
C O M P U T E | S T O R E | A N A L Y Z E

Mason

Ben Albrecht (Cray Inc.), Sam Partee (Haverford College),
Ben Harshbarger, and Preston Sahabu (Cray Inc.)

CHIUW 2018
May 25, 2018

C O M P U T E | S T O R E | A N A L Y Z E

Mason: Motivation

● Previously, modules had to be checked into repository
● Developers had to sign a CLA
● Code had to be under a compatible license
● Code needed to be reviewed by core team

● Modules were gated for release alongside the compiler

● This hinders the ability for users to contribute/share code

Copyright 2018 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Mason: Overview

Copyright 2018 Cray Inc.
3

● Mason is a package manager and build tool for Chapel
● "a skilled worker who builds by laying units of substantial material"
● Influenced by Rust’s Cargo
● Basic functionality (version 0.1.0) introduced in Chapel 1.16

● Written entirely in Chapel
● An instance of eating our own dog food.

C O M P U T E | S T O R E | A N A L Y Z E

Mason: Overview

Copyright 2018 Cray Inc.
4

● Command line tool: ‘mason’
● Builds, runs, and documents packages

● Centralized registry, decentralized packages,
● Packages exist as TOML files in a single repository
● Source code exists somewhere else, like a GitHub repository

● Dependencies are managed on a per project basis
● Dependency resolution uses semantic versioning

C O M P U T E | S T O R E | A N A L Y Z E

Mason: Outline

Copyright 2018 Cray Inc.
5

● Basic Usage
● Building Mason
● Creating, Building, and Running a Project
● Building Documentation
● Searching for Packages
● Adding Dependencies
● Dependency Resolution

● Mason Registry
● Publishing Packages
● Planned Features

C O M P U T E | S T O R E | A N A L Y Z E

Mason: Building Mason

Copyright 2018 Cray Inc.
6

● Mason comes with Chapel release and git repository

● Build mason with ‘make mason’ from $CHPL_HOME
● Will build Chapel compiler if not already built
● Symbolically links executable to same directory as ‘chpl’
● Also supports the ‘make install’ target

> git clone git@github.com:chapel-lang/chapel.git
> cd chapel
> make mason

mailto:git@github.com:chapel-lang/chapel.git

C O M P U T E | S T O R E | A N A L Y Z E

Mason: Creating a Project

Copyright 2018 Cray Inc.
7

● Create a project with ‘mason new <project name>’

> mason new MyPackage
Created new library project: MyPackage

● Initializes an empty git repository

MyPackage/
Mason.toml
src/
MyPackage.chpl

.git/

C O M P U T E | S T O R E | A N A L Y Z E

Mason: Creating a Project

Copyright 2018 Cray Inc.
8

● A default manifest, "Mason.toml", is created
[brick]
name = "MyPackage"
version = "0.1.0"
chplVersion = "1.16.0"

[dependencies]

● A default source file is also generated

/* Documentation for MyPackage */
module MyPackage {
writeln("New library: MyPackage");

}

Packages start as v0.1.0

Compatible with 1.16 or later

Zero dependencies

C O M P U T E | S T O R E | A N A L Y Z E

Mason: Building a Project

Copyright 2018 Cray Inc.
9

Compile your project with ‘mason build’:
1. Refreshes the registry
2. Creates a lock file, "Mason.lock", also in TOML format

● Ensures repeatable builds by locking in versions and configurations
> cat MyPackage/Mason.lock
[root]
name = "MyPackage"
version = "0.1.0"
chplVersion = "1.16.0..1.16.0”

3. Downloads dependencies to $MASON_HOME
● Defaults to $HOME/.mason/

4. Compiles the program into MyPackage/target/debug/

C O M P U T E | S T O R E | A N A L Y Z E

Mason: Running a Project

Copyright 2018 Cray Inc.
10

● Use ‘mason run’ to execute your project

> mason run
New library: MyPackage

● Final directory hierarchy:

MyPackage/
Mason.toml
Mason.lock
src/
MyPackage.chpl

target/
debug/
myPackage

.git/

C O M P U T E | S T O R E | A N A L Y Z E

Mason: Building Documentation

Copyright 2018 Cray Inc.
11

● Use ‘mason doc’ to build documentation with chpldoc

> mason doc
chpldoc src/MyPackage.chpl

● HTML documentation built in MyPackage/docs/

C O M P U T E | S T O R E | A N A L Y Z E

Mason: Searching for packages

Copyright 2018 Cray Inc.
12

● Search with ‘mason search <query>’
● Case-insensitive substring matching
● Lists latest version of packages
● Empty query will list all packages

> mason search E
Alice (0.3.0)
Eve (1.3.0)
MyPackage (0.1.0)

> mason search bo
Bob (1.1.0)

C O M P U T E | S T O R E | A N A L Y Z E

Mason: Adding Dependencies

Copyright 2018 Cray Inc.
13

● Add dependencies by modifying Mason.toml
● List module dependencies and versions

...
[dependencies]
Bob = "1.1.0"
Alice = "0.3.0"

● The next ‘mason build’ will:
● Resolve versions and download dependencies to $MASON_HOME
● Build the program with the modules in the compiler's module path

> mason build
Updating mason-registry
Downloading dependency: Bob-1.1.0
Downloading dependency: Alice-0.3.0

C O M P U T E | S T O R E | A N A L Y Z E

Mason: Lock File

Copyright 2018 Cray Inc.
14

● Lock file stores versions and source locations
[root]
name = "MyPackage"
version = "0.1.0"
chplVersion = "1.16.0 .. 1.16.0"
dependencies = [“Bob 1.1.0 https://github.com/BobDev/Bob”, ..]

[Bob]
name = "Bob"
version = "1.1.0"
chplVersion = "1.16.0 .. 1.16.0"
source = "https://github.com/BobDev/Bob"
dependencies = [...]

[Alice]
...

C O M P U T E | S T O R E | A N A L Y Z E

Mason: Dependency Resolution

Copyright 2018 Cray Inc.
15

● What if there are two versions of a package?
● IVRS relies on semantic versioning

● "Incompatible Version Resolution Strategy"
● Semantic versioning:

● Distinct major versions are incompatible
● Use the latest minor version
● Use the latest bug fix

Eve

Bob Alice

Root

1.1.0

0.3
.0

X Y

⁉

C O M P U T E | S T O R E | A N A L Y Z E

Mason: Dependency Resolution

Copyright 2018 Cray Inc.
16

● What if there are two versions of a package?
● IVRS relies on semantic versioning

● "Incompatible Version Resolution Strategy”
● Semantic versioning:

● Distinct major versions are incompatible
● Use the latest minor version
● Use the latest bug fix

Eve

Bob Alice

Root

1.1.0

0.3
.0

1.0
.1 1.0.0

⁉

Bob Alice Result (Eve)
1.0.1 1.0.0 1.0.1

C O M P U T E | S T O R E | A N A L Y Z E

Mason: Dependency Resolution

Copyright 2018 Cray Inc.
17

● What if there are two versions of a package?
● IVRS relies on semantic versioning

● "Incompatible Version Resolution Strategy"
● Semantic versioning:

● Distinct major versions are incompatible
● Use the latest minor version
● Use the latest bug fix

Eve

Bob Alice

Root

1.1.0

0.3
.0

1.
2.

4 1.3.0

⁉

Bob Alice Result (Eve)
1.0.1 1.0.0 1.0.1
1.2.4 1.3.0 1.3.0

C O M P U T E | S T O R E | A N A L Y Z E

Mason: Dependency Resolution

Copyright 2018 Cray Inc.
18

● What if there are two versions of a package?
● IVRS relies on semantic versioning

● "Incompatible Version Resolution Strategy"
● Semantic versioning:

● Distinct major versions are incompatible
● Use the latest minor version
● Use the latest bug fix

Eve

Bob Alice

Root

1.1.0

0.3
.0

1.
0.

0 2.0.0

⁉

Bob Alice Result (Eve)
1.0.1 1.0.0 1.0.1
1.2.4 1.3.0 1.3.0
1.0.0 2.0.0 Error

C O M P U T E | S T O R E | A N A L Y Z E

Mason: The Registry

Copyright 2018 Cray Inc.
19

● Mason uses a centralized registry
● https://github.com/chapel-lang/mason-registry

● Packages are defined by manifest files:
mason-registry/
Bricks/
Bob/
1.1.0.toml

Alice/
0.3.0.toml

Eve/
1.2.4.toml
1.3.0.toml

● Registry manifest include an additional ‘source’ field
source = "https://github.com/chapel-lang/MyPackage"

https://github.com/chapel-lang/mason-registry

C O M P U T E | S T O R E | A N A L Y Z E

Mason: The Registry

Copyright 2018 Cray Inc.
20

● Mason can be configured to look elsewhere for registry
● MASON_REGISTRY – a registry in the form of a git URL
● Registries can be local git repositories
● Registries can include local or private git repositories as packages

MASON_REGISTRY = https://github.com/someUser/custom-registry

● Mason can support multiple registries
● MASON_REGISTRY can contain comma-separated registries
● Packages are searched in left-to-right order of MASON_REGISTRY

MASON_REGISTRY = \
”my/local/private/registry, \
https://github.com/someUser/custom-registry, \
https://github.com/chapel-lang/mason-registry”

C O M P U T E | S T O R E | A N A L Y Z E

Mason: The Registry

Copyright 2018 Cray Inc.
21

● ‘mason env’ lists relevant environment variables
● Similar to ‘printchplenv’

> export MASON_REGISTRY=/path/to/shared/registry
> mason env
MASON_HOME: /users/eve/.mason
MASON_REGISTRY: /path/to/shared/registry *

C O M P U T E | S T O R E | A N A L Y Z E

Mason: Publishing a Package to Registry

Copyright 2018 Cray Inc.
22

● Add git tag to package repository in format of ‘vX.Y.Z’
git tag -a v0.1.0 -m ”MyPackage 0.1.0"

● Fork the mason-registry

● Add manifest file to <package>/<version>.toml
● Include additional ‘source’ field

[brick]
name = "MyPackage"
version = "0.1.0”
chplVersion = "1.16"
author = "Chapel Lang"
source = "https://github.com/chapel-lang/MyPackage"

[dependencies]

● Open a Pull Request against chapel-lang/mason-registry

C O M P U T E | S T O R E | A N A L Y Z E

Mason: Planned Features

Copyright 2018 Cray Inc.
23

● Add support for testing
> mason test

● Simplify publishing of new packages
> mason publish

● Add support for non-Chapel dependencies
● Add CI testing for the package ecosystem
● And much much more…

● See issue #7106 for mason wish list

https://github.com/chapel-lang/chapel/issues/7106

