Why Languages Matter
More than Ever

Kathy Yelick
Lawrence Berkeley National Laboratory
and UC Berkeley

The changing nature of scientific discovery

Science at the boundary of Automation, robotics and
simulation and observation new input devices

\ - g W :
. ¥ W bFt 2 :
A s N ot AARSE s WS

New methods for analyzingand =~ More computing for more
modeling data complex science questions

Science at the Boundary of Simulation and Observation

Cosmology Environment Materials

In many areas, there are opportunities to combine
simulation and observation for new discoveries.

omputing, experiments, networking and expertise
in a “Superfacility” for Science

o e

a7 More robotics

- A=)) and specialized

: processors at
he edge

HpAISAXS 4 LGl

'. b ’.~
\Applied Math

NERSC: Planning Beyond Exascale

NERSC Future System Sketch
CPUs

Broad workload

ConatNERSC

Remote data can stream
directly into system

GPUs

= 7,000 users and 2,400 publ|cat|ons in2017 Image Analysis

= Cori production started July 1,2017 D:_ep Learning
imulations

Can integrate FPGAs and
other accelerators

Flexible Interconnect

Simulations of neutron star merger Clustering of 388M microbial NERSC and Intel have scaled
shows light spectrum seen in LIGO proteins reveals new clusters Deep Learning to 15PF on Cori

Scalable and Interpretable Machine Learning for Science

Interpretable Algorithms Driven by Breadth of Science

| e D, Y - (o

%A;L

! e D, w®

m%

w4 Gt mprance.

Iteratlve random forest flnds high order interactions for
transcriptome regulation in drosophila, PNAS 2018

Mixed-scale CNN reduces cost and simplifies
model; use on tomographic image segmentation,
PNAS 2017

Current and emerging applicatior)s Berkeley Lab

Cosmology: Materials and Chemistry: Biology : Applied Energy:

* Replace simulations with e Explore materials universe e Multi-model analysis of e Gradient boosting method
derived models using with CNNs tailored to 3D microbiome, images, etc. for building energy use
Generative Adversarial Neural materials and symmetries

Nets

Dennard Scaling is Dead; Moore’s Law Will Follow

| | | | A
7 E 3 5 i
10 SRR E R L L L L LU EL LRt PUTELELILILIL I LRI ILELE LI LT ITITISLITILEITIY SITTITITITIIT SIITITIITITITE Feeeeeeeeeeeens A — .
. i, e i e ; Aud Transistors
¢ | Science implication: | WS (thousands)
Atlas computing N ey O
5L e P T I N S S W VS S | Single-Thread
10 estimate off by 51B T 50 B *® | Performance ;
z 3 AR 0009 0
T S S S AT L | (SpecINT x 10°)
Frequency (MHz)
) IS N T S e e3? | Numberof
1007 = = Ceg ! Logical Cores
ol 2 ™ 1 ‘ ; ®ooe
10 —~‘-~0 ~~~~~~~~~~~~ L I IR LA A SR Bl ta e d 4 SEE R RSSTRIE —
| | | |
1970 1980 1990 2000 2010 2020

Year

M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, C. Batten, and K. Rupp

Alternatives to Gonventional MOS

(all require lower clock rate, and much more parallelism)

Energy-Performance Comparison
(30-stage fanout-4 inverter chains)

1.E-15
s MOSFET
5
¥ 1.E-16
LL]
=
LL]
fa - ahilitu=0 N1 _
Cap. per inverter=u: Tunneling FET
1.E-17 advantage only at
0.01 0.1 1 10 | low clock rates

J

PERFORMANCE [GHz]

Specialization: The End Game for Moore’s Law

NVIDIA builds deep
learning appliance with
P100 Tesla’s

FPGAs in Microsoft cloud

RISC-V is an
open hardware

platform ‘ ‘
Intel buys deep learning Google designs its own
RISC startup, Nervana Tensor Processing Unit (TPU)

Specialization Spectrum

Full Open FPGA FPGA + Old GPGPUs Simple High end
Custom ISA standard ops GPU cores cores

China (Sunway), Japan (ARM), and Europe/Barcelona (RISC-V) are doing this in HPC

Ancient Myths of Specialization

* Outperformed by general purpose processors
Research — Trends for general purpose essentially stopped

needed o Too expensive
‘ — Reduce cost with open source hardware and tools
— Equation changed: S600M systems (w/ NRE)
* Industry won’t support them
‘ — They already are, when benefits are high enough
* Too hard to program
‘ — Basic compilers provided; DSLs and compilers needed

* Facilities will not support them
‘ — Piloting options at NERSC

Back-of-the-Envelope: Is this interesting?

MW for Exascale (~= SM/year for power)

0.4 MW 8-bit

100
50 . I ExaOp TPU system
O T —— — T — T — T - T . T T T 1
Q & Q N X & X
(9(?}@ N (_)(;z}@ A\>$ \be’b s> ¢ \>Q§ S \cho >
I .4 \$ o L ,g\q\‘r Q Chart good for
N équ 004‘ 03&0 A rough orders-of-
SO magnitude, at best

Notional exascale system of TPU-like processors:
2,300 GOPS/W —=>? 288 GF/W (dp) = a 3.5 MW Exaflop system!

e Could we use TPU-like ideas for Science?

~12 -

Open Hardware (Synthesis & Simulation)

Chisel

DSL for rapid prototyping
of circuits, systems, and
arch simulator components

Software Hardware
Compilation Compilation

-Tr ‘
SystemC Verilog
ion
C++

Simulation T
S
N\

Back-end to synthesize
HW with different devices
Or new logic families

RISC-V

Open Source Extensible ISA/
Cores

Bus
TEIX AN FIFEEE AR
E E
=5 11 !
; | |
i

I
L

13t 1t Rt T s

Re-implement processor
With different devices or
Extend w/accelerators

OpenSOC

Open Source fabric
To integrate accelerators
And logic into SOC

OpenSoC

Fabric

Platform for experimentation
with specialization
to extend Moore’s Law

13 Shalf, Donofrio, Asasnovic, et al, UCB and LBNL

rom Vector supercomputers

SuU OMPUT

to Massively Parallel Systems

500
-'SIMD
~ Programmed by “ISingle Proc.
400 “annotating” M SMP
serial programs M Constellation
» 300 M Cluster
5 HMPP
®
>
7)

Programmed by
completely rethinking
algorithms and |
software for parallellsm

100

industrial use

1995
1996
1997
1998
1999
2010
2011

The end of Relaxed Programming

THE CHAIRN THAT'S TEACHING AMENICA MOW TO

Barca\ownaer

* Moore: The Law that taught performance programmers to relax
15

Why Consider New Languages at all?

Performance

Algorithms

High level, elegant syntax
Improve programmer productivity

Static analysis can help with correctness
We need a compiler (front-end)

If optimizations are needed to get
performance

We need a compiler (back-end)

Language defines what is easy and hard
Influences algorithmic thinking

Chapel and UPGC

e Partitioned Global Address Space
Languages ATALE OFTWO
Languages

Ih#

— Communication by remote one-
sided access

— Locality control
— Remote atomics...eventually in UPC

 Parallelism

— UPC:
 SPMD, i.e., parallel by default
* Fixed scale.. eventually with teams
* Main runs on all threads

— Chapel:
e Serial by default

w
o
w
w
-
-
v
-
F 2
o
—
v
J
p)
o
-
>
=
-
-
-
[
—
&
w
-
=]
=
=
(W)
=z
—
w
w
~
=

* Task and Data parallel;
* main executed on local #0

Berkeley UPC Project Goals of Time

2001-2004: A Portable UPC Compiler

2005-2008: UPC is a High Performance Lanquage

2008-2012: UPC for multicore & hybrid multicore / clusters

2013-2016: Killer application(s) for science

On to UPC++ and UPC++ 2.0

Bringing Users Along: UPG Experience

1991 Other GASNet-based languages
Active Msgs are 1993 2001 2010
fast Split-C funding gce-upc at Intrepid Hybrid MPI/UPC
1992 (POE)
First AC 1937 ~ 2001 2006
(accelerators + First UPC Meeung:irst UPC Funding UPC in NERSC
split memory) procurement
1992 F.irst Split-C “best of” AC, Split2002 GASNet 2003 Berkeley
(compiler class) C, PCP Spec Compiler release

* Ecosystem:
— Users with a need (fine-grained random access)
— Machines with RDMA (not full hardware GAS)
— Common runtime; Commercial and free software
— Sustained funding and Center procurements

* Success models:
— Adoption by users: vectors = MPI, Python and Perl, UPC/CAF
— Influence traditional models: MPI 1-sided; OpenMP locality control
— Enable future models: Chapel, X10,...

19

Why Consider New Languages at all?

Performance

Algorithms

High level, elegant syntax
Improve programmer productivity

Static analysis can help with correctness
We need a compiler (front-end)

If optimizations are needed to get
performance

We need a compiler (back-end)

Language defines what is easy and hard
Influences algorithmic thinking

Is Chapel High Level Enough?

If not, should you pick a particular domain to
support really well?

. O
~ Jupyterhub
\ ,

21

Arrays in a Global Address Space

UPC++ (1.0) included Titanium Arrays
* Key features of Titanium arrays
— Generality: indices may start/end and any point

— Domain calculus allow for slicing, subarray, transpose and
other operations without data copies

« Use domain calculus to identify ghosts and iterate:
foreach (p in gridA.shrink (1) .domain ())

« Array copies automatically work on intersection
gridB.copy (gridA.shrink (1)) ;

___________ 1777 intersection (copied area)
“restricted” (non-ghost) | | g —
cells T A/f”////// Useful in grid
f L computations
B C including AMR

ghost cells —

gridA gridB

22

Multidimensional Arrays in UPC++ (and Titanium)

* Titanium arrays have a rich set of operations
/

translate restrict slice (n dim to n-1)

* None of these modify the original array, they just create
another view of the data in that array

* You create arrays with a RectDomain and get it back later
using A.domain() for array A
— A Domain is a set of points in space
— A RectDomain is a rectangular one
 Operations on Domains include +, -, * (union, different
intersection)

Data Fusion in UPC++: Can Chapel do this?

* Seismic modeling for energy applications “fuses” observational data into simulation
e With UPC++ “matrix assembly” can solve larger problems

Solving previously unsolvable
problems

First ever sharp, three-dimensional scan of Earth’s interior that conclusively connects plumes of hot rock
rising through the mantle with surface hotspots that generate volcanic island chains like Hawaii, Samoa
and Iceland.

French and Romanowicz use code with UPC++ phase to compute first ever whole-mantle global

tomographic model using numerical seismic wavefield computations (F & R, 2014, GJI, extending
¢ DZ'GJZ\S F et al., 2013, Science). 24
b

Application Challenge: Data Fusion in UPC++

Strong Scaling (NERSC Edison)
F T

100

(0]
o

Gof _—_— —_— =

o S S -

50l | ™8 1.1e5x 1.1e5 (45GB) | N n

B—E 2.2e5 x 2.2e5 (180 GB)
B—l 8.2e5 x 8.2e5 (2.5 TB)

Relative Parallel Efficiency (%)

28 192 768 3072 12288
Cores

Distributed Matrix Assembly

* Remote asyncs with user-controlled resource management
« Remote memory allocation

* Team idea to divide threads into injectors / updaters

e 6x faster than MPI 3.0 on 1K nodes

- Improving UPC++ team support

|) DZ’GAS See French et al, IPDPS 2015 for parallelization overview. o5

Irregular Matrix Transpose: Gan Chapel do this?

* Hartree Fock example (e.g., in NWChem)

* Inherent load imbalance Increase scalability!

* UPC++
« Work stealing and fast atomics
 Distributed array: easy and fast transpose

* Impact

» 20% faster than the best existing solution
(GTFock with Global Arrays)

0 1 2 3

Distributed Array 4 5 6 7

—-
Local Array/ 9 2 104 11
12 | 13 14 | 15

upc David Ozog , Amir Kamil , Yili Zheng, Paul Hargrove , Jeff R. Hammond, Allen Malony, Wibe de
Jong, Katherine Yelick

Hartree Fock Code in UPC++

=
o
o

0
=)

»
o

208 __ Ideal

1.0} ®—@ GTFock - alkane
&—® UPC++ - alkane
0.5F A—A GTFock - DNA 5mer
—¢ UPC++ - DNA 5mer

Seconds per Fock build (ave.)

L . 1

% b ’L. lu. l%. L
¥ o® O P O

© A >
IR
V@

1 Il

> o O >
APCIGIEN

>
AV

)
N ™

N
AR R

Strong Scaling of UPC++ HF Compacr:gc'i-?g GTFock with Global Arrays on NERSC Edison
(Cray XC30)

upt David Ozog , Amir Kamil , Yili Zheng, Paul Hargrove , Jeff R. Hammond, Allen Malony, Wibe de
Jong, Katherine Yelick BERKELEY LAB

Why Consider New Languages at all?

Performance

Algorithms

High level, elegant syntax
Improve programmer productivity

Static analysis can help with correctness
We need a compiler (front-end)

If optimizations are needed to get
performance

We need a compiler (back-end)

Language defines what is easy and hard
Influences algorithmic thinking

What are the big correctness issues in science?

Data races and debugging numerical code

Moore’s Law End Game 29

Error on High-Wavenumber Problem

e Chargeis 01'82
— 1 charge of §
concentric waves T

— 2 star-shaped o

charges.
e Largest error is where the
charge is changing rapidly.
Note:

— discretization error

— faint decomposition
error

e Runon 16 procs

-6.47x10°

Region-Based Memory Management

« Memory management strategy in Titanium
— Need to organize data structures; Allocate set of objects
— Delete them with a single explicit call (fast)
— Save in principle; uses B-W collector for everything else
— Captures references at node boundaries;
— See David Gay's Ph.D. thesis

PrivateRegion r = new PrivateRegion() ;
for (int j = 0; j < 10; j++) {
int[] x = new (r) int[j + 1];
work(j, x);
}
try { r.delete(); }
catch (RegionInUse oops) {

System.out.println(“failed to delete”);

}

Why Consider New Languages at all?

Performance

Algorithms

High level, elegant syntax
Improve programmer productivity

Static analysis can help with correctness
We need a compiler (front-end)

If optimizations are needed to get
performance

We need a compiler (back-end)

Language defines what is easy and hard
Influences algorithmic thinking

Is Chapel High Level Enough?

If not, should you pick a particular domain to
support really well?

33

Autotuning: Write Gode Generators

* Two “unsolved” compiler problems:
— dependence analysis and Domain-Specific Languages help with this

v’ accurate performance models Autotuning avoids this problem

e Autotuners are code generators plus search

Xeon X5550 (Nehalem) NVIDIA C2050 (Fermi)
1024 1024 SPIEPIEERop PO
512 512 D
256 sipngle-precision peak 256 DM
%128 //dolible-precision peak %_1 28 .RTM'wave ean:
o 64 DpammGEMM O 64 O .
G— RTM/wave eqn: = 27pt Stencil
O 32 | O 32
| 27pt Stencil [7pt Stencil
[7pt Stencil ~~ O |
16 PR S 16 /@ -GTCIpushi
8 /@ GTClpushi 8 somv’ |/
SpMV, o 7 7
4 ,"I ., GTC'Charg‘ei 4 {_ 9/ GTC/chargei
2 :_’/ 2 —
Voo g g Yy Y, 1 2 4 8 16 32 Yoy g g Yy 'y 1 2 4 8 16 32
Algorithmic intensity: Flops/Word Algorithmic intensity: Flops/Word

Work by Williams, Oliker, Shalf, Madduri, Kamil, Im, Ethier,... 34

Libraries vs. DSLs (domain-specific languages)

NERSC survey: what motifs do they use? What code generators do we have?
i | | |
Structured
ructure | Dense Linear Algebra Atlas
Sparse LA SRR Spectral Algorithms FFTW,
i Spiral
Spectral [
i Sparse Linear Algebra OSKiI
Particles M ;
| [Structured Grids TBD]
I '
Monte Carlo _ Unstructured Grids
Dense LA [N Particle Methods
Adaptive H Monte Carlo
Unstructured |

0% 10% 20% 30% 40% 50%

Stencils are both the most important motifs and a gap in our tools

35

Approach: Small Gompiler for Small Language

* Snowflake: A DSL for Science Stencils
— Domain calculus inspired by Titanium, UPC++, and AMR in general

(a) Red-Black tiling (b) 4-color tiling (c) Asymmetric stencil used (d) 5-point Jacobi stencil
near mesh boundary

* Complex stencils: red/black, asymmetric
* Update-in-place while preserving provable parallelism
 Complex boundary conditions

36

Image Reconstruction as a Linear Inverse Problem

Acquired Imaging System Intrinsic
Signal Matrix Image
(known) (modeled) (unknown)

Yy A X

Dominated by linear
operator evaluation

Conjugate gradient: AHy = A"Ax
Convex optimization: minimize | A"Ax-ARy | + R(x)

37
Driscoll et al, IPDPS 2018

Indigo: A DSL for Image Reconstruction

Matrices as building blocks Operators at DGAs of matrix operations

! General * Arithmetic: Sum, Product,
} Matrix KroneckerProduct, Adjoint, Scale.

e Structural: VerticalStack, HorizontalStack,
BlockDiagonal.

Identity
Operator Product
Product
OneMatrix SpMatrix Product
Operator

SpMatrix SpMatrix

FFT Operator » Derived properties, e.g., 1 nonzero per row

* Transformations use the properties 38
Driscoll et al, IPDPS 2018

Indigo Performance on GPUs, GPUs, Manycore

% peaks for for roofline, in this case memory bandwith peak

MRI reconstruction (Jiang, Lustig et al)

Magnetic Particle Imaging (Konkle et al 2015)

. | . W se%cpu peak,
9% KNL,
76% GPU.
258x over Numpy.

56% CPU pealk,
9% KNL,
76% GPU.

e Peat " ae N 258x over Numpy.

B +Reorder
I +Realize
EEE +Transpose

43% Peak CPU,
7% KNL,

46% GPU

186x over Numpy

3 min goal (1 sec/iteration) Driscoll et al, IPDPS 2018

Why Consider New Languages at all?

Performance

Algorithms

High level, elegant syntax
Improve programmer productivity

Static analysis can help with correctness
We need a compiler (front-end)

If optimizations are needed to get
performance

We need a compiler (back-end)

Language defines what is easy and hard
Influences algorithmic thinking

Unstructured, Graph-based, Data analytics problem:

De novo Genome Assembly
* DNA sequence consists of 4 bases: A/C/G/T

* Read: short fragment of DNA sequence that can be read by a
DNA sequencing technology — can’t read whole DNA at once.

 De novo genome assembly: Reconstruct an unknown genome
from a collection of short reads.

— Constructing a jigsaw puzzle without having the picture on the box

< . | Tl o
& _Ravensburgersz-Puzzle

« Metagenome assembly: 100s-1000s of species mixed
together

Strong scaling (human genome) on Gray XG30

8192

4096 -

20484

1024

512

256

Seconds

128

64

32

16 &

‘ideal 10 cached '___ Makes unsolvable

~overall No IO cached

overall |10 cached —¢—
kmer analysis =——f— _

contig generation

scaffolding —i— |

problems solvable!

192

Complete assembly of human genome in 4 minutes using 23K cores.

0 3840 7680 15360
Number of Cores

23040

700x speedup over original Meraculous (took 2,880 minutes on large shared memory with
some Perl code); Some problems (wheat, squid, only run on HipMer version)

1) K-mer Analysis
(synchronous) irregular all-to-all

2) Contig Generation

CONtig S — — — — 3S5YNChronous remote insert
(aggregate and overlap) and get

read-contig | — — | — p— 3) A/Ignment

alighments || —— e s e JSYNCHroONoOUS remote insert and

~ lookup (software caching)

4) Scaffolding & Gap Closing
asynchronous remote insert and
lookup (software caching)

contig-contig
scaffol

43

Hardware and Programming Requirements

distributed hash tables all the way down...

Or at least a global address space

High injection rate networks

High bisection bandwidth with modest-
sized messages

Remote (hardware) atomics

Caching remote values sometimes useful
(can be done in software)

Leverages hash table features

Asynchronous random-access

Inserts reordered (write-only phase)
Lookups may involve marking elements
(read-only phase)

Good hash functions for load balance
(and locality if genome ~known)

Does Chapel have a Killer App?

Should you?

45

* Many opportunities for languages / compilers
— People disenchanted by compilers
— Blame unrealistic expectations and HPF?
* Can you get both higher level and superior performance?
— For a domain?
— What parts of programming could be automated?
* Synthesis, superoptimizers, etc.
 What are the real pain points for programmers?

— Correctness of numerical code? Races?

* Do you have a killer app or domain?

T\ ~U:S: DEPARTMENT-OF Office of

A ENERGY science

