
Comparative Performance and Optimization of
Chapel in Modern Manycore Architectures*

Engin Kayraklioglu, Wo Chang, Tarek El-Ghazawi

*This work is partially funded through an Intel Parallel Computing Center gift.



Outline

• Introduction & Motivation

• Experimental Results
• Environment, Implementation Caveats

• Results

• Detailed Analysis
• Memory Bandwidth Analysis on KNL

• Idioms & Optimizations For Sparse

• Optimizations for DGEMM

• Summary & Wrap Up

6/2/2017 2GWU - Intel Parallel Computing Center



Outline

• Introduction & Motivation
• Experimental Results

• Environment, Implementation Caveats

• Results

• Detailed Analysis
• Memory Bandwidth Analysis on KNL

• Idioms & Optimizations For Sparse

• Optimizations for DGEMM

• Summary & Wrap Up

6/2/2017 3GWU - Intel Parallel Computing Center



HPC Trends

• Steady increase in core/socket 
in TOP500

• Deeper interconnection 
networks

• Deeper memory hierarchies

• More NUMA effects

• Need for newer programming 
paradigms
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What is Chapel?

• Chapel is an upcoming parallel programming 
language
• Parallel, productive, portable, scalable, open-

source

• Designed from scratch, with independent 
syntax

• Partitioned Global Address Space (PGAS) 
memory

• General high-level programming language 
concepts
• OOP, inheritance, generics, polymorphism..

• Parallel programming concepts
• Locality-aware parallel loops, first-class data 

distribution objects, locality control
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The Paper

• Compares Chapel’s performance to OpenMP on multi- and many-core 
architectures

• Uses The Parallel Research Kernels for analysis

• Specific contributions:
• Implements 4 new PRKs: DGEMM, PIC, Sparse, Nstream

• Uses Stencil and Transpose from the Chapel upstream repo

• All changes have been merged to master: Pull requests 6152, 6153, 6165

• test/studies/prk

• Analyzes Chapel’s intranode performance on two architectures including KNL

• Suggests several optimizations in Chapel software stack
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Test Environment

• Xeon
• Dual-socket Intel Xeon E5-2630L v2 @2.4GHz
• 6 core/socket, 15MB LLC/socket
• 51.2 GB/s memory bandwidth, 32 GB total memory
• CentOS 6.5, Intel C/C++ compiler 16.0.2

• KNL
• Intel Xeon Phi 7210 processor
• 64 cores, 4 thread/core
• 32MB shared L2 cache
• 102 GB/s memory bandwidth, 112 GB total memory
• Memory mode: cache, cluster mode: quadrant
• CentOS 7.2.1511, Intel C/C++ compiler 17.0.0
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Test Environment

• Chapel
• 6fce63a

• between versions 1.14 and 1.15
• Default settings 

• CHPL_COMM=none, CHPL_TASKS=qthreads, CHPL_LOCALE=flat
• Intel Compilers

• Building the Chapel compiler and the runtime system
• Backend C compiler for the generated code

• Compilation Flags
• fast – Enables compiler optimizations
• replace-array-accesses-with-ref-vars – replace repeated array accesses with reference variables

• OpenMP
• All tests are run with environment variable KMP_AFFINITY=scatter,granularity=fine

• Data size
• All benchmarks use ~1GB input data
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Caveat: Parallelism in OpenMP vs Chapel

#pragma omp parallel

{

for(iter = 0 ; iter<niter; iter++) {

if(iter == 1) start_time();

#pragma omp for

for(…) {} //application loop

}

stop_time();

}
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• Parallelism introduced early in the flow
• This is how PRK are implemented in OpenMP
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coforall t in 0..#numTasks

{

for iter in 0..#niter {

if iter == 1 then start_time();

for … {} //application loop

}

stop_time();

}

• Parallelism introduced early in the flow
• This is how PRK are implemented in OpenMP

• Corresponding Chapel code
• Feels more “unnatural” in Chapel
• coforall loops are (sort of) low-level loops 

that introduce SPMD regions



Caveat: Parallelism in OpenMP vs Chapel

#pragma omp parallel

{

for(iter = 0 ; iter<niter; iter++) {

if(iter == 1) start_time();

#pragma omp for nowait

for(…) {} //application loop

}

stop_time();

}
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coforall t in 0..#numTasks

{

for iter in 0..#niter {

if iter == 1 then start_time();

for … {} //application loop

}

stop_time();

}

• Parallelism introduced early in the flow
• This is how PRK are implemented in OpenMP

• Corresponding Chapel code
• Feels more “unnatural” in Chapel
• coforall loops are (sort of) low-level loops 

that introduce SPMD regions

nowait is necessary for similar synchronization



Caveat: Parallelism in OpenMP vs Chapel

for(iter = 0 ; iter<niter; iter++) {

if(iter == 1) start_time();

#pragma omp parallel for

for(…) {} //application loop

}

stop_time();
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• Parallelism introduced late in the flow
• Cost of creating parallel regions is accounted 

for



Caveat: Parallelism in OpenMP vs Chapel

for(iter = 0 ; iter<niter; iter++) {

if(iter == 1) start_time();

#pragma omp parallel for

for(…) {} //application loop

}

stop_time();
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for iter in 0..#niter {

if iter == 1 then start_time();

forall .. {} //application loop

}

stop_time();

• Parallelism introduced late in the flow
• Cost of creating parallel regions is accounted 

for

• Corresponding Chapel code
• Feels more “natural” in Chapel
• Parallelism is introduced in a data-driven manner by 

the forall loop
• This is how Chapel PRK are implemented, for now. 

(Except for blocked DGEMM)



Caveat: Parallelism in OpenMP vs Chapel

for(iter = 0 ; iter<niter; iter++) {

if(iter == 1) start_time();

#pragma omp parallel for

for(…) {} //application loop

}

stop_time();
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for iter in 0..#niter {

if iter == 1 then start_time();

forall .. {} //application loop

}

stop_time();

• Parallelism introduced late in the flow
• Cost of creating parallel regions is accounted 

for

• Corresponding Chapel code
• Feels more “natural” in Chapel
• Parallelism is introduced in a data-driven manner by 

the forall loop
• This is how Chapel PRK are implemented, for now. 

(Except for blocked DGEMM)

Synchronization is already similar
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Nstream

KNLXeon
• DAXPY kernel based on 

HPCC-STREAM Triad

• Vectors of 43M doubles

• On Xeon
• both reach ~40GB/s

• On KNL 
• Chapel reaches 370GB/s

• OpenMP reaches 410GB/s
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Transpose

KNLXeon
• Tiled matrix transpose

• Matrices of 8k*8k doubles, 
tile size is 8

• On Xeon
• both reach ~10GB/s

• On KNL 
• Chapel reaches 65GB/s

• OpenMP reaches 85GB/s

• Chapel struggles more with 
hyperthreading
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DGEMM

KNLXeon
• Tiled matrix multiplication

• Matrices of 6530*6530 
doubles, tile size is 32

• Chapel reaches ~60% of 
OpenMP performance on both

• Hyperthreading on KNL is 
slightly better

• We propose an optimization 
that brings DGEMM 
performance much closer to 
OpenMP
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Stencil

KNLXeon
• Stencil application on square grid

• Grid is 8000x8000, stencil is star-
shaped with radius 2

• OpenMP version is built with 
LOOPGEN and PARALLELFOR

• On Xeon

• Chapel did not scale well with low 
number of threads

• But reaches 95% of OpenMP

• On KNL

• Better without hyperthreading

• Peak performance is 114% of 
OpenMP
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Sparse

• SpMV kernel

• Matrix is 222x222 with 13 nonzeroes
per row. Indices are scrambled

• Chapel implementation uses default 
CSR representation

• OpenMP implementation is vanilla 
CSR implementation – implemented 
in application level

• On both architectures, Chapel 
reached <50% of OpenMP

• We provide detailed analysis of 
different idioms for Sparse

• Also some optimizations

KNLXeon
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PIC

KNLXeon
• Particle-in-cell

• 141M particles requested in a 210x210

grid

• SINUSOIDAL, k=1, m=1

• On Xeon

• They perform similarly

• On KNL

• Chapel outperforms OpenMP
reaching 184% at peak 
performance
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Memory Bandwidth on KNL
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• Varying vector size on Nstream

• Flat memory mode + numactl to control 
memory mapping

• Versions:
• CHPL : Nstream with scalar promotion (equivalent to 

forall)
• OPT-CHPL : Nstream with coforall
• OMP : Base Nstream
• OPT-OMP : Nstream + nowait on the stream loop
• DDR : numactl -m0
• HBM : numactl -m1



Memory Bandwidth on KNL
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• Different behavior when data size <LLC vs >LLC

• Chapel;
• forall version is considerably bad with small data

• coforall version is ~10x times faster – no parallelism cost

• OpenMP;
• Without nowait, outperformed by coforall version

• With nowait, outperforms Chapel in smaller data sizes, but 
not 220

• When data size is >LLC
• They both perform similarly on DDR -> ~75 GB/s

• OpenMP slightly outperforms Chapel -> ~366 GB/s vs ~372 
GB/s
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Different Sparse Idioms

const parentDom = {0..#N, 0..#N};

var matrixDom: sparse subdomain(parentDom)

dmapped CSR();

matrixDom += getIndexArray();

var matrix: [matrixDom] real;

forall (i,j) in matrix.domain do

result[i] += matrix[i,j], vector[j];
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• The naïve implementation

• Somewhat elusive race 
condition



Different Sparse Idioms

const parentDom = {0..#N, 0..#N};

var matrixDom: sparse subdomain(parentDom)

dmapped CSR();

matrixDom += getIndexArray();

var matrix: [matrixDom] real;

forall i in matrix.domain.dim(1) do

for j in matrix.domain.dimIter(2, i) do

result[i] += matrix[i,j], vector[j];
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• Parallelism in rows only

• Use dimIter library function

• No race condition



Different Sparse Idioms

const parentDom = {0..#N, 0..#N};

var matrixDom: sparse subdomain(parentDom)

dmapped CSR();

matrixDom += getIndexArray();

var matrix: [matrixDom] real;

forall (i,j) in matrix.domain

with (+ reduce result) do

result[i]+=matrix[i,j] * vector[j];
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• Reduce intents

• Not a good idea
• The whole vector is a reduction 

variable

• But in most common cases race 
condition would occur in small 
amount of data

• Whole vector is copied to tasks 
and reduced in the end



Different Sparse Idioms

const parentDom = {0..#N, 0..#N};

var matrixDom: sparse subdomain(parentDom)

dmapped CSR(divideRows=false);

matrixDom += getIndexArray();

var matrix: [matrixDom] real;

forall (i,j) in matrix.domain do

result[i] += matrix[i,j] * vector[j];
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• Introducing: row distributed 
sparse iterators

• A compile time flag when defining 
a sparse domain

• Minor modification in the iterator
• Chunks are adjusted to avoid 

dividing rows

• divideRows is a param, ie compile 
time constant

• No branching at runtime

• Not a performance improvement



Different Sparse Idioms

const parentDom = {0..#N, 0..#N};

var matrixDom: sparse subdomain(parentDom)

dmapped CSR(divideRows=false);

matrixDom += getIndexArray();

var matrix: [matrixDom] real;

forall (elem,(i,j)) in

zip(matrix, matrix.domain) do

result[i] += elem * vector[j];
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• Suggested by Brad 
Chamberlain

• Zip the domain and array so as 
to avoid the binary search to 
sparse array

• Still requires row-distributed 
iterators to avoid the race 
condition



Compiler-Injected Fast Access Pointers

• Access to an index of a CSR array requires a binary search

• Simplest sparse kernel

forall (i,j) in matrix.domain do

result[i] += matrix[i,j], vector[j];

• Observations
• Loop iterator is the domain of matrix

• Loop index is the same as the index used to access matrix

• Then, within a task, it is guaranteed that elements of matrix is 
accessed consecutively
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Compiler-Injected Fast Access Pointers

No optimization
for(i = . . ) {

for(j = . . ) {

result_addr = this_ref(result, i);

matrix_val = this_val(matrix, i, j);

vector_val = this_val(vector, j);

*result_addr = *result_addr +             

matrix_val *

vector_val;

}

}
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Compiler-Injected Fast Access Pointers

No optimization
for(i = . . ) {

for(j = . . ) {

result_addr = this_ref(result, i);

matrix_val = this_val(matrix, i, j);

vector_val = this_val(vector, j);

*result_addr = *result_addr +             

matrix_val *

vector_val;

}

}
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Optimization
data_t *fast_acc_ptr = NULL;

for(i = . . ) {

for(j = . . ) {

result_addr = this_ref(result, i);

if(fast_acc_ptr)

fast_acc_ptr += 1;

else

fast_acc_ptr = this_ref(matrix, i, j);

matrix_val = *fast_acc_ptr;

vector_val = this_val(vector, j);

*result_addr = *result_addr +             

matrix_val *

vector_val;

}

}



Detailed Sparse Performance

6/2/2017 35

• Reduce intent performance is 
abysmal – not surprising

• Row distributed iterators perform 
similarly to the base

• Compiler optimization is especially 
good in KNL

• Possibly due to less/regular memory 
access by avoiding binary search

• Direct access to the internal CSR 
arrays is the best

• Fair: close to what OpenMP
implementation is doing

• Unfair: advanced 
knowledge/questionable code 
maintainability
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C Arrays For Tiling

• Blocked DGEMM uses Arrays within deeply nested loops

• Generated C code showed some bookkeeping for Chapel arrays not 
being hoisted to the outer loops

• Use C arrays instead of Chapel arrays
• More lightweight, less functionality

• Shouldn’t be a general approach but scope of “tile” arrays is relatively small
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Chapel Array vs C Array in DGEMM

var AA = c_calloc(real, blockDom.size)
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var AA: [blockDom] real;

Declaration/Initialization



Chapel Array vs C Array in DGEMM

var AA = c_calloc(real, blockDom.size)

AA[i*blockSize+j] = A[iB,jB];
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var AA: [blockDom] real;

AA[i,j] = A[iB,jB]

Declaration/Initialization

Access



Chapel Array vs C Array in DGEMM

var AA = c_calloc(real, blockDom.size)

AA[i*blockSize+j] = A[iB,jB];

c_free(AA);
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var AA: [blockDom] real;

AA[i,j] = A[iB,jB]

N/A

Declaration/Initialization

Access

Deallocation



Detailed DGEMM Performance
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• Optimized version perform 
slightly better than OpenMP

• Except for 2-3 threads/core on KNL

• Performance improvement is 2x 
on Xeon and 1.6x on KNL
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Summary & Wrap Up

Xeon KNL

Base Opt Base Opt

Nstream 100% - 100% -

Transpos
e

106% - 72% -

DGEMM 56% 106% 63% 99%

Stencil 95% - 114% -

Sparse 41% 73% 47% 93%

PIC 94% - 184% -

6/2/2017 43GWU - Intel Parallel Computing Center

• Except for Transpose relative 
Chapel performance is better on 
KNL
• Transpose: No computation, 

memory bound, mix of sequential 
and strided accesses

• Stencil and PIC
• Chapel outperforms OpenMP on 

KNL

• Optimizations
• Up to 2x performance 

improvement
• DGEMM performance is similar to 

OpenMP
• Sparse performance gap is smaller
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