
 Why Languages Matter
More than Ever

Kathy Yelick

Lawrence Berkeley National Laboratory
and UC Berkeley

A Focus on Science

2

The changing nature of scientific discovery

- 3 -

Science	at	the	boundary	of	
simula4on	and	observa4on	

New	methods	for	analyzing	and	
modeling	data	

Automa4on,	robo4cs	and	
new	input	devices	

More	compu4ng	for	more	
complex	science	ques4ons	

Science at the Boundary of Simulation and Observation

Cosmology	 Environment	 Materials	

In	many	areas,	there	are	opportuni1es	to	combine	
simula1on	and	observa1on	for	new	discoveries.	

Computing, experiments, networking and expertise
in a “Superfacility” for Science

- 5 -

CETull@lbl.gov - 31 Aug 2015

Slot die printer

CETull@lbl.gov - 31 Aug 2015

HipGISAXS & RMC	

GISAX	
	
	
	
	
Slot-die	prin1ng	of		
Organic	photovoltaics		

More	robo4cs	
and	specialized	
processors	at	
the	edge	

NERSC: Planning Beyond Exascale

Cori at NERSC NERSC Future System Sketch

Learning

§  7,000 users and 2,400 publications in 2017
§  Cori production started July 1, 2017

Simulation

NERSC and Intel have scaled
Deep Learning to 15PF on Cori

Analytics

	
CPUs	

Broad	workload	
	

GPUs		
	Image	Analysis	
Deep	Learning	
Simula1ons	

Remote data can stream
directly into system

Can integrate FPGAs and
other accelerators

Simulations of neutron star merger
shows light spectrum seen in LIGO

Clustering of 388M microbial
proteins reveals new clusters

Scalable and Interpretable Machine Learning for Science

Interpretable	Algorithms	Driven	by	Breadth	of	Science	

Cosmology:
•  Replace simulations with

derived models using
Generative Adversarial Neural
Nets

Iterative random forest finds high order interactions for
transcriptome regulation in drosophila, PNAS 2018

Mixed-scale CNN reduces cost and simplifies
model; use on tomographic image segmentation,
PNAS 2017

Materials and Chemistry:
•  Explore materials universe

with CNNs tailored to 3D
materials and symmetries

Biology :
•  Multi-model analysis of

microbiome, images, etc.

Current	and	emerging	applica4ons	Berkeley	Lab	

Applied Energy:
•  Gradient boosting method

for building energy use

Dennard Scaling is Dead; Moore’s Law Will Follow

8
M.	Horowitz,	F.	Labonte,	O.	Shacham,	K.	Olukotun,	L.	Hammond,	C.	BaIen,	and	K.	Rupp	

Science	implica5on:	
Atlas	compu5ng	
es5mate	off	by	$1B	

Alternatives to Conventional MOS"
(all require lower clock rate, and much more parallelism)

1.E-17

1.E-16

1.E-15

0.01 0.1 1 10

EN
ER

GY
 [J

]

MOSFET

TFET

PERFORMANCE [GHz]

Transition probability=0.01 !
Cap. per inverter=0.57fF!

Energy-Performance Comparison
(30-stage fanout-4 inverter chains)

Today’s	CMOS	
Technology		

Tunneling FET
advantage only at
low clock rates

Specialization: The End Game for Moore’s Law

Google	designs	its	own	
Tensor	Processing	Unit	(TPU)	

Intel	buys	deep	learning	
startup,	Nervana	

NVIDIA	builds	deep	
learning	appliance	with	
P100	Tesla’s	 FPGAs	in	MicrosoV	cloud	

RISC-V	is	an	
open	hardware	

plaWorm	

Specializa)on	Spectrum	

Full	
Custom	

Open	
ISA	

FPGA	 FPGA	+	
standard	ops	

Old	
GPU	

GPGPUs	 Simple	
cores	

High	end	
cores	

China	(Sunway),	Japan	(ARM),	and	Europe/Barcelona	(RISC-V)	are	doing	this	in	HPC	

Ancient Myths of Specialization

•  Outperformed	by	general	purpose	processors	
–  Trends	for	general	purpose	essen1ally	stopped	

•  Too	expensive	
–  Reduce	cost	with	open	source	hardware	and	tools	
–  Equa1on	changed:	$600M	systems	(w/	NRE)	

•  Industry	won’t	support	them	
–  They	already	are,	when	benefits	are	high	enough	

•  Too	hard	to	program	
–  Basic	compilers	provided;	DSLs	and	compilers	needed		

•  Facili4es	will	not	support	them	
–  Pilo1ng	op1ons	at	NERSC	

Research	
needed	

Back-of-the-Envelope: Is this interesting?

•  Could	we	use	TPU-like	ideas	for	Science?		
-	12	-	

No1onal	exascale	system	of	TPU-like	processors:	
					2,300	GOPS/W	à?		288	GF/W	(dp)		à	a	3.5	MW	Exaflop	system!						

0	
50	
100	
150	
200	
250	
300	

Old
	Ex
asc
ale
		

NV
IDI
A	V
10
0	

Ne
w	
Ex
asc
ale
		

V1
00
	w
/	N
VL
INK
	

Gy
ou
ko
u	-
	Ja
pa
n	

Ha
sw
ell
	

Ta
ihu
Lig
ht	 Co

ri	

TP
U-
8b
it	

MW	for	Exascale	

0.4	MW	8-bit	
ExaOp	TPU	system	

Chart	good	for	
rough	orders-of-
magnitude,	at	best	

(~=	$M/year	for	power)	

13

Chisel	 RISC-V	 			OpenSOC	

AXI
OpenSoC

FabricCPU(s)

HMC

AXI

AXI

CPU(s)

AXI CPU(s)

AXI

CPU(s)

AX
I

CPU(s)

AXI

AX
I

10G
bE

PCIe

Verilog

FPGA ASIC

Hardware
Compilation

Software
Compilation

SystemC
Simulation

C++
Simulation

Scala

Chisel

Open	Source	Extensible	ISA/
Cores	

Open	Source	fabric	
To	integrate	accelerators	

And	logic	into	SOC	

DSL	for	rapid	prototyping	
of	circuits,	systems,	and		

arch	simulator	components	

PlaCorm	for	experimenta)on		
with	specializa)on	

to	extend	Moore’s	Law	

Back-end	to	synthesize	
HW	with	different	devices	
Or	new	logic	families	

Re-implement	processor	
With	different	devices	or	
Extend	w/accelerators	

Open Hardware (Synthesis & Simulation)

Shalf,	Donofrio,	Asasnovic,	et	al,	UCB	and	LBNL	

HPC: From Vector Supercomputers
to Massively Parallel Systems

Programmed by
“annotating”
serial programs

Programmed by
completely rethinking
algorithms and
software for parallelism

25% industrial use 50%

145/25/18

•  Moore:	The	Law	that	taught	performance	programmers	to	relax		

The end of Relaxed Programming

15

Why Consider New Languages at all?

•  High	level,	elegant	syntax	
•  Improve	programmer	produc1vity	Syntax	

•  Sta1c	analysis	can	help	with	correctness	
• We	need	a	compiler	(front-end)	Seman4cs	

•  If	op1miza1ons	are	needed	to	get	
performance	

• We	need	a	compiler	(back-end)	
Performance	

•  Language	defines	what	is	easy	and	hard	
•  Influences	algorithmic	thinking	Algorithms	

•  Par44oned	Global	Address	Space	
Languages	
–  Communica1on	by	remote	one-
sided	access	

–  Locality	control	
–  Remote	atomics…eventually	in	UPC	

•  Parallelism	
–  UPC:		

•  SPMD,	i.e.,	parallel	by	default		
•  Fixed	scale..	eventually	with	teams		
•  Main	runs	on	all	threads	

–  Chapel:		
•  Serial	by	default	
•  Task	and	Data	parallel;		
•  main	executed	on	local	#0		

Chapel and UPC

Languages

Berkeley UPC Project Goals of Time
2001-2004: A Portable UPC Compiler
•  UPC was (incorrectly) viewed as a language that required shared memory

hardware or only ran on Cray machines
•  The Berkeley UPC compiler showed it could run on clusters with a lightweight

runtime and that source-to-source translation was reasonable
2005-2008: UPC is a High Performance Language
•  Conventional wisdom: UPC is more productive than MPI but we should expect

it to be slower (maybe by 2x)
•  Even on clusters without global address space support, UPC can outperform

MPI on some microbenchmarks and apps
•  Surprise: bisection bandwidth problems, not just latency-limited
2008-2012: UPC for multicore & hybrid multicore / clusters
•  Focus on on-node performance and mixed shared/distributed
•  Realization: hierarchical algorithms are necessary even in a single

programming model
•  Surprise: processes are faster than threads on-node
2013-2016: Killer application(s) for science
•  Hummingbird; LU factorization
•  Genome assembly
On to UPC++ and UPC++ 2.0

Bringing Users Along: UPC Experience

•  Ecosystem:		
–  Users	with	a	need	(fine-grained	random	access)	
–  Machines	with	RDMA	(not	full	hardware	GAS)	
–  Common	run1me;	Commercial	and	free	soVware	
–  Sustained	funding	and	Center	procurements	

•  Success	models:	
–  Adop1on	by	users:	vectors	à	MPI,	Python	and	Perl,	UPC/CAF	
–  Influence	tradi1onal	models:	MPI	1-sided;	OpenMP	locality	control	
–  Enable	future	models:	Chapel,	X10,…	

19	
	

1991	
Ac1ve	Msgs	are	
fast	

1992	First	Split-C	
(compiler	class)	

1992	
First	AC	
(accelerators	+	
split	memory)	

1993	
Split-C	funding	
(DOE)	

1997	
First	UPC	Mee1ng	

“best	of”	AC,	Split-
C,	PCP	

2001	
First	UPC	Funding	

2003	Berkeley	
Compiler	release	

2001	
gcc-upc	at	Intrepid	

2006	
UPC	in	NERSC	
procurement	

2002	GASNet	
Spec	

2010	
Hybrid	MPI/UPC	

Other	GASNet-based	languages	

Why Consider New Languages at all?

•  High	level,	elegant	syntax	
•  Improve	programmer	produc1vity	Syntax	

•  Sta1c	analysis	can	help	with	correctness	
• We	need	a	compiler	(front-end)	Seman4cs	

•  If	op1miza1ons	are	needed	to	get	
performance	

• We	need	a	compiler	(back-end)	
Performance	

•  Language	defines	what	is	easy	and	hard	
•  Influences	algorithmic	thinking	Algorithms	

21

If not, should you pick a particular domain to
support really well?

Is Chapel High Level Enough?

Arrays in a Global Address Space

•  UPC++ (1.0) included Titanium Arrays
•  Key features of Titanium arrays

–  Generality: indices may start/end and any point
–  Domain calculus allow for slicing, subarray, transpose and

other operations without data copies
•  Use domain calculus to identify ghosts and iterate:

 foreach (p in gridA.shrink(1).domain()) ...

•  Array copies automatically work on intersection
 gridB.copy(gridA.shrink(1));

gridA gridB

“restricted” (non-ghost)
cells

ghost cells

intersection (copied area)

Useful	in	grid	
computa1ons	
including	AMR	

22

Multidimensional Arrays in UPC++ (and Titanium)

•  Titanium	arrays	have	a	rich	set	of	opera4ons	

•  None	of	these	modify	the	original	array,	they	just	create	
another	view	of	the	data	in	that	array	

•  You	create	arrays	with	a	RectDomain	and	get	it	back	later	
using	A.domain()	for	array	A	
–  A	Domain	is	a	set	of	points	in	space	
–  A	RectDomain	is	a	rectangular	one	

•  Opera4ons	on	Domains	include	+,	-,	*	(union,	different	
intersec4on)	

translate	 restrict	 slice	(n	dim	to	n-1)	

Data Fusion in UPC++: Can Chapel do this?

24

•  Seismic	modeling	for	energy	applica1ons	“fuses”	observa1onal	data	into	simula1on	
•  With	UPC++	“matrix	assembly”	can	solve	larger	problems	

French	and	Romanowicz	use	code	with	UPC++	phase	to	compute	first	ever	whole-mantle	global	
tomographic	model	using	numerical	seismic	wavefield	computa1ons	(F	&	R,	2014,	GJI,	extending	
F	et		al.,	2013,	Science).			

First	ever	sharp,	three-dimensional	scan	of	Earth’s	interior	that	conclusively	connects	plumes	of	hot	rock	
rising	through	the	mantle	with	surface	hotspots	that	generate	volcanic	island	chains	like	Hawaii,	Samoa	
and	Iceland.	

DEGAS

Solving	previously	unsolvable	
problems	

Application Challenge: Data Fusion in UPC++

25

Distributed	Matrix	Assembly	
•  Remote	asyncs	with	user-controlled	resource	management	
•  Remote	memory	alloca1on	
•  Team	idea	to	divide	threads	into	injectors	/	updaters	
•  6x	faster	than	MPI	3.0	on	1K	nodes	
à	Improving	UPC++	team	support	

See	French	et	al,	IPDPS	2015	for	paralleliza1on	overview.	DEGAS

Irregular Matrix Transpose: Can Chapel do this?

•  Hartree	Fock	example	(e.g.,	in	NWChem)	

Local Array

0

4

1 2

5 6

8

12

3

7

13 14 15

9 10 11

Distributed	Array	

Increase	scalability!	•  Inherent	load	imbalance	
•  UPC++	

•  Work	stealing	and	fast	atomics		
•  Distributed	array:	easy	and	fast	transpose	

•  Impact	
•  20%	faster	than	the	best	exis)ng	solu)on	
(GTFock	with	Global	Arrays)	

	David	Ozog	,	Amir	Kamil	,	Yili	Zheng,	Paul	Hargrove	,	Jeff	R.	Hammond,	Allen	Malony,	Wibe	de	
Jong,	Katherine	Yelick	

Hartree Fock Code in UPC++

Strong	Scaling	of	UPC++	HF	Compared	to	GTFock	with	Global	Arrays	on	NERSC	Edison	
(Cray	XC30)		

	David	Ozog	,	Amir	Kamil	,	Yili	Zheng,	Paul	Hargrove	,	Jeff	R.	Hammond,	Allen	Malony,	Wibe	de	
Jong,	Katherine	Yelick	

Why Consider New Languages at all?

•  High	level,	elegant	syntax	
•  Improve	programmer	produc1vity	Syntax	

•  Sta1c	analysis	can	help	with	correctness	
• We	need	a	compiler	(front-end)	Seman4cs	

•  If	op1miza1ons	are	needed	to	get	
performance	

• We	need	a	compiler	(back-end)	
Performance	

•  Language	defines	what	is	easy	and	hard	
•  Influences	algorithmic	thinking	Algorithms	

Moore’s Law End Game 29

Data races and debugging numerical code

What are the big correctness issues in science?

Error on High-Wavenumber Problem

•  Charge	is	
–  1	charge	of	

concentric	waves		
–  2	star-shaped	

charges.	
•  Largest	error	is	where	the	

charge	is	changing	rapidly.	
Note:	

–  discre1za1on	error	
–  faint	decomposi1on	

error	
•  Run	on	16	procs		

-6
.4

7x
10

-9

0

 1

.3
1x

10
-9

Region-Based Memory Management
•  Memory	management	strategy	in	Titanium	

–  Need	to	organize	data	structures;	Allocate	set	of	objects		
–  Delete	them	with	a	single	explicit	call	(fast)	
–  Save	in	principle;	uses	B-W	collector	for	everything	else	
–  Captures	references	at	node	boundaries;		
–  See	David	Gay's	Ph.D.	thesis		
	

PrivateRegion r = new PrivateRegion();
for (int j = 0; j < 10; j++) {
 int[] x = new (r) int[j + 1];
 work(j, x);
}
try { r.delete(); }
catch (RegionInUse oops) {
 System.out.println(“failed to delete”);
 }
}

Why Consider New Languages at all?

•  High	level,	elegant	syntax	
•  Improve	programmer	produc1vity	Syntax	

•  Sta1c	analysis	can	help	with	correctness	
• We	need	a	compiler	(front-end)	Seman4cs	

•  If	op1miza1ons	are	needed	to	get	
performance	

• We	need	a	compiler	(back-end)	
Performance	

•  Language	defines	what	is	easy	and	hard	
•  Influences	algorithmic	thinking	Algorithms	

33

If not, should you pick a particular domain to
support really well?

Is Chapel High Level Enough?

Autotuning: Write Code Generators

•  Two	“unsolved”	compiler	problems:		
–  dependence	analysis	and		
–  accurate	performance	models	

•  Autotuners	are	code	generators	plus	search		

Work	by	Williams,	Oliker,	Shalf,	Madduri,	Kamil,	Im,	Ethier,…		

512

256

128

64

32

16

8

4

2

1024

1/16 1 2 4 8 16 32 1/8
1/4

1/2
1/32

512

256

128

64

32

16

8

4

2

1024

1/16 1 2 4 8 16 32 1/8
1/4

1/2
1/32

single-precision peak

double-precision peak

single-precision peak

double-precision peak

RTM/wave eqn.

RTM/wave eqn.

7pt Stencil
27pt Stencil

Xeon X5550 (Nehalem) NVIDIA C2050 (Fermi)

DP add-only

DP add-only

SpMV
SpMV

7pt Stencil

27pt Stencil
DGEMM

DGEMM

GTC/chargei

GTC/pushi

GTC/chargei

GTC/pushi

Algorithmic	intensity:	Flops/Word	 Algorithmic	intensity:	Flops/Word	

34

Autotuning	avoids	this	problem	
Domain-Specific	Languages	help	with	this	

✔	

Libraries vs. DSLs (domain-specific languages)

35

0%	 10%	 20%	 30%	 40%	 50%	

Adap1ve	

Dense	LA	

Monte	Carlo	

Par1cles	

Spectral	

Sparse	LA	

Structured	 Dense	Linear	Algebra	 Atlas	

Spectral	Algorithms	 FFTW,	
Spiral	

Sparse	Linear	Algebra	 OSKI	

Structured	Grids	 TBD	

Unstructured	Grids	

Par1cle	Methods	

Monte	Carlo	

NERSC	survey:	what	mo1fs	do	they	use?	 What	code	generators	do	we	have?	

Unstructured	

Stencils	are	both	the	most	important	mo1fs	and	a	gap	in	our	tools	

Approach: Small Compiler for Small Language
•  Snowflake:	A	DSL	for	Science	Stencils	

–  Domain	calculus	inspired	by	Titanium,	UPC++,	and	AMR	in	general	

•  Complex	stencils:	red/black,	asymmetric		
•  Update-in-place	while	preserving	provable	parallelism	
•  Complex	boundary	condi4ons		

36

(a) Red-Black tiling (b) 4-color tiling (c) Asymmetric stencil used
near mesh boundary

(d) 5-point Jacobi stencil

Figure 4: (a) Red-black tiling allows cross-point updates simultaneously at points of the same color, so an update operation takes
only 2 passes. (b) 4-color tilings are common when each update requires the surrounding 3-by-3 neighborhood. Like red-black
tiling, all points of the same color in a 4-color tiling can be updated simultaneously. (c) An asymmetric stencil, sometimes used
near the mesh boundary of a standard 5-point stencil (d), results in odd dependency patterns. Purple points are read from, gray
points are written to.

1 top = Component("beta_x", WeightArray([[1]])

2 bot = Component("beta_x", WeightArray([[0], [1], [0]])

3 left = Component("beta_y", WeightArray([[1]]))

4 right = Component("beta_y", WeightArray([[0, 0, 1]])

5 Ax = Component("mesh", WeightArray([[0,top,0], [left, left+top+bot+right, bot], [0, bot, 0]]))

6 b = Component("rhs", WeightArray([[1]]))

7 difference = b - Ax

8 original = Component("mesh", WeightArray([[1]])

9 lambda_term = Component("lambda", WeightArray([[1]]))

10 final = original + lambda_term * difference

11 red = RectDomain((1,1), (-1,-1), (2,2)) + RectDomain(((2, 2), (-1, -1), (2, 2))

12 black = RectDomain((1,1), (-1,-1), (2,2)) + RectDomain(((2,2), (-1,-1), (2,2))

13 red_stencil = Stencil(final, "mesh", red)

14 black_stencil = Stencil(final, "mesh", black)

15 # Dirichlet zero boundary: 1 of 4 stencils shown...

16 top_boundary = Stencil("mesh", Component("mesh", WeightArray([[0],[0],[-1]])),

17 RectangularDomain((1, -1), (-1, -1), (1, 0)))

18 # ...others are rotationally equivalent

Figure 5: This complex-smoothing operation a strided colored (red-black) stencil with Dirichlet boundaries and variable coeffi-
cients.

l (lines 8–10).
Having defined the operation, we define the red and black

domains; each is defined as the union (+) of two domains
offset from each other and strided by 2 in each dimension
(lines 11–12). We can now define the main red-black stencil
by associating the operation, its output, and its domain (lines
13–14).

The last step is generating the boundary for a uniform linear
Dirichlet condition in 2 dimensions. This requires four stencils
(top, bottom, left, and right boundaries); for each one, the cell
immediately outside the boundary should be set to the negative
of the value inside the boundary, to make the boundary cell be
zero. Lines 16–17 show how to set up the stencil for the top
boundary; the others are rotationally equivalent.

Finally, the red and black stencils (lines 13–14) and the
boundary stencils (lines 16–17, plus three rotationally equiva-

lent boundary stencils omitted for brevity) can be combined
into a StencilGroup, which allows analysis to identify paral-
lelism across all these stencils as well as within each one. The
next section describes how the analysis is done.

3. Analysis
One major goal of the Snowflake DSL was to make analysis
of stencils easier in order to ensure correctness and ease the
burden on the optimization process. Given the highly regular
access patterns of stencils and stencil groups, the inherent
parallelism is statically determinable in many nontrivial cases
[10]. These dependencies reduce to a system of Diophantine
equations that determine whether or not a stencil interferes
with itself and other stencils. Diophantine equations are equa-
tions where integer solutions are sought. For example, the
equation x2 + y2 = 1 has an infinite number of general solu-

4

=																										·	

Acquired	
Signal	
(known)	

	
	
	
	
y	

Imaging	System	
Matrix	

(modeled)	
	
	
	
	
A	
	
	
	
	

Intrinsic	
Image	

(unknown)	
	
	
	
	
x	

Image Reconstruction as a Linear Inverse Problem

37

Conjugate	gradient:			AHy	=	AHAx	
Convex	op1miza1on:	minimize	|	AHAx-AHy	|	+	R(x)	
																																														

Dominated	by	linear	
operator	evalua1on	

Driscoll	et	al,	IPDPS	2018	

Indigo: A DSL for Image Reconstruction

38

General	
Matrix	

FFT	Operator	

Iden1ty	
Operator	

OneMatrix	
Operator	

Matrices	as	building	blocks	

Product	

SpMatrix	

FFT	

SpMatrix	 SpMatrix	

Product	

Product	

Operators	at	DGAs	of	matrix	opera1ons	

•  Arithme1c:	Sum,	Product,	
KroneckerProduct,	Adjoint,	Scale.	

•  Structural:	Ver1calStack,	HorizontalStack,	
BlockDiagonal.	

	

	

	

	

	

	

•  Derived	proper1es,	e.g.,	1	nonzero	per	row	

•  Transforma1ons	use	the	proper1es	
Driscoll	et	al,	IPDPS	2018	

Indigo Performance on GPUs, GPUs, Manycore

39

43%	Peak	CPU,	
7%	KNL,	
46%	GPU	
186x	over	Numpy	

Phase-Space	Microscopy	(Liu	et	al	2017)	

%	peaks	for	for	roofline,	in	this	case	memory	bandwith	peak	

Ptychography	(Marchesini	2016)	

56%	CPU	peak,		
9%	KNL,		
76%	GPU.		
258x	over	Numpy.	

	

56%	CPU	peak,	
	9%	KNL,		
76%	GPU.		
258x	over	Numpy.	

	

Magne1c	Par1cle	Imaging	(Konkle	et	al	2015)	MRI	reconstruc1on	(Jiang,	Lus1g	et	al)	

3	min	goal	(1	sec/itera1on)	 Driscoll	et	al,	IPDPS	2018	

Why Consider New Languages at all?

•  High	level,	elegant	syntax	
•  Improve	programmer	produc1vity	Syntax	

•  Sta1c	analysis	can	help	with	correctness	
• We	need	a	compiler	(front-end)	Seman4cs	

•  If	op1miza1ons	are	needed	to	get	
performance	

• We	need	a	compiler	(back-end)	
Performance	

•  Language	defines	what	is	easy	and	hard	
•  Influences	algorithmic	thinking	Algorithms	

Unstructured, Graph-based, Data analytics problem: "
De novo Genome Assembly

•  DNA	sequence	consists	of	4	bases:	A/C/G/T	
•  Read:	short	fragment	of	DNA	sequence	that	can	be	read	by	a	

DNA	sequencing	technology	–	can’t	read	whole	DNA	at	once.	

•  De	novo	genome	assembly:	Reconstruct	an	unknown	genome	
from	a	collec4on	of	short	reads.	

–  Construc1ng	a	jigsaw	puzzle	without	having	the	picture	on	the	box	

•  Metagenome assembly: 100s-1000s of species mixed
together

Strong scaling (human genome) on Cray XC30

•  Complete	assembly	of	human	genome	in	4	minutes	using	23K	cores.	
•  700x	speedup	over	original	Meraculous	(took	2,880	minutes	on	large	shared	memory	with	

some	Perl	code);	Some	problems	(wheat,	squid,	only	run	on	HipMer	version)	

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 1920 3840 7680 15360 23040

Se
co

nd
s

Number of Cores

ideal IO cached
overall No IO cached

overall IO cached
kmer analysis

contig generation
scaffolding

IO

Makes	unsolvable	
problems	solvable!	

43

The HipMer genome assembly pipeline has 4 phases

1)  K-mer	Analysis	
(synchronous)	irregular	all-to-all	
	

3)	Alignment	
asynchronous	remote	insert	and	
lookup	(soVware	caching)	
	4)	Scaffolding	&	Gap	Closing	
asynchronous	remote	insert	and	
lookup	(soVware	caching)	
	
	

2)	Con)g	Genera)on	

asynchronous	remote	insert	
(aggregate	and	overlap)	and	get	

xxx	 xx	 xxxx	

reads	

k-mers	

read-con1g	
alignments	

con1g-con1g	
scaffolds	

con1gs	

1	

2	

3	

4	

Hardware and Programming Requirements

44	

Or	at	least	a	global	address	space	
•  High	injec1on	rate	networks	
•  High	bisec1on	bandwidth	with	modest-

sized	messages	
•  Remote	(hardware)	atomics	
•  Caching	remote	values	some1mes	useful	

(can	be	done	in	soVware)	
	
Leverages	hash	table	features	
•  Asynchronous	random-access	
•  Inserts	reordered	(write-only	phase)	
•  Lookups	may	involve	marking	elements	

(read-only	phase)	
•  Good	hash	func1ons	for	load	balance	

(and	locality	if	genome	~known)	

distributed	hash	tables	all	the	way	down...	

45

Should you?

Does Chapel have a Killer App?

Summary

•  Many	opportuni4es	for	languages	/	compilers	
–  People	disenchanted	by	compilers	
–  Blame	unrealis1c	expecta1ons	and	HPF?	

•  Can	you	get	both	higher	level	and	superior	performance?	
–  For	a	domain?	
–  What	parts	of	programming	could	be	automated?	

•  Synthesis,	superop1mizers,	etc.		

•  What	are	the	real	pain	points	for	programmers?	
–  Correctness	of	numerical	code?		Races?	

•  Do	you	have	a	killer	app	or	domain?	

Thank you!

