module

 Constructor redefinition: remap index sets

 Adjustment of dsiAccess() methods
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d(1)

d1(1) d2(1) d3(1)

Transpose

d'(2)

d'(2)

record aos {
var x: real; 
var y: real;
var z: real;

}

var D: domain(1) = 1..3;
var A: [D] aos;

AoS

var N = 1..3;
record soa {  
var x : [N] real;  
var y : [N] real;  
var z : [N] real; 

}

var A  = new soa();

SoA

Declaration Domain Representation Transformed
2D domain

DATA LAYOUT TRANSFORMATION 2: AOS-TO-SOA TRANSFORMATION

Represent AoS as a rectangular domain

 Transpose domain to get from AoS to SoA
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EXAMPLE AOS TO SOA IN CHAPEL

use LayoutTransposed;   // layout transform module 

record pixel {
var r: real; var g: real; var b: real;

}

var DomSoA : domain(2) dmapped Transposed() = {1..3, 1..N};

var src : [DomSoA] real;   // array of element type
var dst : [DomSoA] real;   // array of element type

on Locales[0].GPU do {
forall i in 1..N 

dst[1,i] = src[1,i] * v0 - src[2,i] * v1;
...

}

var D: domain(1) = 1 .. N;
record pixel {

var r: real;
var g: real;
var b: real;

}

var src : [D] pixel;
var dst : [D] pixel;

on Locales[0].GPU do {
forall i in 1..N {

dst[i].r = src[i].r * v0 – src[i].g * v1;
...

}

Before After



12 |   CHIUW 2018   |   MAY 25, 2018  

DATA LAYOUT TRANSFORMATION 3: COMPRESSED ARRAY LAYOUT

X Y

2N0 1 N 2N+22 3 N+2 2N+44 5 N+4

1 2 3 N

AoS

CA

 Fields within an AoS are coalesced to reduced memory divergence and improve register usage

 Tiling for improved cache locality and local memory usage

 Repositioning to handle sparse access of data

 All three done within the same Compressed Array (CA) domain map
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EXAMPLE CA TRANSFORMATION IN CHAPEL

use LayoutCA;   // layout transform module 

record pixel {
var r: real; var g: real; var b: real;

}

param t = getTileSize();   // source code analysis
param s = getSparsity();   // source code analysis

var DomCA : domain(2) dmapped CA(t,s) = {1..3, 1..N};

var src : [DomCA] real;   // array of element type
var dst : [DomCA] real;   // array of element type

on (Locales[0]:LocaleModel).GPU do {
forall i in 1..N 

dst[1,i] = src[1,i] * v0 - src[2,i] * v1;
...

}

var D: domain(1) = 1 .. N;
record pixel {

var r: real;
var g: real;
var b: real;

}

var src : [D] pixel;
var dst : [D] pixel;

on (Locales[0]:LocaleModel).GPU do {
forall i in 1 .. N {

dst[i].r = src[i].r * v0 – src[i].g * v1;
...

}

Before

After
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IMPLICATIONS OF DATA LAYOUT ON MEMORY DIVERGENCE

 Platform:

 AMD A10-8700B APU

 Running synthetic micro-kernels tunable for

 Arithmetic intensity

 Problems size

 Data access patterns

 Potential Memory Divergence (PMD) = 
estimate of expected memory divergence 
based on access patterns

 Performance normalized to CA at PMD of 3 
(higher is better)
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CONCLUSIONS AND FUTURE WORK

 We demonstrate that the domain map feature of Chapel can be useful in implementing 
sophisticated data layout transformations
‒ Column Major

‒ AoS to SoA

‒ Compressed Array

 Future work
‒ Explore fully automatic approaches for data layout transformation

‒ Explore collaborative design patterns

‒ Extend work to discrete GPU nodes
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