Sketching Streams

Chris Taylor

DoD
Overview

• What-Why Sketch?

• Sketches
 • Hyper Log Log Sketch
 • Frequency “Heavy Hitter” Sketch
 • Quantile Sketch
 • Theta Sketch
What-Why Sketch?
What-Why Sketch?

• Data sets exceed traditional commodity compute capabilities
 – Static and Streaming data
 – Data set is “noisy” (biology, physics)

• Approximate results have value
What-Why Sketch?

- Compute dynamic “summaries” of a dataset according to a predefined set of computational constraints
 - Storage size
 - Accuracy, precision...user provided tolerances
- Sketches are “monoidal” in nature; satisfying a suite of set operations (union, difference, etc)
 - Functional programming concepts
 - Parallel prefix summarization
What-Why Sketch?

- “Data analytic” platforms adopting sketches
 - Yahoo's “Data Sketching” library
 - Druid integration with Yahoo's library**
 - Redis support
 - Several opensource projects for Spark/Hadoop

** Traditional Database, “Columnar” Stores, “Big Table” Database
What-Why Sketch?

• Measuring Performance
 – Using Chapel 1.15!
 – **Measured sketch update performance**
 – Each algorithm receives a randomly filled array of 100K integers
 – Each algorithm provided 5 minutes to 'add' or 'update' a sketch (serial loop) over sets of the 100K integers

• Results are the total number of 100K block-integer updates completed in ~5 minutes
HyperLogLog

- Philippe Flajolet
- Analyzes a stream of hashed values (bit-pattern observables)
 - Split each hashed value into m sets
 - Collects “runs” of zeros for each m set
- Provides a Stochastic Average using collected bit-pattern information
 - Compute a harmonic mean of each m bit set (for each new value)
HyperLogLog

• Hashed Value:

 000011000111

• Split hash into bit-pattern sets ($m=3$):

 [[000], [011], [000], [111]]

• Compute running harmonic average over existing bit-pattern sets
Frequency Sketch
Frequency Sketch

- Implementation of Misra-Greis Algorithm
- Stores $k-1$ (item-counter) pairs as a set
- If a new item is in the set's range
 - Increment a counter
 - Else find an empty counter, add item, and set counter to one
- Decrement all k-counters if all counters have been allocated
- Over time, low frequency elements are removed, making space for higher frequency items.
Quantile Sketch
Quantile Sketch

• “Low Discrepancy Mergeable Quantiles Sketch” (Agarwal, Cormode, Huang, Philips, Wei, Yi)

• Non-deterministic!

• Select elements (upper/lower bounds) from the stream under a rank constraint:

 normalized rank: \(\frac{i|S|}{k} \) for \(1 \leq i \leq k \approx 1/e \)

• Using the selected elements, or summary, compute quartile information.
Chapel has to perform several domain resizes, could use optimization
Theta Sketch

- Kth Minimum Value sketch
- Maintains a threshold theta and a set of unique hashed items less than theta
 - Assume hashing function computes a uniform distribution
- Algorithm assumes hash function provides uniform distribution (over hash space).
- The assumption gives information about the average spacing between elements of the stream.
- Knowing the smallest value, and spacing, one can infer the total number of distinct values observed
Theta Sketch

Run 1
Run 2
Run 3
Run 4
Run 5

0 100000 200000 300000 400000 500000 600000 700000 800000 900000

chpl-fast
chpl
python
• Images provided by Library of Congress
 – All photos have “no known restrictions on publication”
• Code to be posted on github!
 – Check the email listserv for details