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Overview

● What-Why Sketch?

● Sketches

  Hyper Log Log Sketch
  Frequency “Heavy Hitter” Sketch
  Quantile Sketch
  Theta Sketch



  

What-Why Sketch?



  

What-Why Sketch?

● Data sets exceed traditional commodity 
compute capabilities 
– Static and Streaming data

– Data set is “noisy” (biology, physics)

● Approximate results have value



  

What-Why Sketch?

● Compute dynamic “summaries” of a dataset 
according to a predefined set of computational 
constraints
– Storage size

– Accuracy, precision...user provided tolerances

● Sketches are “monoidal” in nature; satisfying a 
suite of set operations (union, difference, etc)
– Functional programming concepts

– Parallel prefix summarization



  

What-Why Sketch?

● “Data analytic” platforms adopting sketches
– Yahoo's “Data Sketching” library

– Druid integration with Yahoo's library**

– Redis support

– Several opensource projects for Spark/Hadoop

** Traditional Database, “Columnar” Stores, “Big Table” Database



  

What-Why Sketch?

● Measuring Performance
– Using Chapel 1.15!

– Measured sketch update performance
– Each algorithm receives a randomly filled array of 100K 

integers
– Each algorithm provided 5 minutes to 'add' or 'update' a 

sketch (serial loop) over sets of the 100K integers

● Results are the total number of 100K block-integer 
updates completed in ~5 minutes



  

HyperLogLog



  

HyperLogLog

● Philippe Flajolet
● Analyzes a stream of hashed values (bit-pattern 

observables)
– Split each hashed value into m sets

– Collects “runs” of zeros for each m set

● Provides a Stochastic Average using collected bit-
pattern information
– Compute a harmonic mean of each m bit set (for each 

new value)



  

HyperLogLog

● Hashed Value: 

000011000111
● Split hash into bit-pattern sets (m=3): 

[ [000], [011], [000], [111] ]
● Compute running harmonic average over 

existing bit-pattern sets



  

HyperLogLog
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HyperLogLog
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Frequency Sketch



  

Frequency Sketch

● Implementation of Misra-Greis Algorithm
● Stores k-1 (item-counter) pairs as a set
● If a new item is in the set's range

– Increment a counter

– Else find an empty counter, add item, and set counter to one

● Decrement all k-counters if all counters have been 
allocated

● Over time, low frequency elements are removed, making 
space for higher frequency items.



  

Frequency Sketch
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Frequency Sketch
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Quantile Sketch



  

Quantile Sketch

● “Low Discrepancy Mergeable Quantiles Sketch” 
(Agarwal, Cormode, Huang, Philips, Wei, Yi)

● Non-deterministic!
● Select elements (upper/lower bounds) from the 

stream under a rank constraint: 

normalized rank: i|S|/k for 1 <= I <= k ~= 1/e 

● Using the selected elements, or summary, 
compute quartile information.



  

Quantile Sketch
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** Chapel has to perform several domain resizes, could use optimization



  

Quantile Sketch
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Theta Sketch



  

Theta Sketch

● Kth Minimum Value sketch
● Maintains a threshold theta and a set of unique hashed 

items less than theta 
– Assume hashing function computes a uniform distribution

● Algorithm assumes hash function provides uniform 
distribution (over hash space). 

● The assumption gives information about the average 
spacing between elements of the stream.

● Knowing the smallest value, and spacing, one can infer 
the total number of distinct values observed



  

Theta Sketch
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Theta Sketch
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● Images provided by Library of Congress
– All photos have “no known restrictions on 

publication”

● Code to be posted on github!
– Check the email listserv for details
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