

Sketching Streams

Chris Taylor
DoD

Overview

● What-Why Sketch?

● Sketches

 Hyper Log Log Sketch
 Frequency “Heavy Hitter” Sketch
 Quantile Sketch
 Theta Sketch

What-Why Sketch?

What-Why Sketch?

● Data sets exceed traditional commodity
compute capabilities
– Static and Streaming data

– Data set is “noisy” (biology, physics)

● Approximate results have value

What-Why Sketch?

● Compute dynamic “summaries” of a dataset
according to a predefined set of computational
constraints
– Storage size

– Accuracy, precision...user provided tolerances

● Sketches are “monoidal” in nature; satisfying a
suite of set operations (union, difference, etc)
– Functional programming concepts

– Parallel prefix summarization

What-Why Sketch?

● “Data analytic” platforms adopting sketches
– Yahoo's “Data Sketching” library

– Druid integration with Yahoo's library**

– Redis support

– Several opensource projects for Spark/Hadoop

** Traditional Database, “Columnar” Stores, “Big Table” Database

What-Why Sketch?

● Measuring Performance
– Using Chapel 1.15!

– Measured sketch update performance
– Each algorithm receives a randomly filled array of 100K

integers
– Each algorithm provided 5 minutes to 'add' or 'update' a

sketch (serial loop) over sets of the 100K integers

● Results are the total number of 100K block-integer
updates completed in ~5 minutes

HyperLogLog

HyperLogLog

● Philippe Flajolet
● Analyzes a stream of hashed values (bit-pattern

observables)
– Split each hashed value into m sets

– Collects “runs” of zeros for each m set

● Provides a Stochastic Average using collected bit-
pattern information
– Compute a harmonic mean of each m bit set (for each

new value)

HyperLogLog

● Hashed Value:

000011000111
● Split hash into bit-pattern sets (m=3):

[[000], [011], [000], [111]]
● Compute running harmonic average over

existing bit-pattern sets

HyperLogLog

chpl python
0

2000

4000

6000

8000

10000

12000

Run 1

Run 2

Run 3

Run 4

Run 5

HyperLogLog

chpl-fast chpl python
0

50000

100000

150000

200000

250000

300000

Run 1

Run 2

Run 3

Run 4

Run 5

Frequency Sketch

Frequency Sketch

● Implementation of Misra-Greis Algorithm
● Stores k-1 (item-counter) pairs as a set
● If a new item is in the set's range

– Increment a counter

– Else find an empty counter, add item, and set counter to one

● Decrement all k-counters if all counters have been
allocated

● Over time, low frequency elements are removed, making
space for higher frequency items.

Frequency Sketch

chpl python
0

2000

4000

6000

8000

10000

12000

Run 1

Run 2

Run 3

Run 4

Run 5

Frequency Sketch

chpl-fast chpl python
0

50000

100000

150000

200000

250000

300000

Run 1

Run 2

Run 3

Run 4

Run 5

Quantile Sketch

Quantile Sketch

● “Low Discrepancy Mergeable Quantiles Sketch”
(Agarwal, Cormode, Huang, Philips, Wei, Yi)

● Non-deterministic!
● Select elements (upper/lower bounds) from the

stream under a rank constraint:

normalized rank: i|S|/k for 1 <= I <= k ~= 1/e

● Using the selected elements, or summary,
compute quartile information.

Quantile Sketch

chpl python
0

50

100

150

200

250

300

350

400

450

Run 1

Run 2

Run 3

Run 4

Run 5

** Chapel has to perform several domain resizes, could use optimization

Quantile Sketch

chpl-fast chpl python
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Run 1

Run 2

Run 3

Run 4

Run 5

Theta Sketch

Theta Sketch

● Kth Minimum Value sketch
● Maintains a threshold theta and a set of unique hashed

items less than theta
– Assume hashing function computes a uniform distribution

● Algorithm assumes hash function provides uniform
distribution (over hash space).

● The assumption gives information about the average
spacing between elements of the stream.

● Knowing the smallest value, and spacing, one can infer
the total number of distinct values observed

Theta Sketch

chpl python
0

10000

20000

30000

40000

50000

60000

70000

80000

Column 1

Column 2

Column 3

Theta Sketch

chpl-fast chpl python
0

100000

200000

300000

400000

500000

600000

700000

800000

900000

Run 1

Run 2

Run 3

Run 4

Run 5

● Images provided by Library of Congress
– All photos have “no known restrictions on

publication”

● Code to be posted on github!
– Check the email listserv for details

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

