State of the Chapel Project

Brad Chamberlain, Chapel Team, Cray Inc.
CHIUW 2018

May 25, 2018
Y

e
CcCHAPEL
—

=

What is Chapel? —_— Y

Chapel: A productive parallel programming language
e portable & scalable \
e open-source & collaborative

Goals:

e Support general parallel programming
e “any parallel algorithm on any parallel hardware”
e Make parallel programming at scale far more productive

J Copyright 2018 Cray Inc.

Chapel and Productivity

Chapel aims to be as...
...programmable as Python
...fast as Fortran
...scalable as MPI, SHMEM, or UPC
...portable as C
...flexible as C++
...fun as [your favorite programming language]

=/ Copyright 2018 Cray Inc.

= Y® '

(Y \

x .VQV.‘

Chapel Community Partners

Hisssssaan ™ THE GEORGE AY
Ll . WASHINGTON é_ﬂ

HAVERFORD P onversit VWESTERN

COLLEGE AMD i\/}"\;\‘ WASHINGTON, DC WASHINGTON UNIVERSITY

pksxy A @pice ®m

THE UNIVERSITY OF TOKYO
THE UNIVERSITY
OF ARIZONA

-~

A
rreeee '"I

B Lawrence Livermore
National Laboratory

BERKELEY LAB
Lawrence Berkeley Sandia National Laboratories

National Laboratory

(and several others...)

https://chapel-lang.org/collaborations.html

https://chapel-lang.org/collaborations.html

A Year in the Life of Chapel cRac |

e \
S \
\

e Two major releases per year (was: Apr & Oct; now: Mar & Sept)
e ~a month later: detailed release notes \
o latest release: Chapel 1.17, released April 5t 2018

e CHIUW: Chapel Implementers and Users Workshop (May—June)

e SC (November) Ll gEm = mEd

o talks, tutorials, panels, BoFs, posters, exhibits, ...
e annual CHUG (Chapel Users Group) happy hour

o Talks, tutorials, research visits, social media, ... (year-round)

ZN

@

= Copyright 2017 Cray Inc.

https://chapel-lang.org/releaseNotes.html

A Year in the Life of Chapel cRac |

’ \

O)

Welcome to CHIUW!

\
CHIUW 2018: Agenda (chapel-lang.org/CHIUW2018.html) S S

S \
\

9:00: Welcome, State of the Project
9:30: Break
10:00: Talks: Applications of Chapel
11:00: Quick Break
11:10: Talks: Chapel Design and Evolution
12:10: Lunch
1:40: Keynote Talk: “Why Languages Matter”, Kathy Yelick
2:40: Talks: Chapel Performance
3:00: Break
3:30: Talks: Tools for Chapel
4:30: Lightning Talks and Flash Discussions
5:30: Wrap-up / Head to Dinner

\

¢

Copyright 2018 Cray Inc.

https://chapel-lang.org/CHIUW2018.html

CHIUW 2018: Organizing Committee o

General Chairs: Program Committee:
e Michael Ferguson, Cray Inc. e Brad Chamberlain (chair), Cray Inc.
e Nikhil Padmanabhan, Yale University =« Aparna Chandramowlishwaran (co-chair), UC Irvine
e Mike Chu, AMD
e Anshu Dubey, Argonne National Laboratory
e Jonathan Dursi, The Hospital for Sick Children, Toronto
e Hal Finkel, Argonne National Laboratory
o Marta Garcia Gasulla, Barcelona Supercomputing Center
e Clemens Grelck, University of Amsterdam
Jeff Hammond, /ntel
Bryce Lelbach, Nvidia
Michelle Strout, University of Arizona
Kenjiro Taura, University of Tokyo
David Wonnacott, Haverford College

¢

Copyright 2018 Cray Inc.

CHIUW 2018: Keynote

Kathy Yelick, “Why Languages Matter”

Abstract: In the next few years, exascale computing systems will
become available to the scientific community. These systems will require
new levels of parallelization, new models of memory and storage, and a
variety of node architectures for processors and accelerators. In the
decade that follows, we can expect more of these changes, as well as
increasing levels of hardware specialization. These systems will provide
simulation and analysis capabilities at unprecedented scales, and when
combined with advanced physical models, mathematical and statistical
methods, and computer science and abstractions, they will lead to
scientific breakthroughs. Yet the full power of these systems will only be
realized if there is sufficient high-level programming support that will
abstract details of the machines and give programmers a natural interface
for writing new science applications.

=/ Copyright 2018 Cray Inc.

CHIUW 2018: Keynote

Kathy Yelick, “Why Languages Matter”

Abstract: In the next few years, exascale computing systems will
become available to the scientific community. These systems will require
new levels of parallelization, new models of memory and storage, and a
variety of node architectures for processors and accelerators. In the
decade that follows, we can expect more of these changes, as well as
increasing levels of hardware specialization. These systems will provide
simulation and analysis capabilities at unprecedented scales, and when
combined with advanced physical models, mathematical and statistical
methods, and computer science and abstractions, they will lead to
scientific breakthroughs. Yet the full power of these systems will only be
realized if there is sufficient high-level programming support that will
abstract details of the machines and give programmers a natural interface
for writing new science applications.

=/ Copyright 2018 Cray Inc.

\
Inspiration from Kathy Yelick (UC Berkeley, LBNL) <R

Why Consider New Languages at all?

e Do we need a language? And a compiler?
e If higher-level syntax is needed for productivity
e We need a language

e If static analysis is needed to help with correctness
e We need a compiler (front-end)

e |f static optimizations are needed to get performance

e We need a compiler (back-end)

(Source: HPCS productivity workshop panel, ~20047?)

,_/ Copyright 2018 Cray Inc.

\

\

CHIUW 2018: Research Papers o

Parallel Sparse Tensor Decomposition in Chapel
Thomas Rolinger (University of Maryland), Tyler Simon, and Christopher Krieger (Laboratory for
Physical Sciences) ‘
Iterator-Based Optimization of Imperfectly-Nested Loops
Daniel Feshbach, Mary Glaser (Haverford College), Michelle Strout (University of Arizona), and David
Wonnacott (Haverford College)
Investigating Data Layout Transformations in Chapel
Apan Qasem (Texas State University), Ashwin Adi, and Mike Chu (AMD)

RCUArray: An RCU-like Parallel-Safe Distributed Resizable Array
Louis Jenkins (Bloomsburg University)

Purity: An Integrated, Fine-Grain, Data-Centric Communication Profiler for the Chapel Language
Richard Johnson and Jeffrey Hollingsworth (University of Maryland)

CHIUW 2018: Technical Talks o

Transitioning from Constructors to Initializers in Chapel
Lydia Duncan and Michael Noakes (Cray Inc.)

Adding Lifetime Checking to Chapel
Michael Ferguson (Cray Inc.)

Tales from the Trenches: Whipping Chapel Performance Into Shape
Elliot Ronaghan, Ben Harshbarger, and Greg Titus (Cray Inc.)

ChpliBlamer: A Data-centric and Code-centric Combined Profiler for Multi-locale Chapel Programs
Hui Zhang and Jeffrey Hollingsworth (University of Maryland)

Mason, Chapel’s Package Manager

Ben Albrecht (Cray Inc.), Sam Partee (Haverford College), Ben Harshbarger, and Preston Sahabu
(Cray Inc.)

C

\
CHIUW 2018: Lightning Talks & Flash Discussions SR,

e Continuing last year’s successful session

e Last session of the day! ‘
e Goal: high-energy hot topics for low attention spans!

e Format: Short talks, Q&A, war stories, ...whatever!

e Sign up for a slot!

¢

Copyright 2018 Cray Inc.

\
CHIUW 2018: Lightning Talks & Flash Discussions S SSa

S \
\

e Continuing last year’s successful session

e Last session of the day! ‘
e Goal: high-energy hot topics for low attention spans!

e Format: Short talks, Q&A, war stories, ...whatever!

e Sign up for a slot!

C COMPUTE | STORE | ANALYZE
_// Copyright 2018 Cray Inc.

N
N

CHIUW 2018: Code Camp Plans VX

(Y \
S \
\

e Typically, we’ve held a code camp on day 2 of CHIUW
e work on questions, challenges, coding in small teams \
e takes advantage of being in one place

e This year’s advance response was a bit tepid

e So, taking a more ad hoc approach
e Plan is to work in pairs / small groups in common areas

e If have a topic you're interested in partnering on, let us know
e If there’s lots of last-minute interest, we’ll see about a room

=/ Copyright 2018 Cray Inc.

\
CHIUW 2018: Agenda (chapel-lang.org/CHIUW2018.html) S S

S \
\

9:00: Welcome, State of the Project
9:30: Break
10:00: Talks: Applications of Chapel
11:00: Quick Break
11:10: Talks: Chapel Design and Evolution
12:10: Lunch
1:40: Keynote Talk: “Why Languages Matter”, Kathy Yelick
2:40: Talks: Chapel Performance
3:00: Break
3:30: Talks: Tools for Chapel
4:30: Lightning Talks and Flash Discussions
5:30: Wrap-up / Head to Dinner

\

¢

Copyright 2018 Cray Inc.

https://chapel-lang.org/CHIUW2018.html

O)

A Brief History of Chapel

A Brief History of Chapel

Chapel’s Infancy: DARPA HPCS (2003-2012)

e ~6—7 Chapel developers at Cray
e Research focus:
e distinguish locality from parallelism
e seamlessly mix data- and task-parallelism
e support user-defined distributed arrays, parallel iterators
e Captured post-HPCS project status in CUG 2013 paper:
The State of the Chapel Union
Chamberlain, Choi, Dumler, Hildebrandt, Iten, Litvinov, Titus

=/ Copyright 2018 Cray Inc.

"2]\:‘

A Brief History of Chapel o

Chapel’s Infancy: DARPA HPCS (2003-2012)

e ~6—7 Chapel developers at Cray \

o Research|Post-HPCS barriers to using Chapel in practice:
e distingui Performance and Scalability
Immature Language Features

e seamles e _ _
Insufficient Libraries
* support Memory Leaks
o Captured Lack of Tools
The State o Lack of Documentation
Chamber: Fear of Being the Only User

Yet user interest in Chapel’s potential was high...

¢

Copyright 2018 Cray Inc.

A Brief History of Chapel cRas

Chapel’s Infancy: DARPA HPCS (2003-2012)

Chapel’s Adolescence: “the five-year push” (2013—2018) ‘
e ~13-14 Chapel developers at Cray

e Development focus
e address weak points in HPCS prototype

¢

Copyright 2018 Cray Inc.

CUG 2018 Paper: Summary of Five-year Push <=I=A:Yj' '

Chapel Comes of Age: Making Scalable Programming Productive

Bradford L. Chamberlain, Elliot Ronaghan, Ben Albrecht, Lydia Duncan, Michael Eczguson
Ben Harshbarger, David Iten, David Keaton, Vassily Litvinov, Preston Sahabu, and (]
Chapel Team
Cray

Seattle, WA, USA
chapel_info@cray.com

Abstract—Chapel is a programming language whose goal
is to support productive, general-purpose parallel computing
at scale. Chapel’s approach can be thought of as combining
the strengths of Python, Fortran, C/C++, and MPI in a
single language. Five years ago, the DARPA High Productivity
Computing Systems (HPCS) program that launched Chapel
wrapped up, and the team embarked on a five-year effort
to improve Chapel’s appeal to end-users. This paper follows
up on our CUG 2013 paper by summarizing the progress
made by the Chapel project since that time. Specifically,
Chapel’s performance now competes with or beats hand-coded
C+MPI/SHMEM+OpenMP; its suite of standard libraries has
grown to include FFTW, BLAS, LAPACK, MPI, ZMQ, and
other key technologies; its d ion has been modernized
and fleshed out; and the set of tools available to Chapel users
has grown. This paper also characterizes the experiences of

Inc.

The development of the Chapel 1.
by Cray Inc. as part of its participat
Productivity Computing Systems p
wrapped up in late 2012, at which g
pelling prototype, having successful
key research challenges that the
Chief among these was supporting df
in a unified manner within a sin|
accomplished by supporting the cre}
parallel abstractions like parallel 1o}
of lower-level Chapel features such
tasks.

Under HPCS, Chapel also succeq

early adopters from communities as diverse as
and artificial intelligence.

Keywords-Parallel progr ing; C

I. INTRODUCTION

1 4,

Chapel is a prc d to support
productive, general-purpose parallel computing at scale.
Chapel’s approach can be thought of as striving to create
a language whose code is as attractive to read and write as
Python, yet which supports the performance of Fortran and
the scalability of MPI. Chapel also aims to compete with C

T of parallelism using distinc|
those used to control locality and
programmers specify which comp)
parallel distinctly from specifying w]
should be run. This permits Chap|
multicore, multi-node, and heteroge
a single unified language.

Chapel’s implementation under H
the 1 could be impl d
optimized for HPC-specific featur
support available in Cray® Gemil
works. This allows Chapel to tal

=

)

\

available at chapel-lang.org

CRANY

mﬂ[i....nm, wlalal

Chapel Corﬁeé 6f Age: =
Productive Parallelism at Scale @-.::’;T_

CUG 2018 =
Brad Chamberlain, Chapel Team, Cray Inc.

——

\

https://chapel-lang.org/publications/cug2018-chapel.pdf
https://chapel-lang.org/publications/ChapelForCUG2018.pdf

CUG 2018 Paper: User Perspectives

Chapel Comes of Age: Making Scalable Programming Productive

Bradford L. Chamberlain, Elliot Ronaghan, Ben Albrecht, Lydia Duncan, Michael Ferguson,
Ben Harshbarger, David Iten, David Keaton, Vassily Litvinov, Preston Sahabu, and Greg Titus

Chapel Team
Cray Inc.
Seattle, WA, USA

Abstract—Chapel is a
is to support productive,
at scale. Chapel’s approad
the strengths of Python,|
single language. Five year
Computing Systems (HP(
wrapped up, and the teal
to improve Chapel’s appe]
up on our CUG 2013 p4
made by the Chapel pr{
Chapel’s performance now
C+MPI/SHMEM+OpenM}j
grown to include FFTW,
other key technologies; its
and fleshed out; and the sf
has grown. This paper al
early adopters from comj
and artificial intelligence.

Keywords-Parallel progr]

L IN

Chapel is a programm)
productive, general-purp|
Chapel’s approach can b
a language whose code i
Python, yet which supp

VII. USER PERSPECTIVES

Throughout Chapel’s development, we have worked
closely with users and prospective users to get their feed-
back, and to improve Chapel’s utility for their computations.
In preparing this paper, we sent a short survey to a number
of current and prospective Chapel users so that we could
convey their perspectives on Chapel in their own words. This
section summarizes a few of the responses that we received.
We start with two current users of Chapel from the fields of

Astrophysics and Artificial Intelligence (AI).

Nikhil Padmanabhan is an Associate Professor of Physics
and Astronomy at Yale University, and a self-described

the scalability of MPI. Chapel also aims to compete with C Works. This allows Chapel to take advantage of native

Time-to-Science
Astrophysicist

Genomics
Researcher

Commercial Al
Scientist

N’ L

DOE Scientist

CUG 2018 Paper: User Perspecti

\
ves CcCRANY |

(%

Notably, user responses all
resonated with this goal:

Chapel aims to be as...
...programmable as Python
...fast as Fortran
...scalable as MPI, SHMEM, or UPC
...portable as C
...flexible as C++
...fun as [your favorite language]

Time-to-Science
Astrophysicist

Commercial Al
Scientist

%)
Genomics Lﬂ :
Researcher DOE Scientist

¥

X

Copyright 2018 Cray Inc.

A Brief History of Chapel cRas

Chapel’s Infancy: DARPA HPCS (2003-2012)

Chapel’s Adolescence: “the five-year push” (2013—2018) ‘
e ~13-14 Chapel developers at Cray

e Development focus
e address weak points in HPCS prototype

¢

Copyright 2018 Cray Inc.

A Brief History of Chapel: What’s Next? A

Chapel’s Infancy: DARPA HPCS (2003-2012)
Chapel’s Adolescence: “the five-year push” (2013-2018)
Chapel’s College Years: “three! more! years!” (2018-2021)

e Continue development focus:

e Stabilize/Harden Language Core: “no backwards breaking changes”
Interoperability / Usability: Python, Jupyter, C++, ...
Portability: Libfabric/OFIl, GPUs, Cloud computing
Data Structures: Sparse, DataFrames, Distributed Associative Arrays
e Chapel Al, Increased Adoption

\

X

Copyright 2018 Cray Inc.

()

Chapel: Highlights of the Past Year
(or Five)

O)

Chapel Language and Libraries

Language: Highlights Since CHIUW 2017 o

e User-defined Initializers: ready for use
e constructor replacement; fix for OOP problems
e see Lydia’s talk this morning

e Error Handling: ready for use
e ‘defer’ Statement: registers cleanup actions
e Uninterpreted Strings: can contain linefeeds, escapes

e Delete-Free Programming
e improving ‘Owned’ / ‘Shared’ and migrating into the language
e see Michael's talk this morning

X

Copyright 2018 Cray Inc.

[3]\:‘

Libraries: New Since CHIUW 2017 =.=AY5‘ '

e Crypto: new module based on OpenSSL
o developed by Sarthak Munshi, GSoC 2017 \

e DistributedBag / DistributedDeque: distributed collections
o developed by Louis Jenkins, GSoC 2017, speaking this morning

e Distributedlters: distributed load-balancing iterators
e TOML.: initial support for reading TOML files

¢

Copyright 2018 Cray Inc.

Libraries: Improved Since CHIUW 2017 o

e LinearAlgebra: various ongoing improvements

e MPI: improved support for mixing with various configurations
e co-developed by Nikhil Padmanabhan

e ZMQ: improved interoperability with Python via ZMQ
o developed by Nick Park

e Path: added missing routines

o developed by Sarthak Munshi, Surya Priy, Unnati Parekh, Prithvi Patel, and
Varsha Verma

e Math: added Bessel functions
e developed by Nimit Bhardwaj

\

Copyright 2018 Cray Inc.

\

Libraries: Post-HPCS

After HPCS: ~25 library modules

)

e documented via source comments, if at all:

bradc — ssh bradc@troll.cray.com — bash

/ Copyright (c) 20 13, Cray In (See LICENSE file for more details)

// Random Module
/

// This standard module contains a random number generator based on
// the one used in the NPB benchmarks. Tailoring the NPB comments to
// this code, we can say the followin

// This generator returns uniform pseudorandom real values in the
// range (0, 1) by using the linear congruential generator

1" x_{k+1} = a x_k (mod 2xx46)

// where @ < x_k < 2+x46 and @ < a < 2+x46. This scheme generates
// 2+x44 numbers before repeating. The seed value must be an odd
// B4-bit integer in the range (1, 2°46). The generated values are
// normalized to be between @ and 1, i.e., 2#x(-46)

/7 This generator should produce the same results on any computer
// with at least 48 mantissa bits for real(64) data.

// Open Issues
/

// 1. We would like to support general serial and parallel iterators
// on the RandomStream class, but this is not possible with our
// current parallel iterator framework.

// 2. The random number generation functionality in this module is
// currently restricted to 64-bit real, 64-bit imag, and 128-bit

// complex values. This should be extended to other primitive types
// for which this would make sense. Coercions are insufficient.

// 3. Can the multiplier 'arand' be moved into the RandomStream class
// so that it can be changed by a user of this class.

// 4. By default, the random stream seed is initialized based on the
// current time in microseconds, allowing for some degree of

// randomness. The intent of the SeedGenerator enumerated type is to
// provide a menu of options for initializing the random stream seed,
// but only one option is implemented to date.

// Note on Private
/

// It is the intent that once Chapel supports the notion of 'private’,
// everything prefixed with RandomPrivate_ will be made private to
-uu-:-—-F1 Random.chpl Top L1 (Chapel/1 Abbrev)-----

Mark set

/ Copyright (c) 2004-2013, Cray Inc. (See LICENSE file for more details)

extern type qio_regexp_t;

extern record qm regexp_options_t {

var numpture bool;
// These ones can be set inside the regexp
var ignorecas i)

var multiline
var dotnl:boo
var nongreedy:

¥

bool; // (?U)

extern proc qio_regexp_null():qio_regexp_t;

extern proc qio_regexp_init_default_options(ref options:qio_regexp_options_t);
extern proc qio_regexp_create_compile(stristring, strlen:int(64), ref options:g\
io_regexp_options_t, ref compiled:qio_regexp_t);

extern proc qio_regexp_create_compile_flags(stristring, strlen:int(64), flags:s\
tring, flagslen:int(64), isUtf8:bool, ref compiled:qio_regexp_t);

extern proc qio_regexp_create_compile_flags_2(stric_ptr, strlen:int(64), flags:\
c_ptr, flagslen:int(64), isUtf8:bool, ref compiled:qio_regexp_t);

extern proc qio_regexp_retain(ref compiled:qio_regexp_t);

extern proc qio_regexp_release(ref compiled:gio_regexp_t);

extern proc qio_regexp_get_options(ref regexp:qio_regexp_t, ref options: qio_re\
gexp_options_t);

extern proc qio_regexp_get_pattern(ref regexp:qio_regexp_t, ref pattern: string\
i

extern proc qio_regexp_get_ncaptures(ref regexp:qio_regexp_t):int(64);

extern proc qio_regexp_ok(ref regexp:gio_regexp_t): :

extern proc qio_regexp_error(ref regexp:qio_regexp_t):stri

extern const QIO_REGEXP_ANCHOR_UNANCHORED:c_int;
extern const QIO_REGEXP_ANCHOR_START:c_int;
extern const QIO_REGEXP_ANCHOR_BOTH:c_int;

extern record qio_regexp_string_piece_t {
var offset:int(64); // counting from @, -1 means “NULL"
var len:int(64);

}

extern proc qlo_regexp_string_piece_isnull(rel sp:qio_regexp_string_piece_t):bo\
ol;

—uu:

~F1 Regexp.chpl Top L1 (Chapel/1)

Copyright 2018 Cray Inc.

Libraries: Now

ow: ~60 library modules
e web-documented, many user-contributed

Chapel Documentation 1.16

Docs » Standard Modules

Standard Modules

Standard Library.

o Assert

« Barrier

« Barriers

« Bignteger

- BitOps

« Buffers

« CommbDiagnostics
* DateTime

© Standard Modules
« Dynamiclters
fee « FileSystem
Barrier o &
Barriers « Help
Biginteger . 10
. List
BitOps o
Buffers > o
CommDiagnostics « Path
DateTime « Random
« Reflection
Dynamict
ynamiciters T e
FileSystem e
GMP . Sys
Help « SysBasic
. T
10 SysCTypes
« SysError
o « Time
Math A

UtilReplicatedVar

Standard modules are those which describe features that are considered part]

All Chapel programs automatically use the modules Assert , 10 , nath ,

Chapel Documentation 1.16

© Package Modules
BLAS
Collection
Crypto
Curl
DistributedBag
DistributedDeque
Distributediters
FFTW
FFTW_MT
Futures

HDFS

Docs » Package Modules

Package Modules

Package modules are libraries that currently live outside of the Chapel Standard Library, either
because they are not considered to be fundamental enough or because they are not yet mature
enough for inclusion there.

* BLAS

* Collection

* Crypto

Curl
DistributedBag
DistributedDeque
Distributediters
« FFTW
FFTW_MT
Futures

* HDFS
HDFSiterator
LAPACK
LinearAlgebra
o MPI

* Norm
OwnedObject
RangeChunk
RecordParser
Search
SharedObject
* Sort

VisualDebug
. ZMQ

View page source

\
Libraries: Now <=l=AYf '

Math: FFTW, BLAS, LAPACK, LinearAlgebra, Math
Inter-Process Communication: MPI, ZMQ (ZeroMQ) !
Parallelism: Futures, Barrier, Dynamiclters

Distributed Computing: Distributedlters, DistributedBag,
DistributedDeque, Block, Cyclic, Block-Cyclic, ...

File Systems: FileSystem, Path, HDFS

Others: Biglnteger, BitOps, Crypto, Curl, DateTime, Random,
Reflection, Regexp, Search, Sort, Spawn, ...

Copyright 2018 Cray Inc.

Arrays, Domain Maps: New Since CHIUW 2017 ==A:Yf '

S \
\

e Sparse:
e Added support for CSC layouts \
e Reduced communication for Block-Sparse Arrays

e Replicated: Improved behavior
e Rank Change / Reindex: Reduced communication

X

Copyright 2018 Cray Inc.

Performance, Generated Code, and Memory Leaks

\
Performance: Improvements since Chapel 1.16 <=R~a&,

) \
STREAM Performance PRK Stencil Performance \

20000

GBI/s

15000

GFlops/s

10000

I . ot

100 %

% Efficiency
S
o
2
Time (sec)
N N
o w
1
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
\
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘
‘

,_/ Copyright 2018 Cray Inc.

Performance: Improvements since Chapel 1.16

(For much more on performance,
see Elliot’s talk this afternoon)

=/ Copyright 2018 Cray Inc.

(40\:‘

Memory Leaks: Since CHIUW 2017 o

e \
S \
\

Memory leaks in testing reduced ~100x from 1.15 to 1.17:

2.50e+7

2.00e+7 ||

bytes

1.00e+7 ||

5.00e+6 |

0

1.50e+7|

Memory Leaks for all Tests — Total Leaked Memory

1

Y A W

T

Apr 2017

Jul 2017

Oct 2017 Jan 2018

Memory Leaks: Post-HPCS vs. Now

2500

2000

RN
(&)
o
o

1000

500

MB of memory leaked

Total Memory Leaked in Nightly Testing

Chapel 1.7

0.237
Chapel 1.17

Memory Leaks: Post-HPCS vs. Now

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

Number of Tests

Total Number of Nightly Tests

4410

Chapel 1.7

8478

Chapel 1.17

Memory Leaks: Post-HPCS vs. Now

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

Number of Tests

Fraction of Tests Leaking Memory

4410

Chapel 1.7

8478

302

Chapel 1.17

Memory Leaks:

45000

40000

35000

30000

25000

20000

Bytes Leaked

15000

10000

5000

21

Remaining Leaks

41

Size of Remaining Leaks by Test Number

~1/3 of memory leaked
by one test (SSCA#2)

~2/3 of leaking tests
leak < 256 bytes

61

~1/3 of leaking tests
leak < 64 bytes

81

101 121 141 161 181 201 221
Leaking Test #

241

261 281

301

\
CR=RAY |
[\
S \
\

Portability: Highlights Since CHIUW 2017 <=I=AY:°' '

e ARM: Chapel support for Cray XC50 with ARM processors
e FreeBSD, PowerPC: Improved portability

e OmniPath: Added support

e gcc: Improved portability to new versions

X

Copyright 2018 Cray Inc.

)

\

\

O)

Chapel Ecosystem

Tools: Highlights Since CHIUW 2017 —_P-CUy

e mason: package manager
e See Ben Albrecht’s talk this afternoon \

e c2chapel: convert C header files to ‘extern’ declarations
e bash tab completion: command-line help for ‘chpl’ args
e chpl:

e NOow names executable after main file rather than ‘a.out’

e now offers suggestions for unfamiliar flags
e improved support for LLVM back-end

e configure + make install: added familiar ways to build

P
=

=/ Copyright 2018 Cray Inc.

Documentation: Post-HPCS X

After HPCS:

e a PDF language specification

Cray Inc
901 Fifth Avene, Suite 1000
Seattle, WA 98164

e a Quick Reference sheet e,
e anumber of READMEs [E==

This directory contains the following documentation:

Chapel Quick Reference
Statements

Quick Start

Hew to wrie snc-fve “ells, werkd” pogrs

o

1. Crome the Bl b

o can iy Goeman

config const n = 16;

README : this file
README. bugs : how to report bugs or suggestions to the Chapel team
writeln()

.
. ~ README.building : information about building the Chapel compiler
README. chpleny setting up your environment to use Chapel
README.compiling : how to use the Chapel compiler to compile code 7/ The begin statement spawns a thread of execution that is independent
execution options for Chapel programs 77 of the current (main) thread of execution.
begin writeln()

README . executing
how to execute Chapel on multiple locales 9

README.multilocale :
README. threads i explains how Chapel tasks are implemented using threads
README. xt-cnl + notes for Cray XT (UNICOS/lc) users 7/ The main thread of execution continues on to the next statesent.
README. Cygwin : notes for Cygwin users /7 There is no guarantee as to which statment will exec st.
README. extern : technical note on interfacing with external C routines writeln()
README. format : technical note on controlling value-to-string formatting
README. prereqs + prerequisites for using Chapel
)

writeln(

i the current draft of the Chapel language

chapellanguagespec.pdf :
// For more structured behavior, the cobegin statement can be used to

specification
hpecOverview.pdf : a high-level overview of our implementations of 71 spawn a block of tasks, one for each statement. Control continues Dt Y A Pl Mgt _ .16
the HPC Challenge benchmarks for STREAM Triad, /7 after the cobegin block, but only after all the tasks within the Teota)s
Random Access, and FFT in Chapel /7 cobegin block have completed.
hpccTutorial.pdf @ a companion paper to the previous that provides a writeln()
detailed walkthrough of our implementations of writeln()
the HPCC bench: to serve as a tutorial to b
Chapel and the codes themselves
// The output from within the cobegin statement will always precede the
quickReference.pdf : a one-sheet, tri-fold overview of Chapel syntax 77 following output from the main thread of execution.
for quick reference writeln()
For more Information writeln()
/7 If any begin statements are used within a cobegin statement,
For additional information about Chapel, please refer to: // the thread of execution does not a wait for those begin statements
17 to complete.
* "Parallel Progranmability and the Chapel Language" by Bradford c n{
L. Chamberlain, David Callahan, and Hans P. Zima, published in the begin writeln(I
nal Journal of High Perforsance Computing Applications, begin writeln()i
7, 21(3): 291-312. ¥
“uu-1---F1 README Top L1) chpl Top L1 (Chapel/l Abbrey)------—
Loading /users/bradc/chapel/highlight/emacs/22/chpl-node. el (source).

Copyright 2018 Cray Inc.

)

Documentation: Now

]
CRAY

Now: 200+ modern, hyperlinked, web-based documentation pages

Chapel Documentation 1.16

Platform-Specific Notes
Technical Notes

To

Quick Re

Hello World Variants

fication

Docs » Chapel Documentation

Chapel Documentation

Compiling and Running Chapel

Quickstart Instructions
Using Chapel
Platform-Specific Notes
Technical Notes

Tools

Writing Chapel Progra

Quick Reference
Hello World Variants
Primers

Language Specification

Built-in Types and Functions
Standard Modules

Package Modules

Standard Layouts and Distributions]
Chapel Users Guide (WIP)

Language History

« Chapel Evolution
o Archived Language Specifications

Chapel Documentation 1.16

8 Using Chapel
Chapel Prerequisites

Setting up Your Environment for
Chapel

Building Chapel

Compiling Chapel Programs
Chapel Man Page

Executing Chapel Programs
Multilocale Chapel Execution
Chapel Launchers

Chapel Tasks

Debugging Chapel Programs

Reporting Chapel Issues

View page source

Docs » Using Chapel

Chapel Document:

Using Chapel D

Contents:

Chapel Prerequisites

Setting up Your Environment fo
Building Chapel

Compiling Chapel Programs
Chapel Man Page

Executing Chapel Programs
Multilocale Chapel Execution
Chapel Launchers

Chapel Tasks

Debugging Chapel Programs
Reporting Chapel Issues

Primers

© Task Parallelism
© Task Parallelism

Begin Statements

Cobegin tataments

Cofoallstatements
Sync/ Singles

Atomics

Q@ Previous

Data Parallelism

View page source

)

)

» Task Parallelism View page source

Task Parallelism
View taskParallelchpl on GitHub

This primer illustrates Chapel's parallel tasking features, namely the begin , cobegin ,and coforall
statements.

config const n = 10

Begin Statements

The begtn statement spawns a thread of execution that is independent of the current (main) thread
of execution.

weiteln("1: are

begin wei

(-1

The main statement. There. which
statement will execute frst.

Cobegin Statements

\

Website: Highlights Since CHIUW 2017 AN

e \
S \
\

e Added color-coded documentation version menu

A Chapel Documentation 1.16 ¥ Docs.» Chapel Documentation
[)

e @ Chapel Documentation 117 ¥ 5 .
ocs » Chapel Documentation

e A Chapel Documentation

1.18 pre-release ¥
~

Docs » Chapel Documentation

Chapel Documentation

e Moved http://chapel.cray.com to https://chapel-lang.org

\

¢

Copyright 2018 Cray Inc.

https://chapel-lang.org/

Chapel on StackOverflow

]
CRANY

)
)

e StackOverflow ‘chapel’ questions are on the rise

S\ stackoverflow Questions Developer Jobs Tags Users [chapel]
[Tagged Questions info newest frequent votes active uUnanswered
Chapel, the Cascade High Productivity Language, is a parallel programming language developed by Cray.
lean more.... top users synonyms
1 Print string domain values with comma separation in Chapel
te
voe I have a domain Id ike to output with commas. In Python | can use the siring join() method, being fed by
list .sort()-ed product, but in Chapel | am not getting the right results. var names = { "...
chapel asked Oct 20 at 17:41
18 views - Brian Dolan
977 #1 13 o 24
2 Continue out of FORALL loop in Chapel
te e "
voes When you write it all caps like that, you really see the FORTRAN heritage. Anyway, | can't get the forall
1 continue syntax correct. var ids = {1,2,3,5,7,11}; forall id in ids { if id == 5 then ...
answer chapel forall asked Oct 20 at 15:59
N Brian Dolan
34 views - 977 o1 013 024
3 Assign an array to a property in a Chapel Class
te
oS Here is a Python-like pattern | need to re-create in Chapel. class Gambler { var luckyNumbers: [1..0] int; } var
nums = [13,17,23,71]; var KennyRogers = new Gambler(); KennyRogers.luckyNumbers = ...
list-comprehension chapel asked Oct 20 at 15:11
13 views - Brian Dolan
977 o1 013 024
3 How to represent a Set or Dictionary in Chapel?
votes In Python, it's easy to create a set of unique, un-ordered objects with >>> s = set() >>> s.add("table") >>>
P s.add(‘chair’) >>> s.add("emu") >>> s set(["...

e =

78

questions tagged

chapel about »

BLOG

What are the Most Disliked
Programming Languages?

Podcast #120 - Halloween
Spooktacular with Anil Slash

up ~116 since CHIUW 2017

Ask Question

143 questions tagged

Lead Mobile Developer- Android

Leafly 9 Seattle, WA

android java

Mid-Level C# Producer for SWAT Shooter

Giant Enemy Crabs

Seattle, WA

\

Try It Online

Tio C)

Chapel Hello World & switch languages &
» Compiler flags

» Header

O v Code 56 chars, 56 bytes (UTF-8)

. o =
What is TIO? L{fgcﬁ“ coforall i in 1..10 do

UDERERyETelE 2= o= writeln("Hello from task ", i);
To use TIO, simply clic " o ’ -
sent to a TIO arena, ex| : :m c = -t p Footer

generating a client-sid Brachylog vt Chez Scheme Feu

Braille CHICKEN Scheme fish

. - o » Input

Brain-Flak (BrainHack) assemt our Fission2

Charm Factor

Flpbit o Uiterate Haskell

FocaL9 s MR v B Arguments

usp Nim
Dreaderef v Locksmith NotQ

DStack ote - Logicode vy Output

escal or is LoLcoDE Numb]
ecpp+ C(ged) e tran implich Lost Oasis

Why TIO? . = S fre = od Hello from
TIO hosts 190 practi *= e e i e) -l Hello from
TIO listens: languag : c) Fky ::k:u Hello from
contact options list P) e amitScham Molsoige - Hello from
The TIO web app is ! c . s w0 ; we «d Hello from
The software that p . - . 2) U : Hello from
TIO works great on | , . e : ’ - = Hello from
Hello from

| Hello from

o " v - Hello from

ONUVUWKHEEHEOOORAN

https://tio.run/

\
Summary cRAY
[\
S \

Chapel has made huge strides over the past year/5 years

We’ve addressed many historical barriers to using Chapel

HPCC RA: Chapel Now vs. Ref ‘==A:Y“ Memory Leaks: Chapel Then vs. Now <=l=¢/§v\" Documentation: Now Cl=lA:Y: Tools: Now <==A:Y:

Fraction of Tests Leaking Memory

We’re continuing our work to support and improve Chapel

We’re looking for the next generation of Chapel users,
as well as concrete use cases for Al / ML

In Memory of Burton Smith =l=toA‘Yf..

S \
\
| CcC=RANY
Where do Languages Come From? M
Lone Hardware Vendors Hardware Vendor Consortiums \
SHMEM CAF ;(ay taskingl— OPenMP
Java APL Icrotaskingj
CMFortran F66 —— F77 — F90/95
Nx,k\
- //c HPF
Perl
B ource er & Independent
sl Python Software Vendors
Fanatics R
uby
Smalltalk MPI FortranD Matlab Mathematica
SISAL ~_ Vienna Fortran aple
PVM - ~ SAC NESL
PoOMA | T PL Titanium bgda
UPC <1 Split-C ~ KeLP
Government Labs Academia
2N
C COMPUTE | STORE ANALYZE
= (55)

——_/ Copyright 2018 Cray Inc. N

\
CHIUW 2018: Agenda (chapel-lang.org/CHIUW2018.html) S S

S \
\

9:00: Welcome, State of the Project
9:30: Break
10:00: Talks: Applications of Chapel
11:00: Quick Break
11:10: Talks: Chapel Design and Evolution
12:10: Lunch
1:40: Keynote Talk: “Why Languages Matter”, Kathy Yelick
2:40: Talks: Chapel Performance
3:00: Break
3:30: Talks: Tools for Chapel
4:30: Lightning Talks and Flash Discussions
5:30: Wrap-up / Head to Dinner

\

¢

Copyright 2018 Cray Inc.

https://chapel-lang.org/CHIUW2018.html

Chapel Resources

Chapel Central cRas

[\
S \

= ~
https://chapel-lang.org | (&&=

Chapel is a modern programming language that is...
e downloads e \

« parallel: contains first-class concepts for concurrent and parallel computation
What's New? productive: designed with programmability and performance in mind
Upcoming Events portable: runs on laptops, clusters, the cloud, and HPC systems

= .
‘ d O C u I I I e n tatl O n PO OPPCTIES « scalable: supports locality-oriented features for distributed memory systems
.

How Can | Learn Chapel? open-source: hosted on GitHub, permissively licensed

Contributing to Chapel
Documentation New to Chapel?
‘ re SO u rce S ?,w'm Chaes As an introduction to Chapel, you may want to...

Release Notes

e presentations i

read a blog_article or book chapter

watch an overview talk or browse its slides

download the release

browse sample programs

view other resources to learn how to trivially write distributed programs like this:

pa pe rS Presentations use CyclicDist; // use the Cyclic distribution Library

;:'&?,;'ao", and Papers config const n = 100; // use --n=<val> when executing to override this default

Social Media / Blog Posts
Press

CHIUW forall i in {1..n} dmapped Cyclic(startIdx=1) do
CHUG writeln("Hello from iteration ", i, " of ", n, " running on node ", here.id);

Contributors / Credits
Research / Collaborations

What's Hot?

chapel-lang.org
chapel_info@cray.com

Chapel 1.17 is now available—download a copy or browse its release notes

The advance program for CHIUW 2018 is now available—hope to see you there!
O:=m
Givo

Chapel is proud to be a Rails Girls Summer of Code 2018 organization

Watch talks from ACCU 2017, CHIUW 2017, and ATPESC 2016 on YouTube

Browse slides from SIAM PP18, NWCPP, SealLang, SC17, and other recent talks

Also see: What's New?

https://chapel-lang.org/

\
Chapel Social Media (no account required ANy

http://twitter.com/ChapelLanguaqge
http://facebook.com/ChapelLanguage
https://www.youtube.com/channel/UCHMmM27bYjhknK5mU7Z2zPGsQ/

3 Home

& Moments Search Twitter

£]| Chapel Programming Language

Page Messages Notifications Insights Publishing Tools ‘ a
e Liked + 3\ Following v A Share
| A Home =D q
. =% Chapel Parallel Programming Language
(C Chavel Programming Language ‘Trendin 72 subscribers
G e 6 J =/
Tweets Folowing Folowsrs LUkes Lt Horopissedionemat crpas corey o] B Swerbion Woue vomos st owes s Q
Computer Language Benchmarks Game's “fast-fas
576 48 278 200 1 That said, we're even prouder of how clear and cof
—_— > programs are relative to other entries that performfl L/BRARY Chapel videos PLAY ALL
lioth.debian.org/... whi
" " L Histe Apl fi hapel
Tweets Tweets & replies Media Chapel , 9 istory. playlist of featured Chapel presentations.
Chapel Language Programming ¢ How many times slowd © Waichiater
eGhepeargliace ¥ Pinned Tweet Language £a CHIUW 2017 keynote: Chapel's Home in the New Landscape of
/7= Chapel Language @Chapellanguage - Feb 12 @ChapelLanguage g, secmrnons gcner‘mﬁti frpameworkS. Janath?; Dursi -
. hapel Paralel Programming Language + 348 views + 10 months ago
e e @J/ Unfamiliar with Chapel? Read a new interview with Brad Chanm £ N - i . -
Home Thisis Jonathen Dursi's keynote talk from 017:the 4th Annual Chapel Implementers and
) T " productive paraliel language on the *Tris is Not a Monad Tutork H © PopularonYouTu.. hahop. The shces o avalabi N1 hrs, b0/ CHIUWZ017 (Due 0 techicel
large-scale computing whose Posts & ’ o !
development is being led by @cray_inc notamonaditutorial.comvinterview-with Videos i O vuse
Q n H The Audacity of Chapel: Scalable Parallel Programming Done Right -
& chapel-lang.org Thi i ot Monad ttorial v Photos § @ soons Brad Cham;yenai“ [ACCU 2017] o9 9 9
[Joined March 2016 Interview with Brad Chamberlain about| About £ pres— @ Gcaming ACCU Conference + 11K views + 1 year ago
d il i Programming language designers have 1o date largely failed the large-scal
[256 Photos and videos P parallel p langug Lices community, and arguably even parallel programmers targeting desktops of mode:
: called Chapel 270 pecple reached MORE FROM YOUTUBE
- A ———— Like Comment Share PYCON UK 2017: On Big Computation and Python
bertain about Chapel, a roductive © Russal Winder, Mykola Rabehaviiy and 2 others] I Movies & Shows PYCon UK - 590 vews - 6 morths ago
R Russel Thursday 17:00 | Assembly Room Python is a programming langua of
— C wieacommen. execution but fast of program development - except for some sorts of bug that statically compiled
3 £ settings
~

,_/ Copyright 2018 Cray Inc.

http://twitter.com/ChapelLanguage
http://facebook.com/ChapelLanguage
https://www.youtube.com/channel/UCHmm27bYjhknK5mU7ZzPGsQ/

Chapel Community

https://stackoverflow.com/questions/tagged/chapel

https://github.com/chapel-lang/chapellissues
https://qgitter.im/chapel-lang/chapel
chapel-announce@lists.sourceforge.net

2 Questions Developer Jobs Tags Users [chapel]
Issues Marketpla
Tagged Questions nfo newest frequent votes actil
.l chapel-lang / chapel @Watch~ 45
Chapel is a portable, open-source parallel programming language. Use this tag to ask questions about the
language or its implementation. Code (@lssues 202 Pull requests 26 Projects 0 Settings Insights ~
Leam more... Improve taginfo Top users Synonyms
| Fiters+ is:issue is:open Labels Milestones
6 Tuple Concatenation in Chapel
® 2920pen v 77 Closed Author~ Labels~ Projects~ Milestones
votes Let's say I'm generating tuples and | want to concatenate them as they come. How do | do
does element-wise addition: ifts = (*foo", "cat"), t = (*bar", *dog") ts +=tgives ts = ... o " forall® for remote coforalls NN
tuples concatenation addition hpc chapel asked Jan 26 8 type: Performance
Tehima§ #6357 opened 13 hours ago by ronawho
385 « . . .
79 views ! @ Consider using processor atomics for remote coforalls EndCount area: Compiler
type: Performance
] #6356 open ur y ron t
6 Is there a way to use non-scalar values in functions with where clauses in 6356 opened 13 hours ago by ronawho % 0 of 6
wotes I've been trying out Chapel off and on over the past year or so. | have used C and C++ brief @ make uninstall jarea: BTR [{jps: Feature Request
most of my experience is with dynamic languages such as Python, Ruby, and Erlang more #6353 opened 14 hours ago by mpp!
E chapel asked Apr 23 8l @ make check doesn't work with ./configure area: 8TR
7% anglus #6352 opened 16 hours ago by mppf
47 viows e 3323 e variable via in teration-orivate vari
(D Passing variable via in intent to a forall loop seems to create an iteration-private variable,
not a task-private one area: Compiler [fypésBig
6 Is there any writef() format specifier for a bool? #6351 opened a day ago by cassella
votes looked at the writef() documentation for any bool specifier and there didn't seem to be anyd @ Remove chpl_comm_make_progress ‘area: Runtime. easy [{jBe0asignl
program | have: ... config const verify = false; /* that works but | want to use writef() #6349 opened a day ago by sungeunchol
g S saked Nov (i @ Runtime error after make on Linux Mint (afea:BTR user issue
#6348 opened a day ago by danindiana

GITTER chapel-lang/chapel chapel programming language | Peak developer hours are 0600-1700 PT

Brian Dolan @buddha314
what s the syntax for making a copy (not a reference) to an array?

Where
communities
thrive

Michael Ferguson @mppf
like in 2 new variable?

FRES COMMSNTT G Brian Dolan @buddha314
oh, gotit, thanks!

JOIN OVER 800K+ PEOPLE

JOIN OVER s0Ke CoMMUNITI))
Michael Ferguson @mppf

CREATE YOUR OWN COMMUN

(arr) {

EXPLORE MORE COMMUNITIES

Brian Dolan @buddha314
isn'ttherea proc f(ref arr) {} aswell?

Michael Ferguson @mppf
yes. The default intent for array is 'ref’ or ‘const ref’ depending on if the function body modifies
it. So that's effectively the default.

. Brian Dolan @buddha314
thanks!

https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues
https://gitter.im/chapel-lang/chapel

Suggested Reading (healthy attention spans) =|=,A‘Y\®' '

S \
\

Chapel chapter from Programming Models for Parallel Computing
a detailed overview of Chapel’s history, motivating themes, features \
published by MIT Press, November 2015
edited by Pavan Balaji (Argonne)
chapter is also available online

Other Chapel papers/publications available at https://chapel-lang.org/papers.htmi

:/

https://mitpress.mit.edu/books/programming-models-parallel-computing
https://chapel-lang.org/publications/PMfPC-Chapel.pdf
https://chapel-lang.org/papers.html

Suggested Reading (short attention spans) =|=,A‘Y:’ '

CHIUW 2017: Surveying the Chapel Landscape, Cray Blog, July 2017.
e arun-down of recent events (as of 2017)
Chapel: Productive Parallel Programming, Cray Blog, May 2013.
e a short-and-sweet introduction to Chapel
Six Ways to Say “Hello” in Chapel (parts 1, 2, 3), Cray Blog, Sep-Oct 2015.
e a series of articles illustrating the basics of parallelism and locality in Chapel
Why Chapel? (parts 1, 2, 3), Cray Blog, Jun-Oct 2014.

e a series of articles answering common questions about why we are pursuing Chapel in
spite of the inherent challenges

[Ten] Myths About Scalable Programming Languages, |IEEE TCSC Blog

(index available on chapel-lang.org “blog posts” page), Apr-Nov 2012.

e a Series of technical opinion pieces designed to argue against standard reasons given for
not developing high-level parallel languages

\

X

Copyright 2018 Cray Inc.

http://www.cray.com/blog/chiuw-2017-surveying-chapel-landscape/
http://blog.cray.com/
http://blog.cray.com/?p=5889
http://blog.cray.com/
http://www.cray.com/blog/six-ways-to-say-hello-in-chapel-part-1/
http://www.cray.com/blog/six-ways-to-say-hello-in-chapel-part-1/
http://www.cray.com/blog/six-ways-to-say-hello-in-chapel-part-2/
http://www.cray.com/blog/six-ways-to-say-hello-in-chapel-part-3/
http://blog.cray.com/
http://blog.cray.com/?p=6877
http://blog.cray.com/?p=6877
http://blog.cray.com/?p=6908
http://blog.cray.com/?p=7060
http://blog.cray.com/
https://www.ieeetcsc.org/activities/blog
http://chapel-lang.org/media.html

Where to..

Submit bug reports:
GitHub issues for chapel-lang/chapel: public bug forum
chapel _bugs@cray.com: for reporting non-public bugs
Ask User-Oriented Questions:
StackOverflow: when appropriate / other users might care
Gitter (chapel-lang/chapel): community chat with archives
chapel-users@lists.sourceforge.net: user discussions
Discuss Chapel development
chapel-developers@lists.sourceforge.net: developer discussions
GitHub issues for chapel-lang/chapel: for feature requests, design discussions
Discuss Chapel’s use in education
chapel-education@lists.sourceforge.net: educator discussions

Directly contact Chapel team at Cray: chapel_info@cray.com

Copyright 2018 Cray Inc.

63

\
Legal Disclaimer SRR
S \

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is
granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice. \
All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publicly announced for release. Customers and other third
parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at
the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc.
products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA and
YARCDATA. The following are trademarks of Cray Inc.: CHAPEL, CLUSTER CONNECT, CLUSTERSTOR, CRAYDOC, CRAYPAT, CRAYPORT,
DATAWARP, ECOPHLEX; LIBSCI, NODEKARE, REVEAL. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used on this website are the property of their
respective owners.

ZN

@

,_/ Copyright 2018 Cray Inc.

=

cRaN
cCHAaRPEL

