Parallelism Develo
iNn ISO C and C++ 3

pments
nd How

to Leverage Th

em

Bryce Adelstein Lelbach <brycelelbach@gmail.com>

@blelbach

github.com/brycelelbach



std::vector<T> x = // ...

#pragma omp parallel for simd

for (std::size t i = 0; i < x.size(); ++1)
process(x[1]);

std::vector<T> x = // ...
std: :for_each(std: :par_unseq,
x.begin(), x.end(), process);

Copyright 2017, Bryce Adelstein Lelbach



C++ Executor Model

C++ Concept Name

Execution restrictions ExecutionPolicy (in Parallelism TS vl and C++17)
Sequence of execution Executor (targeted for Parallelism TS v2 and C++20)
Where execution happens Executor (targeted for Parallelism TS v2 and C++20)

Grain size of work items ExecutorParameter

* Asynchronous task creation:

* async (ExecutorPolicyé&&, ...)

e Parallel algorithms:

* for each(ExecutorPolicyé&é&, ...), sort(ExecutorPolicyé&s,



thrust::gpu_executor gpu = // ...

std::vector<T, thrust::pmr::allocator> x = // ...

std::sort(std: :par_unseq.on(gpu),
x.begin(), x.end());

my::thread pool executor tp = // ...
std::vector<T> x = // ...

std::sort(std::par_unseq.on(tp),
x.begin(), x.end());



/] ...
/] ...

std: :vector<double> x
std::vector<double> y

double d = 0.0;

int 1i;

#pragma omp parallel shared(x, y) private(i)
#pragma omp for reduction(+ : d)

for (i = ©; 1 < x.size(); ++1)
d=d+ x[i] * y[i];

Copyright 2017, Bryce Adelstein Lelbach



std: :vector<double> x = // ...
std::vector<double> y = // ...

double d =
std: :transform_reduce(std::execution: :par_unseq,
x.begin(), x.end(), y.begin());

Copyright 2017, Bryce Adelstein Lelbach



bool is word _beginning(char left, char right) {
return std::isspace(left) && !std::isspace(right);
}

std::size t word count(std::string view s) {
if (s.empty()) return 0;

std::size t wc =

std: :transform_reduce(
std: :execution: :par_unseq,
s.begin(), s.end() - 1,
s.begin() + 1,
std::size t(!std::isspace(s.front()) ?» 1 : 9),
std::plus<std::size t>(),
is word beginning

)s

return wc;

Copyright 2017, Bryce Adelstein Lelbach



* Non-HPC domains are starting to have the same
problems and needs that we have; this is good!

* ~7 million C users worldwide (source: JetBrains).
e ~5 million C++ users worldwide (source: JetBrains).

* There is growing interest in standardizing parallel
programming features in C and C++.
e C++17 parallel algorithms.
* Proposed C++20 executors.
e CPLEX study group for C parallelism extensions.

* Future efforts to extend the C and C++ memory models for
RMA/shmem and heterogeneous memory.

 The C and C++ standards get significant adoption with
both users and vendors.

* Cand C++ have driven innovations in compiler optimization
and will continue to do so.

* OpenMP is cute, but optional. C and C++ features must be
implemented and quality of implementation must be high or
some of our ~12 million users will be unhappy.



* Chapel can leverage the machinery for C++17/C+
+20/C++23/C2x parallelism.

* Clang/LLVM Coroutines.

e Code transform facilities that facilitate asynchronous
programming and a powerful set of LLVM optimizations
for them.

* Based on the C++ Coroutines TS.
* Available in Clang/LLVM trunk as of this week.

* LLVM Parallel Intermediate Representation.

e Extensions to the LLVM IR that express parallelism
constructs as first class entities and facilitate the
development of LLVM parallelism optimization passes.



* Chapel can leverage the machinery for C++17/C+
+20/C++23/C2x parallelism.

e libc++ Parallel Runtime Interface

* Low-level backend interface used by the libc++
implementation of the C++17 parallel algorithms,
designed to be targetable by 3"-party runtimes that
want to interoperate with C++17 parallel algorithms.

* Longer-term goal: one unified parallel runtime interface
for LLVM, covering C++17 parallel algorithms, OpenMP,
OpenACC, OpenCL, etc.

e Design work is starting in the near future; this is a great
time to get involved.



* Chapel can leverage the machinery for C++17/C+
+20/C++23/C2x parallelism.

e LLVM Polly

e High-level loop and data-locality optimizer and
optimization infrastructure for LLVM.

e “Early” loop pass, similar to the Intel compiler’s
vectorizer and unlike LLVM'’s production vectorizer
(which is a “late” vectorizer).

* Performs traditional loop optimizations, e.g. tiling and
loop fusion, as well as nested loop optimizations, e.g.
loop order interchange.

e Can also exploit OpenMP-level parallelism and expose
vectorization opportunities to the backend.



* Chapel can leverage the machinery for C++17/C+
+20/C++23/C2x parallelism.

* Machine-Learning Compiler Optimizations

* Possible uses: making cost-modelling decisions such as
auto-vectorization and auto-parallelization.

* HPX team has developed Clang/LLVM-based machine-
learning compiler techniques (deciding to parallelize or
not, what chunk size to use) for the reference
implementation of the C++17 parallel algorithms.

* Look for Zahra Khatami’s papers and posters — SC16,
IPDPS17, PDSEC17.



Good time to get involved in C and C++!

Bryce Adelstein Lelbach <brycelelbach@gmail.com>
@blelbach
github.com/brycelelbach



