
Comparative Performance and Optimization of
Chapel in Modern Manycore Architectures*

Engin Kayraklioglu, Wo Chang, Tarek El-Ghazawi

*This work is partially funded through an Intel Parallel Computing Center gift.

Outline

• Introduction & Motivation

• Experimental Results
• Environment, Implementation Caveats

• Results

• Detailed Analysis
• Memory Bandwidth Analysis on KNL

• Idioms & Optimizations For Sparse

• Optimizations for DGEMM

• Summary & Wrap Up

6/2/2017 2GWU - Intel Parallel Computing Center

Outline

• Introduction & Motivation
• Experimental Results

• Environment, Implementation Caveats

• Results

• Detailed Analysis
• Memory Bandwidth Analysis on KNL

• Idioms & Optimizations For Sparse

• Optimizations for DGEMM

• Summary & Wrap Up

6/2/2017 3GWU - Intel Parallel Computing Center

HPC Trends

• Steady increase in core/socket
in TOP500

• Deeper interconnection
networks

• Deeper memory hierarchies

• More NUMA effects

• Need for newer programming
paradigms

6/2/2017 GWU - Intel Parallel Computing Center 4

Core/socket Treemap for Top 500 systems of 2011 vs 2016
generated on top500.org

What is Chapel?

• Chapel is an upcoming parallel programming
language
• Parallel, productive, portable, scalable, open-

source

• Designed from scratch, with independent
syntax

• Partitioned Global Address Space (PGAS)
memory

• General high-level programming language
concepts
• OOP, inheritance, generics, polymorphism..

• Parallel programming concepts
• Locality-aware parallel loops, first-class data

distribution objects, locality control

6/2/2017 GWU - Intel Parallel Computing Center 5

chapel.cray.com

The Paper

• Compares Chapel’s performance to OpenMP on multi- and many-core
architectures

• Uses The Parallel Research Kernels for analysis

• Specific contributions:
• Implements 4 new PRKs: DGEMM, PIC, Sparse, Nstream

• Uses Stencil and Transpose from the Chapel upstream repo

• All changes have been merged to master: Pull requests 6152, 6153, 6165

• test/studies/prk

• Analyzes Chapel’s intranode performance on two architectures including KNL

• Suggests several optimizations in Chapel software stack

6/2/2017 GWU - Intel Parallel Computing Center 6

Outline

• Introduction & Motivation

•Experimental Results
•Environment, Implementation Caveats
•Results

• Detailed Analysis
• Memory Bandwidth Analysis on KNL
• Idioms & Optimizations For Sparse
• Optimizations for DGEMM

• Summary & Wrap Up

6/2/2017 7GWU - Intel Parallel Computing Center

Test Environment

• Xeon
• Dual-socket Intel Xeon E5-2630L v2 @2.4GHz
• 6 core/socket, 15MB LLC/socket
• 51.2 GB/s memory bandwidth, 32 GB total memory
• CentOS 6.5, Intel C/C++ compiler 16.0.2

• KNL
• Intel Xeon Phi 7210 processor
• 64 cores, 4 thread/core
• 32MB shared L2 cache
• 102 GB/s memory bandwidth, 112 GB total memory
• Memory mode: cache, cluster mode: quadrant
• CentOS 7.2.1511, Intel C/C++ compiler 17.0.0

6/2/2017 8GWU - Intel Parallel Computing Center

Test Environment

• Chapel
• 6fce63a

• between versions 1.14 and 1.15
• Default settings

• CHPL_COMM=none, CHPL_TASKS=qthreads, CHPL_LOCALE=flat
• Intel Compilers

• Building the Chapel compiler and the runtime system
• Backend C compiler for the generated code

• Compilation Flags
• fast – Enables compiler optimizations
• replace-array-accesses-with-ref-vars – replace repeated array accesses with reference variables

• OpenMP
• All tests are run with environment variable KMP_AFFINITY=scatter,granularity=fine

• Data size
• All benchmarks use ~1GB input data

6/2/2017 GWU - Intel Parallel Computing Center 9

Caveat: Parallelism in OpenMP vs Chapel

#pragma omp parallel

{

for(iter = 0 ; iter<niter; iter++) {

if(iter == 1) start_time();

#pragma omp for

for(…) {} //application loop

}

stop_time();

}

6/2/2017 GWU - Intel Parallel Computing Center 10

• Parallelism introduced early in the flow
• This is how PRK are implemented in OpenMP

Caveat: Parallelism in OpenMP vs Chapel

#pragma omp parallel

{

for(iter = 0 ; iter<niter; iter++) {

if(iter == 1) start_time();

#pragma omp for

for(…) {} //application loop

}

stop_time();

}

6/2/2017 GWU - Intel Parallel Computing Center 11

coforall t in 0..#numTasks

{

for iter in 0..#niter {

if iter == 1 then start_time();

for … {} //application loop

}

stop_time();

}

• Parallelism introduced early in the flow
• This is how PRK are implemented in OpenMP

• Corresponding Chapel code
• Feels more “unnatural” in Chapel
• coforall loops are (sort of) low-level loops

that introduce SPMD regions

Caveat: Parallelism in OpenMP vs Chapel

#pragma omp parallel

{

for(iter = 0 ; iter<niter; iter++) {

if(iter == 1) start_time();

#pragma omp for nowait

for(…) {} //application loop

}

stop_time();

}

6/2/2017 GWU - Intel Parallel Computing Center 12

coforall t in 0..#numTasks

{

for iter in 0..#niter {

if iter == 1 then start_time();

for … {} //application loop

}

stop_time();

}

• Parallelism introduced early in the flow
• This is how PRK are implemented in OpenMP

• Corresponding Chapel code
• Feels more “unnatural” in Chapel
• coforall loops are (sort of) low-level loops

that introduce SPMD regions

nowait is necessary for similar synchronization

Caveat: Parallelism in OpenMP vs Chapel

for(iter = 0 ; iter<niter; iter++) {

if(iter == 1) start_time();

#pragma omp parallel for

for(…) {} //application loop

}

stop_time();

6/2/2017 GWU - Intel Parallel Computing Center 13

• Parallelism introduced late in the flow
• Cost of creating parallel regions is accounted

for

Caveat: Parallelism in OpenMP vs Chapel

for(iter = 0 ; iter<niter; iter++) {

if(iter == 1) start_time();

#pragma omp parallel for

for(…) {} //application loop

}

stop_time();

6/2/2017 GWU - Intel Parallel Computing Center 14

for iter in 0..#niter {

if iter == 1 then start_time();

forall .. {} //application loop

}

stop_time();

• Parallelism introduced late in the flow
• Cost of creating parallel regions is accounted

for

• Corresponding Chapel code
• Feels more “natural” in Chapel
• Parallelism is introduced in a data-driven manner by

the forall loop
• This is how Chapel PRK are implemented, for now.

(Except for blocked DGEMM)

Caveat: Parallelism in OpenMP vs Chapel

for(iter = 0 ; iter<niter; iter++) {

if(iter == 1) start_time();

#pragma omp parallel for

for(…) {} //application loop

}

stop_time();

6/2/2017 GWU - Intel Parallel Computing Center 15

for iter in 0..#niter {

if iter == 1 then start_time();

forall .. {} //application loop

}

stop_time();

• Parallelism introduced late in the flow
• Cost of creating parallel regions is accounted

for

• Corresponding Chapel code
• Feels more “natural” in Chapel
• Parallelism is introduced in a data-driven manner by

the forall loop
• This is how Chapel PRK are implemented, for now.

(Except for blocked DGEMM)

Synchronization is already similar

Outline

• Introduction & Motivation

•Experimental Results
•Environment, Implementation Caveats
•Results

• Detailed Analysis
• Memory Bandwidth Analysis on KNL
• Idioms & Optimizations For Sparse
• Optimizations for DGEMM

• Summary & Wrap Up

6/2/2017 16GWU - Intel Parallel Computing Center

Nstream

KNLXeon
• DAXPY kernel based on

HPCC-STREAM Triad

• Vectors of 43M doubles

• On Xeon
• both reach ~40GB/s

• On KNL
• Chapel reaches 370GB/s

• OpenMP reaches 410GB/s

6/2/2017 17GWU - Intel Parallel Computing Center

Transpose

KNLXeon
• Tiled matrix transpose

• Matrices of 8k*8k doubles,
tile size is 8

• On Xeon
• both reach ~10GB/s

• On KNL
• Chapel reaches 65GB/s

• OpenMP reaches 85GB/s

• Chapel struggles more with
hyperthreading

6/2/2017 18GWU - Intel Parallel Computing Center

DGEMM

KNLXeon
• Tiled matrix multiplication

• Matrices of 6530*6530
doubles, tile size is 32

• Chapel reaches ~60% of
OpenMP performance on both

• Hyperthreading on KNL is
slightly better

• We propose an optimization
that brings DGEMM
performance much closer to
OpenMP

6/2/2017 19GWU - Intel Parallel Computing Center

Stencil

KNLXeon
• Stencil application on square grid

• Grid is 8000x8000, stencil is star-
shaped with radius 2

• OpenMP version is built with
LOOPGEN and PARALLELFOR

• On Xeon

• Chapel did not scale well with low
number of threads

• But reaches 95% of OpenMP

• On KNL

• Better without hyperthreading

• Peak performance is 114% of
OpenMP

6/2/2017 20GWU - Intel Parallel Computing Center

Sparse

• SpMV kernel

• Matrix is 222x222 with 13 nonzeroes
per row. Indices are scrambled

• Chapel implementation uses default
CSR representation

• OpenMP implementation is vanilla
CSR implementation – implemented
in application level

• On both architectures, Chapel
reached <50% of OpenMP

• We provide detailed analysis of
different idioms for Sparse

• Also some optimizations

KNLXeon

6/2/2017 21GWU - Intel Parallel Computing Center

PIC

KNLXeon
• Particle-in-cell

• 141M particles requested in a 210x210

grid

• SINUSOIDAL, k=1, m=1

• On Xeon

• They perform similarly

• On KNL

• Chapel outperforms OpenMP
reaching 184% at peak
performance

6/2/2017 22GWU - Intel Parallel Computing Center

Outline

• Introduction & Motivation

• Experimental Results
• Environment, Implementation Caveats
• Results

•Detailed Analysis
•Memory Bandwidth Analysis on KNL
• Idioms & Optimizations For Sparse
•Optimizations for DGEMM

• Summary & Wrap Up

6/2/2017 23GWU - Intel Parallel Computing Center

Memory Bandwidth on KNL

6/2/2017 24GWU - Intel Parallel Computing Center

• Varying vector size on Nstream

• Flat memory mode + numactl to control
memory mapping

• Versions:
• CHPL : Nstream with scalar promotion (equivalent to

forall)
• OPT-CHPL : Nstream with coforall
• OMP : Base Nstream
• OPT-OMP : Nstream + nowait on the stream loop
• DDR : numactl -m0
• HBM : numactl -m1

Memory Bandwidth on KNL

6/2/2017 25GWU - Intel Parallel Computing Center

• Different behavior when data size <LLC vs >LLC

• Chapel;
• forall version is considerably bad with small data

• coforall version is ~10x times faster – no parallelism cost

• OpenMP;
• Without nowait, outperformed by coforall version

• With nowait, outperforms Chapel in smaller data sizes, but
not 220

• When data size is >LLC
• They both perform similarly on DDR -> ~75 GB/s

• OpenMP slightly outperforms Chapel -> ~366 GB/s vs ~372
GB/s

Outline

• Introduction & Motivation

• Experimental Results
• Environment, Implementation Caveats
• Results

•Detailed Analysis
•Memory Bandwidth Analysis on KNL
• Idioms & Optimizations For Sparse
•Optimizations for DGEMM

• Summary & Wrap Up

6/2/2017 26GWU - Intel Parallel Computing Center

Different Sparse Idioms

const parentDom = {0..#N, 0..#N};

var matrixDom: sparse subdomain(parentDom)

dmapped CSR();

matrixDom += getIndexArray();

var matrix: [matrixDom] real;

forall (i,j) in matrix.domain do

result[i] += matrix[i,j], vector[j];

6/2/2017 27GWU - Intel Parallel Computing Center

• The naïve implementation

• Somewhat elusive race
condition

Different Sparse Idioms

const parentDom = {0..#N, 0..#N};

var matrixDom: sparse subdomain(parentDom)

dmapped CSR();

matrixDom += getIndexArray();

var matrix: [matrixDom] real;

forall i in matrix.domain.dim(1) do

for j in matrix.domain.dimIter(2, i) do

result[i] += matrix[i,j], vector[j];

6/2/2017 28GWU - Intel Parallel Computing Center

• Parallelism in rows only

• Use dimIter library function

• No race condition

Different Sparse Idioms

const parentDom = {0..#N, 0..#N};

var matrixDom: sparse subdomain(parentDom)

dmapped CSR();

matrixDom += getIndexArray();

var matrix: [matrixDom] real;

forall (i,j) in matrix.domain

with (+ reduce result) do

result[i]+=matrix[i,j] * vector[j];

6/2/2017 29GWU - Intel Parallel Computing Center

• Reduce intents

• Not a good idea
• The whole vector is a reduction

variable

• But in most common cases race
condition would occur in small
amount of data

• Whole vector is copied to tasks
and reduced in the end

Different Sparse Idioms

const parentDom = {0..#N, 0..#N};

var matrixDom: sparse subdomain(parentDom)

dmapped CSR(divideRows=false);

matrixDom += getIndexArray();

var matrix: [matrixDom] real;

forall (i,j) in matrix.domain do

result[i] += matrix[i,j] * vector[j];

6/2/2017 30GWU - Intel Parallel Computing Center

• Introducing: row distributed
sparse iterators

• A compile time flag when defining
a sparse domain

• Minor modification in the iterator
• Chunks are adjusted to avoid

dividing rows

• divideRows is a param, ie compile
time constant

• No branching at runtime

• Not a performance improvement

Different Sparse Idioms

const parentDom = {0..#N, 0..#N};

var matrixDom: sparse subdomain(parentDom)

dmapped CSR(divideRows=false);

matrixDom += getIndexArray();

var matrix: [matrixDom] real;

forall (elem,(i,j)) in

zip(matrix, matrix.domain) do

result[i] += elem * vector[j];

6/2/2017 31GWU - Intel Parallel Computing Center

• Suggested by Brad
Chamberlain

• Zip the domain and array so as
to avoid the binary search to
sparse array

• Still requires row-distributed
iterators to avoid the race
condition

Compiler-Injected Fast Access Pointers

• Access to an index of a CSR array requires a binary search

• Simplest sparse kernel

forall (i,j) in matrix.domain do

result[i] += matrix[i,j], vector[j];

• Observations
• Loop iterator is the domain of matrix

• Loop index is the same as the index used to access matrix

• Then, within a task, it is guaranteed that elements of matrix is
accessed consecutively

6/2/2017 32GWU - Intel Parallel Computing Center

Compiler-Injected Fast Access Pointers

No optimization
for(i = . .) {

for(j = . .) {

result_addr = this_ref(result, i);

matrix_val = this_val(matrix, i, j);

vector_val = this_val(vector, j);

*result_addr = *result_addr +

matrix_val *

vector_val;

}

}

6/2/2017 GWU - Intel Parallel Computing Center 33

Compiler-Injected Fast Access Pointers

No optimization
for(i = . .) {

for(j = . .) {

result_addr = this_ref(result, i);

matrix_val = this_val(matrix, i, j);

vector_val = this_val(vector, j);

*result_addr = *result_addr +

matrix_val *

vector_val;

}

}

6/2/2017 GWU - Intel Parallel Computing Center 34

Optimization
data_t *fast_acc_ptr = NULL;

for(i = . .) {

for(j = . .) {

result_addr = this_ref(result, i);

if(fast_acc_ptr)

fast_acc_ptr += 1;

else

fast_acc_ptr = this_ref(matrix, i, j);

matrix_val = *fast_acc_ptr;

vector_val = this_val(vector, j);

*result_addr = *result_addr +

matrix_val *

vector_val;

}

}

Detailed Sparse Performance

6/2/2017 35

• Reduce intent performance is
abysmal – not surprising

• Row distributed iterators perform
similarly to the base

• Compiler optimization is especially
good in KNL

• Possibly due to less/regular memory
access by avoiding binary search

• Direct access to the internal CSR
arrays is the best

• Fair: close to what OpenMP
implementation is doing

• Unfair: advanced
knowledge/questionable code
maintainability

GWU - Intel Parallel Computing Center

Outline

• Introduction & Motivation

• Experimental Results
• Environment, Implementation Caveats
• Results

•Detailed Analysis
•Memory Bandwidth Analysis on KNL
• Idioms & Optimizations For Sparse
•Optimizations for DGEMM

• Summary & Wrap Up

6/2/2017 36GWU - Intel Parallel Computing Center

C Arrays For Tiling

• Blocked DGEMM uses Arrays within deeply nested loops

• Generated C code showed some bookkeeping for Chapel arrays not
being hoisted to the outer loops

• Use C arrays instead of Chapel arrays
• More lightweight, less functionality

• Shouldn’t be a general approach but scope of “tile” arrays is relatively small

6/2/2017 37GWU - Intel Parallel Computing Center

Chapel Array vs C Array in DGEMM

var AA = c_calloc(real, blockDom.size)

6/2/2017 GWU - Intel Parallel Computing Center 38

var AA: [blockDom] real;

Declaration/Initialization

Chapel Array vs C Array in DGEMM

var AA = c_calloc(real, blockDom.size)

AA[i*blockSize+j] = A[iB,jB];

6/2/2017 GWU - Intel Parallel Computing Center 39

var AA: [blockDom] real;

AA[i,j] = A[iB,jB]

Declaration/Initialization

Access

Chapel Array vs C Array in DGEMM

var AA = c_calloc(real, blockDom.size)

AA[i*blockSize+j] = A[iB,jB];

c_free(AA);

6/2/2017 GWU - Intel Parallel Computing Center 40

var AA: [blockDom] real;

AA[i,j] = A[iB,jB]

N/A

Declaration/Initialization

Access

Deallocation

Detailed DGEMM Performance

6/2/2017 41GWU - Intel Parallel Computing Center

• Optimized version perform
slightly better than OpenMP

• Except for 2-3 threads/core on KNL

• Performance improvement is 2x
on Xeon and 1.6x on KNL

Outline

• Introduction & Motivation
• Chapel Primer

• Implementing Nstream-like Applications
• More: Chapel Loops, Distributed Data

• Experimental Results
• Environment, Implementation Caveats
• Results

• Detailed Analysis
• Memory Bandwidth Analysis on KNL
• Idioms & Optimizations For Sparse
• Optimizations for DGEMM

• Summary & Wrap Up

6/2/2017 42GWU - Intel Parallel Computing Center

Summary & Wrap Up

Xeon KNL

Base Opt Base Opt

Nstream 100% - 100% -

Transpos
e

106% - 72% -

DGEMM 56% 106% 63% 99%

Stencil 95% - 114% -

Sparse 41% 73% 47% 93%

PIC 94% - 184% -

6/2/2017 43GWU - Intel Parallel Computing Center

• Except for Transpose relative
Chapel performance is better on
KNL
• Transpose: No computation,

memory bound, mix of sequential
and strided accesses

• Stencil and PIC
• Chapel outperforms OpenMP on

KNL

• Optimizations
• Up to 2x performance

improvement
• DGEMM performance is similar to

OpenMP
• Sparse performance gap is smaller

Acknowledgement

The authors would like to thank Rob F. Van der Wijngaart and Jeff R.
Hammond for many useful discussions and insights that contributed to
the quality of this paper.

6/2/2017 GWU - Intel Parallel Computing Center 44

Thank You

6/2/2017 GWU - Intel Parallel Computing Center 45

Full Paper References

[1] B. Chamberlain, D. Callahan, and H. Zima, “Parallel Programmability and the Chapel Language,” Int. J. High Perform. Comput. Appl., vol. 21, no. 3, pp. 291–312, Aug. 2007.

[2] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick, UPC: Distributed Shared-Memory Programming. Wiley-Interscience, 2003.

[3] A. Shterenlikht, L. Margetts, L. Cebamanos, and D. Henty, “Fortran 2008 coarrays,” SIGPLAN Fortran Forum, vol. 34, no. 1, pp. 10–30, Apr. 2015.

[4] K. Ebcioglu, V. Saraswat, and V. Sarkar, “X10: Programming for hierarchical parallelism and non-uniform data access,” in Proceedings of the International Workshop on Language Runtimes, OOPSLA,
vol. 30. Citeseer, 2004.

[5] B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel, and L. Smith, “Introducing OpenSHMEM: SHMEM for the PGAS Community,” in Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model. New York, NY, USA: ACM, 2010, pp. 2:1–2:3.

[6] Y. Zheng, A. Kamil, M. Driscoll, H. Shan, and K. Yelick, “UPC++: A PGAS Extension for C++,” in Parallel and Distributed Processing Symposium, 2014 IEEE 28th International, May 2014, pp. 1105–1114.

[7] K. Fürlinger, T. Fuchs, and R. Kowalewski, “DASH: A C++ PGAS Library for Distributed Data Structures and Parallel Algorithms,” in Proceedings of the 18th IEEE International Conference on High
Performance Computing and Communications (HPCC 2016), Sydney, Australia, 2016.

[8] R. Diaconescu and H. Zima, “An Approach To Data Distributions in Chapel,” International Journal of High Performance Computing Applications, vol. 21, no. 3, pp. 313–335, Aug. 2007.

[9] B. L. Chamberlain, S.-e. Choi, S. J. Deitz, D. Iten, and V. Litvinov, “Authoring user-defined domain maps in chapel,” in Proceedings of Cray Users Group, 2011.

[10] “TOP500 Supercomputer Sites,” http://top500.org, [Online; accessed 17-Jan-2017].

[11] A. Anbar, O. Serres, E. Kayraklioglu, A.-H. A. Badawy, and T. El-Ghazawi, “Exploiting Hierarchical Locality in Deep Parallel Architectures,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 13, no. 2, p. 16, 2016.

[12] R. F. V. d. Wijngaart and T. G. Mattson, “The Parallel Research Kernels,” in 2014 IEEE High Performance Extreme Computing Conference (HPEC), Sep. 2014, pp. 1–6.

[13] L. V. Kale and S. Krishnan, CHARM++: a portable concurrent object oriented system based on C++. ACM, 1993, vol. 28, no. 10.

[14] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrientos, E. Elsen, F. Ham, A. Aiken, K. Duraisamy, E. Darve, J. Alonso, and P. Hanrahan, “Liszt: A Domain Specific Language for Building
Portable Mesh-based PDE Solvers,” in Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, ser. SC ’11. New York, NY, USA: ACM, 2011,
pp. 9:1–9:12.

[15] E. A. Luke and T. George, “Loci: A Rule-based Framework for Parallel Multi-disciplinary Simulation Synthesis,” Journal of Functional Programming, vol. 15, no. 3, pp. 477–502, May 2005.

[16] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. DeVito, R. Haque, D. Laney, E. Luke, F. Wang, and others, “Exploring traditional and emerging parallel programming models using a
proxy application,” in Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on. IEEE, 2013, pp. 919–932.

6/2/2017 46GWU - Intel Parallel Computing Center

Full Paper References cont.

[17] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou, “Cilk: An Efficient Multithreaded Runtime System,” in Proceedings of the Fifth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. New York, NY, USA: ACM, 1995, pp. 207–216.

[18] “The Go Programming Language,” http://golang.org, [Online; accessed 16-Jan-2017].

[19] J. Reinders, Intel Threading Building Blocks, 1st ed. Sebastopol, CA, USA: O’Reilly & Associates, Inc., 2007.

[20] S. Nanz, S. West, K. S. d. Silveira, and B. Meyer, “Benchmarking Usability and Performance of Multicore Languages,” in 2013 ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, Oct. 2013, pp. 183–192.

[21] R. B. Johnson and J. Hollingsworth, “Optimizing Chapel for Single-Node Environments,” in 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), May 2016,
pp. 1558–1567.

[22] E. Kayraklioglu and T. El-Ghazawi, “Assessing Memory Access Performance of Chapel through Synthetic Benchmarks,” in 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), May 2015, pp. 1147–1150.

[23] E. Kayraklioglu, O. Serres, A. Anbar, H. Elezabi, and T. El-Ghazawi, “PGAS Access Overhead Characterization in Chapel,” in 2016 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). IEEE, 2016, pp. 1568–1577.

[24] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and M. Oskin, “Grappa: A latency-tolerant runtime for large-scale irregular applications,” in International Workshop on Rack-Scale
Computing (WRSC w/EuroSys), 2014.

[25] R. F. V. d. Wijngaart, A. Kayi, J. R. Hammond, G. Jost, T. S. John, S. Sridharan, T. G. Mattson, J. Abercrombie, and J. Nelson, “Comparing Runtime Systems with Exascale Ambitions Using the Parallel
Research Kernels,” in High Performance Computing, ser. Lecture Notes in Computer Science. Springer International Publishing, Jun. 2016, pp. 321–339.

[26] R. F. V. d. Wijngaart, S. Sridharan, A. Kayi, G. Jost, J. R. Hammond, T. G. Mattson, and J. E. Nelson, “Using the Parallel Research Kernels to Study PGAS Models,” in 2015 9th International Conference
on Partitioned Global Address Space Programming Models, Sep. 2015, pp. 76–81.

[27] D. Doerfler, J. Deslippe, S. Williams, L. Oliker, B. Cook, T. Kurth, M. Lobet, T. Malas, J.-L. Vay, and H. Vincenti, “Applying the Roofline Performance Model to the Intel Xeon Phi Knights Landing
Processor,” in High Performance Computing, ser. Lecture Notes in Computer Science. Springer International Publishing, 2016, pp. 339–353.

[28] I. Surmin, S. Bastrakov, Z. Matveev, E. Efimenko, A. Gonoskov, and I. Meyerov, “Co-design of a Particle-in-Cell Plasma Simulation Code for Intel Xeon Phi: A First Look at Knights Landing,” in
Algorithms and Architectures for Parallel Processing, ser. Lecture Notes in Computer Science. Springer International Publishing, 2016, pp. 319–329.

[29] A. Heinecke, A. Breuer, M. Bader, and P. Dubey, “High Order Seismic Simulations on the Intel Xeon Phi Processor (Knights Landing),” in High Performance Computing, ser. Lecture Notes in
Computer Science, J. M. Kunkel, P. Balaji, and J. Dongarra, Eds. Springer International Publishing, 2016, pp. 343–362.

6/2/2017 47GWU - Intel Parallel Computing Center

Full Paper References cont.

[30] “Intel xeon phi processor high performance programming (second edition),” J. Jeffers, J. Reinders, and A. Sodani, Eds. Boston: Morgan Kaufmann, 2016.

[31] B. L. Chamberlain, S. J. Deitz, D. Iten, and S.-E. Choi, “User-defined distributions and layouts in chapel: Philosophy and framework,” in Proceedings of the 2Nd USENIX Conference on Hot Topics in
Parallelism, HotPar’10. Berkeley, CA, USA: USENIX Association, 2010, pp. 12–12.

[32] B. L. Chamberlain, S.-e. Choi, S. J. Deitz, and A. Navarro, “User-Defined Parallel Zippered Iterators in Chapel,” in Proceedings of the Fifth Conference on Partitioned Global Address Space
Programming Model, 2011.

[33] “Reduce Intents - Chapel Documentation 1.14,” http://chapel.cray.com/docs/1.14/technotes/reduceIntents.htmlxh, [Online; accessed 24-Jan-2017].

6/2/2017 48GWU - Intel Parallel Computing Center

