
Identifying Use-After-Free Variables in
Fire-and-Forget Tasks

Jyothi Krishna V S & Vassily Litvinov
jkrishna@cse.iitm.ac.in

IIT Madras & Cray Inc.

June 2, 2017

begin construct in Chapel

• Creates a dynamic task with an unstructured lifetime.
• Fire-and-forget
• Low synchronization and scheduling cost.

...
begin write("hello ");
write (" world ");
...

Either outputs :
hello world
world hello

1/26

begin construct in Chapel

• Creates a dynamic task with an unstructured lifetime.
• Fire-and-forget
• Low synchronization and scheduling cost.

...
begin write("hello ");
write (" world ");
...

Either outputs :
hello world
world hello

1/26

Use-After-Free Variables

1x

SP

begin reference

{
var x = 1;
begin (ref x)

{
if x == 0 then

writeln (" chaos ");
}

}
...
{

var y = 0;
}

begin task has a reference to variable x (outer variable).

2/26

Use-After-Free Variables

begin reference

SP

{
var x = 1;
begin (ref x)

{
if x == 0 then

writeln (" chaos ");
}

}
...
{

var y = 0;
}

End of scope of variable x and is removed from the Stack.

3/26

Use-After-Free Variables

0y

SP

begin reference

{
var x = 1;
begin (ref x)

{
if x == 0 then

writeln (" chaos ");
}

}
...
{

var y = 0;
}

New variable y added.

4/26

Use-After-Free Variables

0y

SP

begin reference

{
var x = 1;
begin (ref x)

{
if x == 0 then

writeln("chaos");
}

}
....
{

var y = 0;
}

Incorrect value of x seen by begin task. We need to avoid
these in our programs.

5/26

Use-After-Free Access: Sources

• Lack of synchronization.
• Programs written for older versions of Chapel.

• Improper synchronization.
• Programmer skills/ Programming speed / Complexity of

the Program.

1

1image source:shuttershock.com 6/26

Use-After-Free Access: Sources

• Lack of synchronization.
• Programs written for older versions of Chapel.

• Improper synchronization.
• Programmer skills/ Programming speed / Complexity of

the Program.

1

1image source:shuttershock.com 6/26

Talk Overview

• Extract relevant constructs and outer variables access into
CCFG.

• Subset Representation of execution time states: Parallel
Program States (PPS).

• Identify possible Use-After-Free variable accesses.
• Results and Conclusions

2

2image source:dreamstime.com
7/26

Talk Overview

• Extract relevant constructs and outer variables access into
CCFG.

• Subset Representation of execution time states: Parallel
Program States (PPS).

• Identify possible Use-After-Free variable accesses.
• Results and Conclusions

2

2image source:dreamstime.com
7/26

Synchronization Constructs in Chapel

• sync variable: One-to-one synchronization
• single variable: One-to-many synchronization
• sync block: Many-to-one synchronization.
• atomic variables.

8/26

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

proc outerVarUse() {
var x: int = 10;
var doneA$: sync bool;
begin with (ref x) { // A

writeln(x);
var doneB$: sync bool;
begin with (ref x){ // B

writeln(x);
doneB$ = true;

}
writeln(x);
doneA$ = true;
doneB$;

}
doneA$;
begin with (in x){ // C

writeln(x);
}

}

• Task A Line 4.
• Task B: nested task, at
Line 7.

• Task C: at Line 16. Pass
by value.

• sync variables:
• doneA$: Task A and Root
Task.

• doneB$: Task B and Task
A.

• Outer variable: x.

9/26

Concurrent Control Flow Graph (CCFG)

• CCFG Node bounded by a Concurrent Control Flow event.
• Encounter begin statement.
• Read/Write on a synchronization variable.
• Control Flow event

• A CCFG Node
• Outer Variable Set: OV.
• Synchronization type.
• Synchronization variable.

• Sub graph of nested functions expanded at call site.
• A live set of sync block scope is maintained.

• Safe OV accesses are removed.

10/26

CCFG
proc outerVarUse() {

var x: int = 10;
var doneA$: sync bool;
begin with (ref x) { // A

writeln(x++);
var doneB$: sync bool;
begin with (ref x){ // B

writeln(x);
doneB$ = true;

}
writeln(x);
doneA$ = true;
doneB$;

}
doneA$;
begin with (in x){ // C

writeln(x);
}}

0

7

doneA$

910

Root Task

Task C

8

10

1

4

5

OV={x}

OV={x}

doneB$

2

3

OV={x}
doneB$

Task A

Task B

doneA$

6

11/26

CCFG pruning

1 Remove empty nodes at the end of each task.
Eg: Node 10.

2 A begin task that does not contain any nested task or does not
refers to any outer variable.
Eg. Task C.

3 A begin task, in which the scope of all outer variables accessed
by the task is protected by a sync block.
Eg:

sync beg i n (r e f x) { . . . }

• Recursively apply these three rules.

12/26

CCFG pruning

1 Remove empty nodes at the end of each task.
Eg: Node 10.

2 A begin task that does not contain any nested task or does not
refers to any outer variable.
Eg. Task C.

3 A begin task, in which the scope of all outer variables accessed
by the task is protected by a sync block.
Eg:

sync beg i n (r e f x) { . . . }

• Recursively apply these three rules.

12/26

Pruned CCFG

0

7

doneA$

Root Task

1

4

OV={x}

OV={x}
2

OV={x}
doneB$

Task A

Task B

doneA$

5

doneB$

• Active sync nodes: 2,
4, 7

• State Table
var state

doneA$ empty
doneB$ empty

13/26

PPS

• A program state that captures a possible relationship between
synchronization nodes.

• A Parallel Program State (PPS):
• Active Sync Node (ASN): Set of nodes which are next in line to

be executed.
• State Table (ST): State of all live synchronization variables.
• Safe access set(SV): A set of outer variable accesses which are

safe.
• Live access set (LA): A set of OV accesses which must have

happened before reaching the current PPS, excluding the set of
outer variable accesses in SV.

• SV ∩ LA = φ.

14/26

PPS 0

0

7

doneA$

Root Task

1

4

OV={x}

OV={x}
2

OV={x}
doneB$

Task A

Task B

doneA$

5

doneB$

PPS 0:
• ASN = {2, 4, 7 }
• State Table

var state
doneA$ empty
doneB$ empty

• SV = φ

• LA = φ

15/26

Parallel Frontier

• Checking for Use-After-Free Variable in each PPS is costly.
• Parallel Frontier: The last sync node encountered in a path in
parent scope.

• Defined for every OV, x: PF(x).
• Multiple paths could lead to Multiple PF.
• The safety checks limited at PF.

Theorem
A statement that accesses an outer variable x is potentially unsafe if
there exists an execution path serialization where the corresponding
Parallel Frontier node is executed before the statement.

16/26

Next PPS ?
• Design a set of rules to travel in CCFG to generate next PPS.
• Rules designed based on synchronization variables’ behaviour.
• Priority : Non-blocking > blocking.

Rule (SINGLE-READ (Non blocking))
A read on a single variable is visited if the current state of the
variable is full.

Rule (READ (blocking))
A read of a sync variable can be visited if the current state of the
variable is full. The state of the variable is changed to empty.

Rule (WRITE (blocking))
A write on single or sync variable can be visited if the current state
of the variable is empty. The state of the variable is changed to full.

17/26

Next PPS ?
• Design a set of rules to travel in CCFG to generate next PPS.
• Rules designed based on synchronization variables’ behaviour.
• Priority : Non-blocking > blocking.

Rule (SINGLE-READ (Non blocking))
A read on a single variable is visited if the current state of the
variable is full.

Rule (READ (blocking))
A read of a sync variable can be visited if the current state of the
variable is full. The state of the variable is changed to empty.

Rule (WRITE (blocking))
A write on single or sync variable can be visited if the current state
of the variable is empty. The state of the variable is changed to full.

17/26

Next PPS ?
• Design a set of rules to travel in CCFG to generate next PPS.
• Rules designed based on synchronization variables’ behaviour.
• Priority : Non-blocking > blocking.

Rule (SINGLE-READ (Non blocking))
A read on a single variable is visited if the current state of the
variable is full.

Rule (READ (blocking))
A read of a sync variable can be visited if the current state of the
variable is full. The state of the variable is changed to empty.

Rule (WRITE (blocking))
A write on single or sync variable can be visited if the current state
of the variable is empty. The state of the variable is changed to full.

17/26

Next PPS ?
• Design a set of rules to travel in CCFG to generate next PPS.
• Rules designed based on synchronization variables’ behaviour.
• Priority : Non-blocking > blocking.

Rule (SINGLE-READ (Non blocking))
A read on a single variable is visited if the current state of the
variable is full.

Rule (READ (blocking))
A read of a sync variable can be visited if the current state of the
variable is full. The state of the variable is changed to empty.

Rule (WRITE (blocking))
A write on single or sync variable can be visited if the current state
of the variable is empty. The state of the variable is changed to full.

17/26

PPS 0

0

7

doneA$

Root Task

1

4

OV={x}

OV={x}
2

OV={x}
doneB$

Task A

Task B

doneA$

5

doneB$

PPS 0:
• ASN = {2, 4, 7 }
• State Table

var state
doneA$ empty
doneB$ empty

• SV = φ

• LA = φ

18/26

Execute Node 4

0

7

doneA$

PF={x}

Root Task

1

4

OV={x}

OV={x}
2

OV={x}
doneB$

Task A

Task B

doneA$

5

doneB$

PPS 1:
• ASN = {2, 5, 7}
• State Table

var state
doneA$ full
doneB$ empty

• SV = φ

• LA = {x1, x4 }

19/26

Execute Node 7

0

7

doneA$

PF={x}

Root Task

1

4

OV={x}

OV={x}
2

OV={x}
doneB$

Task A

Task B

doneA$

5

doneB$

PPS 2:
• ASN = {2, 5 }
• State Table

var state
doneA$ empty
doneB$ empty

• SV = {x1, x4 }
• LA = φ

20/26

Execute Node 2

0

7

doneA$

PF={x}

Root Task

1

4

OV={x}

OV={x}
2

OV={x}
doneB$

Task A

Task B

doneA$

5

doneB$

PPS 3:
• ASN = { 5 }
• State Table

var state
doneA$ empty
doneB$ full

• SV = {x1, x4 }
• LA = {x2 }

21/26

Execute Node 5

0

7

doneA$

PF={x}

Root Task

1

4

OV={x}

OV={x}
2

OV={x}
doneB$

Task A

Task B

doneA$

5

doneB$

PPS 4:
• ASN = φ

• State Table
var state

doneA$ empty
doneB$ empty

• SV = {x1, x4 }
• LA = { x2 }
• Report x2.

22/26

Conditional Nodes , Loops
• Conditional Nodes: Both branches are explored separately.
• Loops:

• Just OV accesses: treated as single node with OV access
Source with Conditional Node

var x: int = 10;
var done$: sync bool;
begin with (ref x) { // A
if(flag)

begin with (ref x) { // B
writeln(x);
done$ = true;
done$;

}
done$ = true;

}
done$;

7

done$

PF={x}

else edge

2

0

1

done$

5

done$

3
OV={x}

4

done$

Task A

Task B

23/26

Optimizations & Limitations
Optimizations

• Run algorithm only for functions containing begin tasks.
• Merging multiple PPS:

• Requirement: Identical State table & ASN set.
• Resultant PPS: SV : SVi ∩ SVj , LA : LAi ∪ LAj .

• Combine same variable accesses inside node.

Limitations: Not Handled

• Non blocking sync events: atomic
• Recursion
• Loops containing begin or synchronization node.

24/26

Optimizations & Limitations
Optimizations

• Run algorithm only for functions containing begin tasks.
• Merging multiple PPS:

• Requirement: Identical State table & ASN set.
• Resultant PPS: SV : SVi ∩ SVj , LA : LAi ∪ LAj .

• Combine same variable accesses inside node.

Limitations: Not Handled

• Non blocking sync events: atomic
• Recursion
• Loops containing begin or synchronization node.

24/26

Results

Table : Results of running use-after-free check over Chapel test suite
(version 1.11).

Total test cases 5127
Test cases with begin tasks 218
Test cases with Use-After-Free warnings 38
Number of warnings reported 437
True positives 63
Percentage of true positives 14.4%

Source Code: https://github.com/jkrishnavs/chapel

25/26

Conclusions

• Partial inter-procedural analysis to identify and report
potentially dangerous Outer Variable accesses to the user.

• Results reported on chapel test suite.
• More test cases on
https://github.com/jkrishnavs/chapel_workspace

Future Work

• Atomic variable synchronization
• Loops & recursion

26/26

