
Parallelism Developments
in ISO C and C++ and How

to Leverage Them
Bryce	Adelstein	Lelbach	<brycelelbach@gmail.com>	

@blelbach	
github.com/brycelelbach	

Copyright	2017,	Bryce	Adelstein	Lelbach	 1	

	
	
	
	
std::vector<T>	x	=	//	...																			
#pragma	omp	parallel	for	simd	
for	(std::size_t	i	=	0;	i	<	x.size();	++i)	
		process(x[i]);	
	
	
	
std::vector<T>	x	=	//	...																			
std::for_each(std::par_unseq,	
														x.begin(),	x.end(),	process);	
	

Copyright	2017,	Bryce	Adelstein	Lelbach	 2	

C++ Executor Model

Property	 C++	Concept	Name	

ExecuDon	restric'ons	 ExecutionPolicy	(in	Parallelism	TS	v1	and	C++17)	

Sequence	of	execuDon	 Executor	(targeted	for	Parallelism	TS	v2	and	C++20)	

Where	execuDon	happens	 Executor	(targeted	for	Parallelism	TS	v2	and	C++20)	

Grain	size	of	work	items	 ExecutorParameter

•  Asynchronous	task	creaDon:	
•  async(ExecutorPolicy&&, ...)

•  Parallel	algorithms:	
•  for_each(ExecutorPolicy&&, ...), sort(ExecutorPolicy&&, ...)

Copyright	2017,	Bryce	Adelstein	Lelbach	 3	

	
	
	
thrust::gpu_executor	gpu	=	//	...	
std::vector<T,	thrust::pmr::allocator>	x	=	//	...																			
	
std::sort(std::par_unseq.on(gpu),	
										x.begin(),	x.end());	
	
	
my::thread_pool_executor	tp	=	//	...	
std::vector<T>	x	=	//	...																			
	
std::sort(std::par_unseq.on(tp),	
										x.begin(),	x.end());	
	

Copyright	2017,	Bryce	Adelstein	Lelbach	 4	

	
	
	
	
std::vector<double>	x	=	//	...	
std::vector<double>	y	=	//	...	
	
double	d	=	0.0;	
	
int	i;	
	
#pragma	omp	parallel	shared(x,	y)	private(i)	
#pragma	omp	for	reduction(+	:	d)	
for	(i	=	0;	i	<	x.size();	++i)	
				d	=	d	+	x[i]	*	y[i];	

Copyright	2017,	Bryce	Adelstein	Lelbach	 5	

	
	
	
	
std::vector<double>	x	=	//	...	
std::vector<double>	y	=	//	...	
	
double	d	=	
		std::transform_reduce(std::execution::par_unseq,	
																								x.begin(),	x.end(),	y.begin());	

Copyright	2017,	Bryce	Adelstein	Lelbach	 6	

bool	is_word_beginning(char	left,	char	right)	{	
				return	std::isspace(left)	&&	!std::isspace(right);	
}	
	
std::size_t	word_count(std::string_view	s)	{	
				if	(s.empty())	return	0;	
	
				std::size_t	wc	=	
								std::transform_reduce(
												std::execution::par_unseq,	
												s.begin(),	s.end()	-	1,	
												s.begin()	+	1,	
												std::size_t(!std::isspace(s.front())	?	1	:	0),	
												std::plus<std::size_t>(),	
												is_word_beginning	
);	
	
				return	wc;	
}	

Copyright	2017,	Bryce	Adelstein	Lelbach	 7	

•  Non-HPC	domains	are	starDng	to	have	the	same	
problems	and	needs	that	we	have;	this	is	good!	
•  ~7	million	C	users	worldwide	(source:	JetBrains).	
•  ~5	million	C++	users	worldwide	(source:	JetBrains).	

•  There	is	growing	interest	in	standardizing	parallel	
programming	features	in	C	and	C++.	
•  C++17	parallel	algorithms.	
•  Proposed	C++20	executors.	
•  CPLEX	study	group	for	C	parallelism	extensions.	
•  Future	efforts	to	extend	the	C	and	C++	memory	models	for	
RMA/shmem	and	heterogeneous	memory.	

•  The	C	and	C++	standards	get	significant	adopDon	with	
both	users	and	vendors.	
•  C	and	C++	have	driven	innovaDons	in	compiler	opDmizaDon	
and	will	conDnue	to	do	so.	

•  OpenMP	is	cute,	but	opDonal.	C	and	C++	features	must	be	
implemented	and	quality	of	implementaDon	must	be	high	or	
some	of	our	~12	million	users	will	be	unhappy.	

Copyright	2017,	Bryce	Adelstein	Lelbach	 8	

• Chapel	can	leverage	the	machinery	for	C++17/C+
+20/C++23/C2x	parallelism.	
• Clang/LLVM	CorouDnes.	
•  Code	transform	faciliDes	that	facilitate	asynchronous	
programming	and	a	powerful	set	of	LLVM	opDmizaDons	
for	them.	

•  Based	on	the	C++	CorouDnes	TS.	
•  Available	in	Clang/LLVM	trunk	as	of	this	week.	

•  LLVM	Parallel	Intermediate	RepresentaDon.	
•  Extensions	to	the	LLVM	IR	that	express	parallelism		
constructs	as	first	class	enDDes	and	facilitate	the	
development	of	LLVM	parallelism	opDmizaDon	passes.	

Copyright	2017,	Bryce	Adelstein	Lelbach	 9	

• Chapel	can	leverage	the	machinery	for	C++17/C+
+20/C++23/C2x	parallelism.	
•  libc++	Parallel	RunDme	Interface	
•  Low-level	backend	interface	used	by	the	libc++	
implementaDon	of	the	C++17	parallel	algorithms,	
designed	to	be	targetable	by	3rd-party	runDmes	that	
want	to	interoperate	with	C++17	parallel	algorithms.	

•  Longer-term	goal:	one	unified	parallel	runDme	interface	
for	LLVM,	covering	C++17	parallel	algorithms,	OpenMP,	
OpenACC,	OpenCL,	etc.	

•  Design	work	is	starDng	in	the	near	future;	this	is	a	great	
Dme	to	get	involved.	

Copyright	2017,	Bryce	Adelstein	Lelbach	 10	

• Chapel	can	leverage	the	machinery	for	C++17/C+
+20/C++23/C2x	parallelism.	
•  LLVM	Polly	
•  High-level	loop	and	data-locality	opDmizer	and	
opDmizaDon	infrastructure	for	LLVM.	

•  “Early”	loop	pass,	similar	to	the	Intel	compiler’s	
vectorizer	and	unlike	LLVM’s	producDon	vectorizer	
(which	is	a	“late”	vectorizer).	

•  Performs	tradiDonal	loop	opDmizaDons,	e.g.	Dling	and	
loop	fusion,	as	well	as	nested	loop	opDmizaDons,	e.g.	
loop	order	interchange.	

•  Can	also	exploit	OpenMP-level	parallelism	and	expose	
vectorizaDon	opportuniDes	to	the	backend.	

Copyright	2017,	Bryce	Adelstein	Lelbach	 11	

• Chapel	can	leverage	the	machinery	for	C++17/C+
+20/C++23/C2x	parallelism.	
• Machine-Learning	Compiler	OpDmizaDons	
•  Possible	uses:	making	cost-modelling	decisions	such	as	
auto-vectorizaDon	and	auto-parallelizaDon.	

•  HPX	team	has	developed	Clang/LLVM-based	machine-
learning	compiler	techniques	(deciding	to	parallelize	or	
not,	what	chunk	size	to	use)	for	the	reference	
implementaDon	of	the	C++17	parallel	algorithms.	

•  Look	for	Zahra	Khatami’s	papers	and	posters	–	SC16,	
IPDPS17,	PDSEC17.	

Copyright	2017,	Bryce	Adelstein	Lelbach	 12	

	
	
	

Good	Dme	to	get	involved	in	C	and	C++!	
	

Bryce	Adelstein	Lelbach	<brycelelbach@gmail.com>	
@blelbach	

github.com/brycelelbach	
	

Copyright	2017,	Bryce	Adelstein	Lelbach	 13	

