Chapel’s Home in the New Landscape of Scientific Frameworks

(and what it can learn from the neighbours)

Jonathan Dursi
Senior Research Associate
Centre for Computational Medicine
The Hospital for Sick Children
https://github.com/ljdursi/ CHIUW2017

SickKids

_ _ RESEARCH
Healthier Children. A Better World. INSTITUT]I",/IOZ

https://github.com/ljdursi/CHIUW2017

Wh[] Am I? Ex-astrophysicist turned large-scale computing.

o Large-scale high-speed adaptive reactive fluid fluids

OId HPC Hand...

DOE ASCI Center at Chicago

o ASCI Red
o ASCI Blue
o ASCI White

FORTRAN, MPI, Oct-tree regular adaptive mesh

Joined HPC centre after postdoc

Worked with researchers on wide variety of problems

2 /102

Who Am |?
0ld HPC Hand...

Living in Exciting
Times...

Started my career (c1995-2005) when large scale scientific
computing was:

e ~20 years of stability

e Bunch of x86, MPI, ethernet or infiniband

e No one outside of academia was much doing big number/data
crunching

e Pretty stable set of problems

Now found myself thrust into the most exciting time in scientific
computing maybe ever.

3 /102

Who Am |?

0ld HPC Hand...

New Communities Make things Exciting!

 Internet-scale companies
EECS 598: Special Topics, Fall 2015 935 I,!(;MH \INZE LAEI;8N§
(YahOO ! 9 GOOgle) Graph Mining and Exploration at Scale!
. Methods and Applications S R s—
Living in Exciting o Very large-scale image

] processing
Times.. Machine learning: ——

Sparse linear algebra
k-d trees
Calculations on
unstructured meshes
(graphs)

o Numerical optimization
e Genomics

o Lots of data

o Lots of analysis challenges

o Large graphs for assembly, analysis

o Large tables for statistics
e Building new frameworks

ICML 2013 Woi
NUMERICAL

O O O o

4 [102

92
Who Am New Hardware Makes things Exciting!
Old HPC Hand... .« Now:

o Large numbers of cores
Living in Exciting per socket
. o GPUs/Phis
Times... e Next few years:
o FPGA (Intel: Broadwell
+ Arria 10, shipping
2017)
o Non-volatile Memory
(external memory/out- :
of-core algorithms) hitp:/iwmw.edaplayground.com

http://intel.com

5/102

?
Who Am [Richer Scientific Problems Make things Exciting!

Old HPC Hand... e New science demands: cutting edge models are more
complex. An Astro example:
Living in Exciting o 80s - gravity only N-body, galaxy-scale
: o 90s - N-body, cosmological
Times.. o 00s - Hydrodynamics, cosmological

o 10s - Hydrodynamics + rad transport + cosmological

6 /102

Who Am |?

Old HPC Hand...

Living in Exciting
Times...

Gone Into
Genomics

Started looking into Genomics in ~2013:

e Large computing needs
o Very interesting algorithmic challenges
e HPCer to the rescue, right?

Made move in 2014
e QOntario Institute for Cancer Research

e Working with Jared Simpson, author of ABySS (amongst
other things)

o First open-source human-scale de novo genome
assembler

o MPI-based

71102

Who Am |?

Old HPC Hand...

Living in Exciting
Times...

Gone Into
Genomics

Started looking into Genomics in ~2013:

e Large computing needs
o Very interesting algorithmic challenges
e HPCer to the rescue, right?

Made move in 2014
e QOntario Institute for Cancer Research

e Working with Jared Simpson, author of ABySS (amongst
other things)

o First open-source human-scale de novo genome
assembler

o MPI-based

e ABySS 2.0 just came out, with a new non-MPI mode

8 /102

Who Am I? In the meantime, one of the de-facto standards for genome
analysis, GATK, has just announced that version 4 will support
distributed cluster computing — using Apache Spark.

0ld HPC Hand...

.+ !DZone / Big Data Zone

REFCARDZ GUIDES ZONES | AGILE BIGDATA CLOUD DATABASE DEVOPS INTEGRATION IOT JAVA MOBILE PERFORMA

LIVIng n EXCItmg Genome Analysis Toolkit: Now Using

Times Apache Spark for Data Processing

Users of the latest release of the Genome Analysis Toolkit, an open source framework
for analyzing high-throughput DNA sequencing data, can now choose Apache Spark for |
data processing.

)

G 0 n e I "to ¢)Like(2) $® Comment(0) 77 S:
G . Join the DZone community and g

amazon | AWS Big Data Blog

web services

Helping you collect, store, clean, process, and visualize big data.

Learn about how to rapidly iterate de

Will Spark Power the Data behind Precision
Medicine?

March 31,2016 | Christopher Crosbie | EMR

source technologies, brought to you i

Ever since the Human Genome Proj
2000, the cost of sequencing has dre

utic e i B
then to around US$1,000 today. Christopher Crosbie is a Life Science Solut with Amazon Web Services.

This post was co-authored by Ujjwal Ratan, a Solutions Architect with Amazon Web Services.

Genome Analysis Toolkit: Now Using Apache Spark for =

‘ Data Processing Jihe right treatments, a the right time, every
2015 State of the Union address)

Data U Ins with this statement is a far-reaching goal
Datients, health data is collected, and global
|describes an approach for treating and
Variation in genes, lifestyle, and
‘several technology innovations and a major
findividual.

Users of the latest release of the Genome Analysis Toolkit, an open source framework for
analyzing high-throughput DNA sequencing data, can now choose Apache Spark for data
processing

er since the Human Genome Project produced the first draft sequence of the humar ne in 2000, the

cing has dropped exponentially, from arou 100 million per genome then to arounc Iniques for working with big data, but one
e design and review is Spark on Amazon

Hadoop ecosy

announce the alpha rele /ersion 4 running on [sis, but itis additionally uniquely capable in

Apache Spark Jomics research. This post introduces gene
Data processing for genomics,just like data processing for any industry, is about running data pipelin
pipeline for DNA sequencing is shown in Figure
sequencing alignment variant discovery
raw seques aligned reads
format: format: SAM, BAM
lllumina BWA-MEM GATK

9/102

Outl ine » A survey of the evolving landscape of Big Computing
frameworks

e A tour of some common big-data computing problems

o Genomics and otherwise
o Not so different from complex simulations

A tour of programming models to tackle them, and lessons we
can learn

R

Spark

Dask

Distributed TensorFlow
Coarray Fortran

Julia

Rust, Swift

O O O O o o o

e Where Chapel is, and what nearby territories look fertile

10 /102

Outl | ne My perspective is based on the sorts of problems I've worked on.

_ _ Will have those in mind when looking at languages and
With problems in techniques.

mind: Started with high-speed reactive fluid flows, either fixed grid
(structured or unstructured) or block-structured adaptive:
Grid PDES
5x1o‘2i—= I I
" oI

-1x10"

2x10" 4x10' gx10'
x (em)

11 /102

Outline

With problems in
mind:

Grid PDEs

Substring
operations

(Much) more recently, working with genomics sequence data.

Assembly:

e Have small fragments of sequence, must generate whole
e Graph methods (de Bruijn or overlap graph)
e Find maximal unambiguous paths through the graph

Or may have an assembled graph genome and try to find best

match for given observed subsequence

Or just count observed subsequences

AGAC
ccaT cue crTT

AAGA GGAC = Reads
GGGA GACA ccea cTGE

7 o
cce> TCC
8 5
G T

1 2 3,9,15 4,10,16
@ac>—(acr—>

17 18 \
CCTT)—>CTTT) Eulerian path
14 11

G e
13 12

de Bruijn graph

4
INNGA CT(JelGACT[eleGAC Thks Assembly

Nature Reviews | Genetics

Figure from Nature Review Genetics

12 /102

http://www.nature.com/nrg/journal/v14/n5/full/nrg3433.html

Outline

With problems in
mind:

Grid PDEs

Substring
operations

Large statistical
analyses

Or just large biostatistical analyses:

Closest to my current day job (distributed analysis of private
genomics data sets)

Imagine RNA sequence expression data:

e 100m fragments of sequence (imperfect sampling)

e Assigned to particular RNA transcripts

 Find out if transcripts are differentially expressed between
case and condition

Now do that for multiple tissue types, large population...

And start correlating with other information (DNA variants,
clinical data, phenotypic data.,...)

Figure from Nature

13 /102

http://www.nature.com/nbt/journal/v32/n9/full/nbt.2931.html

The Lay Of The Land: 2002, 2007, and 2017

Ye Olde Entire Scientific Computing Worlde, ¢. 2002

ST D S
"y ! I , | i Laowet 3
1 ' = s . I o
/0 ' ! \ ' Maple
.
\ ! - ! .
Enterprise
Empi
pirq| =
y '
R, o
\]
oy \
A R A .
v S ik g
Iy seb N M f
" BN Y \-\\“.\) \\},/I/‘ ¢
" ! \‘l\\\ \"//, o .
e Sl Physical
e e, ysica
N ' ! i N Ly
¢ (T i S

Numeric

The Excel
Barrens

(map from http://mewo2.com/notes/terrain/)

15/102

http://mewo2.com/notes/terrain/

Ye Olde Entire Scientific Computing Worlde, ¢. 2002

It was a simpler time:

e Statistial Computing largely the domain of the social

. Physical
Sciences, somme experlmental sciences

Sea

o R was beginning to be quite popular

 Physical scientists working with Big Iron or
workstations, performing simulation or analysis of
comparitively regular data sets

FORTRAN/C/C++(?) + MPI + OpenMP
FORTRAN/C/C++(?)

MATLAB, IDL

Python (Numeric)

O O O o

* Not a lot of SQL/database work in traditional technical computing, but
communications up and downstream w/ statistical computing

e Maybe infrequent ferry service between statistical computing and MATLAB
communities

16 /102

And Then They Came, ¢. 2007

s
AR \‘&;)w,
w N G

\ \ Yoy o
IR IENNA ;
ORR D
" " ' v, S y
! o Maple
fatica

E‘ntefprisé
Empire

" “OpenMP.
il ,

P
/7

)
.
‘,I N /,l
W '
i X oo
v\ / 7
i \ !
{ ECLNN Y) :
AT K22 \ W \\\:‘ NZ7 Ph . 1
I
' ysica

o
AR
]y,
AN S
o

Sea

g
N, 7k s

The Excel
Barrens

17 /102

And Then They Came, ¢. 200/

Widespread adption of computing and networking brought = -
data, and lot of it. pas

Physical
i0 Sea

e "Internet-scale" companies were the first businesses to

try taking advantage of all their data, but others soon
followed

o Hadoop, HDFS spawned an entire ecosystem

e In the sciences, genomics was in the right place at
right time

o Success of Human Genome Project in 2003
o High-throughput sequencing technologies becoming available
o Lots and lots of data - but how to process it?

18 /102

The Present Day, 2017

\s \
AN \\$\/' Y
Wl

,;”I""OpenAC
10

0 .Cha.p(?l\

s
' ‘\‘\
W
' \

AN
"

u’,’,

\
\

Sea

19 /102

The Present Day, 2017

e The newcomers started with some of their own tools sious e
(Hadoop, HDFS)

* (Some of) the data-analysis handling communities
jumped at the chance to start working with the data-
intensive newcomers

o Similar needs, interests

o Python on the general computing and physical
sciences side

o R on the statistics/Machine Learning (neé data mining) side

e The simulation science communities, which makes up most of traditional HPC,
were more skeptical

o Needs seemed very different

o Very different terminology

o Initial tools (Hadoop Map-Reduce) were all out of core, calculations very
simple (analytics)

o Still not a lot of overlap

20 /102

The Present Day, 2017

Will argue that they are not so different, and there's a lot to = sepwsgpeme = & 7" -
learn (on both sides) across the data science/simulation b N >
science divide GRE e [e\ ™ Py

e Simulations are getting more complex, dynamic

 Big data problems have long been in-memory,
increasingly compute intensive

e Moving towards each other in fits and starts

21/102

B| g D ata Big Data problems same as HPC, if in different context

Problems o Large scale network problems
o Graph operations
 Similarity computations, clustering, optimization,
o Linear algebra
o Tree methods
e Time series
o FFTs, smoothing, ..

22 [102

Big Data
Problems

Linear algebra

Almost any sort of numeric computation requires linear algebra.

In many big-data applications, the linear algebra is extremely
sparse and unstructured; say doing similarity calculations of
documents, using a bag-of-words model.

If looking at ngrams, cardinality can be enormous, no real pattern
to sparsity

O &

< A\ e“?\O N
xS +' £ & o \
& & N ¥ <P
g RS TS

Wa'Wg

- lwall - [l

a,g

23 /102

B|g Data As with other problems - big data graphs are like HPC graphs, but
more so.
Problems

Very sparse, very irregular: nodes can have enormously varying
_ degrees, eg social graphs
Linear algebra

Graph problems

24 /102

Blg Data Generally decomposed in similar ways.

Problems Processing looks very much like neighbour exchange on an
unstructured mesh; can map unstructured mesh computations

_ onto (very regular) graph problems.
Linear algebra

Graph problems

https://flink.apache.org/news/2015/08/24/introducing-flink-
gelly.html

25 /102

https://flink.apache.org/news/2015/08/24/introducing-flink-gelly.html

B|g Data Calculations on (eg) social graphs are typically very low-compute

intensity:
Problems
e Sum
. e Min/Max/Mean
Linear algebra
So that big-data graph computations are often more latency
Graph problems sensitive than more compute-intensive technical computations

= lots of work done and in progresss to reduce
communication/framework overhead

Hyperlinks PageRank Top 20 Pages
Trtle
Raw Text
Wikipedia Table -
7

Term-Doc Topic Model
q - Graph (LDA) Word Topics
Word Topic
= — —
-

Discussion COmmqnlty User | Commynity
Table Editor Graph Detection Community Topic

& &
_—

—> — —> [—]
1
1 |

https://spark.apache.org/docs/1.2.1/graphx-programming-guide. html

26 /102

https://spark.apache.org/docs/1.2.1/graphx-programming-guide.html

Big Data
Problems

Linear algebra
Graph problems

Commonalities

The problems big-data practitioners face are either:

e The same as in traditional HPC

e The same as new scientific computing fields

e Or what data analysis/HPC will be facing towards exascale
o Less regular/structured
o More dynamic

271102

The Present Day, 2017

Will argue that they are not so different, and there's a lot to sepuspus
learn (on both sides) across the data science/simulation Yo 0 S ,
science divide R 5 Tl N Pyl

e Simulations are getting more complex, dynamic

 Big data problems have long been in-memory,
increasingly compute intensive

e Moving towards each other in fits and starts

I tend to place Chapel as a redoubt on the outskirts of traditional HPC terrain, trying to
lead the community towards where the action is:

e Productive tooling
e Modern language affordances

e Making it easier to tackle scale, more complex problems

28 [102

https://www.r-project.org/

R

Overview

The R foundation considers R “an environment within
which statistical techniques are implemented.”

e A programming language built around statistical analysis and
(primarily) interactive use.

e Enormous contributed package library CRAN (10,700+
packages).

e Lingua Franca of desktop statistical analysis.

e Lovely newish development/interactive use environment,
RStudio.

e Huge in biostatistics: Bioconductor

30 /102

https://mirrors.nics.utk.edu/cran/
https://www.rstudio.com/
https://bioconductor.org/

R

Overview

Initial History

R's popularity was not a given.
e Many extremely established incumbant stats packages,

commercial (SPSS, SAS)
e Referees can always say "I don't trust this new program, what
does good old SPSS/SAS say? (Fear may be more important

than actual fact).

 Free, easily extensible, high-quality — took ages to catch on,

but it did.
Lesson 1: Incumbents can be beaten.

0% 0% 20% 0% 40% S0% 60% 70% 80%

R
IBM SPSS Statistics I
SAS

-
Microsoft Excel Data Mining IR
Tableau M
IBM SPSS Modeler I
Weka Bl
MATLAS (Mathworks) IS
KNIME (free version) IS
RapidMiner (free version) I
Microsoft SQL Server Data Mining I
SAS Enterprise Miner ML
STATISTICA (DellStatsoft) L
Mathematica (Wolfram Research) s
Revolution Analytics (free version) i
SAas P
QikView L
Minitab Ll
IBM Cognos. |l .
Orade Data Mining = Primary Tool
SAP Business Objects “ Other Use
Stata
TIBCO Spotfire
RapidMiner (commercial version) I

KNIME (commercial version) i
Orange Wl

Revolution Analyiics (commercial version) |
Oracle R Enterprise Il

Salford CART, MARS, TreeNet, RF, SPM i

Figure from
http://r4stats.com/articles/popularity/

31/102

http://r4stats.com/articles/popularity/

R

Overview

Initial History

R's popularity was not a given.

e Many extremely established incumbant stats packages,

commercial (SPSS, SAS)

e Referees can always say "I don't trust this new program, what
does good old SPSS/SAS say? (Fear may be more important

than actual fact).

 Free, easily extensible, high-quality --- took ages to catch on,

but it did.

Lesson 2: Growth is slow, until it isn't.

2e+05-

aaaaa

N

e+05- S Minitab

SSSSSS

Number of Geogle Scholar Hits
L

o ol v)
De+00- -l ===

1995 2000 2005 2010 2015
Year

Figure from

http://r4stats.com/articles/popularity/

32 /102

http://r4stats.com/articles/popularity/

R A big reason for deciding to use R are the packages that are

available
Overview » High-quality, user-contributed packages to solve specific
types of problems
Initial History

e Written to solve authors' problem, helpful to others

Lesson 3: Users' contributions can be as important for adoption as
implementers".

6000

g

it

-

Number of & Packages on CRAN
i 5
]
]

.

o
2002 2004 2006 2008 2010 2012 2014
Yeoar

Figure from
http://blog.revolutionanalytics.com/2016/04/cran-
package-growth.html

33 /102

http://blog.revolutionanalytics.com/2016/04/cran-package-growth.html

R The fundamental data structure of R has been(*) the dataframe.

e Think spreadsheet

Overview

e List of typed columns (1d vectors)
Initial History e Can be thought of as 1d array of record.
Dataframes

Favourite Creature Fully
Language Type Charged?
(factor) (factor) (logical)

Name Age

(character) (numeric)

“Jonathan” NA Chapel! Person FALSE
“Sammy” 2 R Dog TRUE
“Harvey” 5 Assembly Roomba TRUE

34 /102

R The fundamental data structure of R has been(*) the dataframe.

e Think spreadsheet

Overview

 List of typed columns (1d vectors)
Initial History * Can be easily thought of as 1d array of record.
Dataframes Easily distributed over multiple machines!

Favourite = Creature Fully
Language Type Charged?
(factor) (factor) (logical)

Name Age

(character) (numeric)

“‘Jonathan” NA Chapel! Person FALSE

“Sammy” 2 R Dog TRUE

Favourite Creature Fully
Language Type Charged?
(factor) (factor) (logical)

Name Age

(character) (numeric)

“Harvey” 5 Assembly Roomba TRUE

35/102

Overview
Initial History
Dataframes

HPC R

The fundamental data structure of R has been the dataframe.
e Easily distributed over multiple machines!

One might reasonably expect that there thus would be a thriving
ecosystem of parallel/big data tools for R. There's some truth to

that (eg CRAN HPC Task view):

Parallel computing: Explicit parallelism

Several packages provide the communications layer required for parallel computing. The
In recent years, the alternative MPI (Message Passing Interface) standard has become the
MPICH / MPICH2, Open MPI, and Deino MP implementations. It should be noted that 1
The pbdMPI package provides S4 classes to directly interface MPI in order to support the
Scal APACK version 2.0.2. The pbdBASE builds on these and provides the core classes ¢
terabyte-sized files. The obdDEMO packase provides examoles for these packages. and a

o Analternative| ing:
e Parallel computing: Random numbers
¢ Thesnowfallp o Random-number generators for parallel computing are available via the rlecuyer package |
¢ The foreachpa o The doRNG package provides functions to perform reproducible parallel forcach loops, us
future or future
o The future pack Parallel computing: Resource managers and batch schedulers
o The Rborist par
® Theh2opacks; e Job-scheduling toolkits permit of parallel computing resources and tasks. The
 The randomFoi e The Condor toolkit (link) from the University of Wisconsin-Madison has been used with
Paralll i 8 e 45Cluter packae b Knaus s e st sncmall e bt n.caeatylited
rallel computing: o The batch pack .
N % The o Parallel computing: GPUs
® using Pihvcats. o gxtension (9b9 o e gputools package by Buckner and Seligman provides several common data-mining g
o The somp pack e flowr packi ¢ The cudaBayesreg package by da Silva implements the rhierLinearModel from the b
e The Riparalle] | Parallel computing: ® Th¢ 7EPt package (sce below for link) aims to speed up bioinformatics analysis by using t
e The Rdsm pach PULDE: o The gebd package implements a benchmarking framework for BLAS and GPUs (using gpt
o TheRhpcBLA! o Thecaretpacke ® The OpenCL package provides an interface from R to OpenCL permittng hardware- and v
o TheRhpeporm e The suser ® The HIPLARM package provide High-Performance Lincar Algebra for R using multi-core
= * Thepvelusipa; ® The permGPU package computes permutation resampling inference in the context of RNA
Parallel computing s Tne im packay ® The gmatrix package enables the evaluation of matrix and vector operations using GPU co
¢ LM PACKAB(o The gpuR package offers GPU-enabled functions: New gpu* and vel* classes are provided
o ThemulfiRpac 3 oot
o The biocepdisl 3 The otbe p: Large memory and out-of-memory data
Parallel computing; © The GAMBOooS ¢ e bigim package by Lumley uses incremental computations to offer m() and glm() £
positionand elt ¢y ff package by Adler et al. offers file-based access to data sets that are too large to be Ic
© The RHIPE pa dc"“"lv:s the| o The bigmemory package by Kane and Emerson permits storing large objects such as matri
o Thermrpackay , DOl SUPEC o Alarge mumber of database packages, and database-alike packages (such as sqldf by Groth
o Arclated packs e bugsparallt ¢ The HadoopStreaming package provides a framework for writing map/reduce scripts for u:
o TheRProtoBuf ® 1hePartDSAP o e speedglm package permits to fit (generalised) linear models to large data. For in-mem¢
e The Histogram ® 10 9elotepac o The biglars package by Seligman et al can use the ff to support large-than-memory dataset:
e Thetoasterpac | SUPPOrfrJAC o The MonetDB R package allows R to access the MonetDB column-oriented, open source ¢
. ® Thepmelustpa o e fipase package by de Jonge ct al adds basic statistical functionality to the ff package.
¢ Theharvestrpa o Ty | aF package provides methods for fast access to large ASCII files in csv or fixed-widt
e Nowadays, mat
® The sprint (an @ Easier interfaces for Compiled code
permutation tes
® Thepbapply pa e The inline package by Sklyar et al cases adding code in C, C++ or Fortran to R. It takes ca:
. @ The Repp package by Eddelbuettel and Francois offers a number of C-++ clases that makes
® The ReppParallel package by Allaire ct al. bundles the Intel Threading Building Blocks an
® The tJava package by Urbanck provides a low-level interface to Java similar to the . Call
Profiling tools
® The profr package by Wickham can visualize output from the Rprof interface for profilin
® The proftools package by Ticrney, and the aprof package by Visser, can also be used to ans
® The GUIProfiler package visualizes the results of profiling R programs.

36 /102

https://cran.r-project.org/web/views/HighPerformanceComputing.html

R

Overview
Initial History
Dataframes

HPC R

But a large number of packages isn't necessarily a sign of vibrancy
e Can be wheel reinvention factory

R has several (solid, well made) parallel packages: snow, multicore
(now both in core), foreach.

e But they don't work together
e And don't implement any higher-order algorithms.

Also has several excellent packages that make use of parallelism:

e Caret (various data mining algorithms)
» BiocParallel (for Bioconductor packages)

But these represent a lot of work by people; hard to get from one
side to the other.

SparkR allows you to run R code through Spark, but impedence
mismatch between paradigms.

caret()

GAMBoost()

mecparallel)
foreach()
makeCluster()

37 /102

R

Overview
Initial History
Dataframes

HPC R

If your parallelism isn't very easily expressed, and a higher-level
package for solving your problems doesn't already exist, you have
to parallelize your algorithms from very basic pieces

e But scientists don't want to write parallel code
e They just want to solve their problems!

Lesson 4: Decompositions aren't enough — need rich, composable,
parallel tools.

caret()

GAMBoost()

meceparallel()
foreach()
makeCluster()

38 /102

R

Overview
Initial History
Dataframes
HPC R
Datatables

Pros/Cons

Focused entirely on statistical computing (pro or con)
Cons

 Hit-or-miss support for parallel computations
e Purely interpreted; pure R is slow

Pros

e Widespread adoption

e Enormous package support (many written in C++)

e Close to dominant on the desktop (with Python/Pandas
nipping at heels)

39 /102

http://spark.apache.com/

Spark

Overview

Hadoop came out in ~2006 with MapReduce as a computational
engine, which wasn't that useful for scientific computation.

e One pass through data
e Going back to disk every iteration

However, the ecosystem flourished, particularly around the
Hadoop file system (HDFS) and new databases and processing
packages that grew up around it.

(keyl, l7)\ (key5,23) (keyl,99) (key2, 12) (key5.83) Keﬂ 9)

!(keyl [|799])I (key5,[23,83]) !(k 72[129])|
& {ﬁ &
o O e

3
B

41 /102

Spark

Overview

Spark (2012) is in some ways "post-Hadoop"; it can happily
interact with the Hadoop stack but doesn't require it.

Built around concept of in-memory resilient distributed datasets

 Tables of rows, distributed across the job, normally in-
memory

e Immutable

e Restricted to certain transformations

Used for database, machine learning (linear algebra, graph, tree

methods), etc.
RDD1 | [RDD2

go back

t inlineage
H and
recalculate

42 [102

Spark

Overview

Performance

. . 120
Being in-memory was a huge performance

win over Hadoop MapReduce for multiple
passes through data.

90
60
30

Running time (s)

Spark immediately began supplanting
MapReduce for complex calculations.

Lesson 6: Performance is crucial!

110

0.9

® Hadoop

¥ Spark

43 [102

120 110
90

Spa |"k Being in-memory was a huge performance

win over Hadoop MapReduce for multiple % - ® Hadoop
i passes through data. £ 2 " Spark
Overview $ % Mos
Spark immediately began supplanting
Performance MapReduce for complex calculations.

Lesson 6: Performance is crucial!
..Jo a point.

In 2012, either would have been much faster in MPI or a number
of HPC frameworks.

e No multicore
e Generic sockets for communications
e No GPUs

e JVM: Garbage collection jitter, pausses

But development time, lack of fault tolerance, no integration into
ecosystem (HDFS, HBase..) mean that not even considered.

Don't have to be faster than everything.

44 [102

Spark

Overview

Performance

Project Tungsten (2015) was an extensive rewriting of core Spark
for performance.

e Getrid of JVM memory management, handle it themselves
(FORTRAN77 workspace arrays!)

e Vastly improved cache performance

e Code generation (more later)

In 2016, built-in GPU support.

Lesson 8: There will always be pending performance
improvements. They're important, but not show-stoppers.

45 /102

Spark

Overview

Performance

Project Tungsten (2015) was an extensive rewriting of core Spark
for performance.

e Getrid of JVM memory management, handle it themselves
(FORTRAN77 workspace arrays!)

e Vastly improved cache performance

e Code generation (more later)

In 2016, built-in GPU support.

Lesson 8: There will always be pending performance
improvements. They're important, but not show-stoppers.

Lesson 9: Big Data frameworks are learning HPC lessons faster
than HPC stacks are learning Big Data lessons.

46 [102

Spark Operations on Spark RDDs can be:

e Transformations, like map, filter, reduce, join, groupBy..

Overview e Actions like collect, foreach, ..
Perf You build a Spark computation by chaining together
erformance transformations; but no data starts moving until part of the
computation is materialized with an action.
RDDs

RDD RDD2 RDD3

N\

go back
in lineage
and
recalculate

47 (102

Spark

Overview
Performance

RDDs

Spark RDDs prove to be a very powerful abstraction.

Key-Value RDDs are a special case - a pair of values, first is key,
second is value associated with.

Linda tuple spaces, which underly Gaussian.

Can easily use join, etc. to bring all values associated with a key
together:

e Like all stencil terms that are contribute at a particular grid
point

= Ju pyter Spark 1 - Heat Diffusion (nsaved changes)

File Edit View Insert Cell Kernel Help

+ % & B 4+ ¥ M EH C Code 4 @ CellToolbar
- calculate terms in the next step
- and sum

for step in range(nsteps):
data = data.flatMap(stencil) \
.reduceByKey(lambda X, y:X+y)

Plot final results in black
plot_data(data, usecolor='black')

In [5]: with SparkContext("local[4]") as sc:
thermal_simulation_ld(sc, ncells=50, nsteps=20, nprocs=4)

48 [102

Spark

Overview
Performance

RDDs

Dataframes

But RDDs are also building blocks.

Spark Dataframes are lists of columns, like pandas or R data
frames.

Can use SQL-like queries to perform calculations. But this allows
bringing the entire mature machinery of SQL query optimizers to
bear, allowing further automated optimization of data movement,
and computation.

(Spark Notebook 2)

- J U pyte r Spark 2 - Data Frames Last Checkpoint: 3 minutes ago (autosaved)
File Edit View Insert Cell Kernel Help

+ x & B 44 v M B C Code 4 @ | CellToolbar

In [15]: df = df.select("id",
rand(seed=10).alias("uniform"),
randn(seed=27).alias("normal"))

df.show(10)

" S — +
| id| uniform| normal |
E— S — +
| 0]0.41371264720975787| 0.5888539012978773 |
1| 0.7311719281896606| 0.8645537008427937|
2| 0.9031701155118229| 1.2524569684217643 |
3]0.09430205113458567| -2.573636861034734|
4]0.38340505276222947| 0.5469737451926588 |

|
|
|
|
e
|
|

0.55692461355235110.17431283601478723 |

6| 0.4977441406613893|-0.7040284633147095]

7| 0.2076666106201438| 0.4637547571868822]

8| 0.9571919406508957| 0.920722532496133]

| 9] 0.7429395461204413|-1.4353459012380192]

E— o +

Anlyv chAwina +Aan 1N rAwe

49 [102

Spark

Overview
Performance
RDDs
Dataframes

Graphs

Graph library — GraphX — has also been implemented on top of
RDDs.

Many interesting features, but for us: Pregel-like algorithms on

graphs.

50 /102

http://spark.apache.org/graphx/
http://blog.acolyer.org/2015/05/26/pregel-a-system-for-large-scale-graph-processing/

Spark This makes implementing unstructured mesh methods extremely
straightforward (Spark notebook 4):

Overview def step(g:Graph[nodetype, edgetype]) : Graph[nodetype, edget:
val terms = g.aggregateMessages[msgtype](
/] Map
Performance triplet => {

triplet.sendToSrc(src_msg(triplet.attr, triplet.si
triplet.sendToDst(dest_msg(triplet.attr, triplet.:

¥y
RDDS // Reduce
(a, b) => (a._1, a. 2, a. 3 +b. 3, a. 4 +b. 4, a. 5
Dataframes)
val new_nodes = terms.mapValues((id, attr) => apply_update
Graphs return Graph(new_nodes, graph.edges)

51/102

Spark

Overview
Performance
RDDs
Dataframes

Graphs

All of these features - key-value RDDs, Dataframes, (now
Datasets), and graphs, are built upon the basic RDD plus the
fundamental transformations.

Lesson 4b: The right abstractions — decompositions with enough
primitive operations to act on them — can be enough to build an
ecosystem on

52 /102

Spark

Overview
Performance
RDDs
Dataframes
Graphs

Execution graphs

Delayed computation + view of entire algorithm allows
optimizations over the entire computation graph.

So for instance here, nothing starts happening in earnest until the
plot_data() (Spark notebook 1)

Main loop: For each iteration,
- calculate terms in the next step
- and sum
for step in range(nsteps):
data = data.flatMap(stencil) \
.reduceByKey(lambda x, y:x+y)

Plot final results in black
plot_data(data, usecolor='black')

Knowledge of lineage of every shard of data also means
recomputation is straightforward in case of node failure

53 /102

Spark

Overview
Performance
RDDs
Dataframes
Graphs
Execution graphs

Adoption in
Science

Adoption has been enormous broadly:

Interest over time. Web Search. Worldwide, 2004 - present, Programming.

= mpi = spark hadoop

Google Search

1000+

Posts/Month

2010 2012 2014 2016
Month

Questions on Stack Overflow

View full report in Google Trends

TagName

— apache-spark

— dask

— hadoop

— julia-lang

— mpi
tensorflow

54 /102

Spark But comparatively little uptake in science yet - even though it
seems like it would be right at home in large-scale genomics:

Overview e Graph problems
e Large statistical analyses
Performance (GATK is a bit of a special case - more research infrastructure than
a research tool per se)
RDDs
Dataframes
Graphs
Execution graphs
Adoption in
Science

55 /102

Spark But comparatively little uptake in science yet - even though it
seems like it would be right at home in large-scale genomics:

Overview e Graph problems
e Large statistical analyses
Performance (GATK is a bit of a special case - more research infrastructure than
a research tool per se)
RDDs
My claim is that its heavyweight nature is an awkward fit for
scientist patterns of work
Dataframes
e Noodle around on laptop
Graphs e Develop methods, gain confidence on smaller data sets

e Scale up over time

Execution graphs Who spends months developing a method, tries it for the first time
on 100TB of data, only to discover the approach is doomed to
failure?

Adoption in
Science Lesson 10: For science, scale down may be as important as scale up

56 /102

Spark Cons

e JVM Based (Scala) means C interoperability always fraught.

Overview e Not much support for high-performance interconnects
PP gn-p
(although that's coming from third parties - HiBD group at
Performance OsU)

 Very little explicit support for multicore yet, which leaves
much performance on the ground.
RDDs e Doesn't scale down very well; very heavyweight

Pros
Dataframes

e Very rapidly growing
Graphs e Performance improvements version to version
 Easy to find people willing to learn

Execution graphs
Adoption

Pros/Cons

57 /102

http://hibd.cse.ohio-state.edu/

http://dask.pydata.org/

Dask Dask is a python parallel computing package

Very new - 2015

As small as possible
Scales down very nicely
Adoption extremely fast

Overview

58 /102

Da Sk Dask is a python parallel computing package

e Very new - 2015
Overview e Assmall as possible

e Scales down very nicely

e Adoption extremely fast

e Works very nicely with NumPy, Pandas, Scikit-Learn
e Is definitely nibbling into HPC “market share”
o For traditional numerical computing on few nodes
o For less regular data analysis/machine learning on larger
scale
o (likely siphoning off a little uptake of Spark, too)

Used for very general data analysis (linear algebra, trees, tables,
stats, graphs..) and machine learning

Lesson 11: Library support vital

59 /102

Dask

Overview

Task Graphs

from dask import delayed, value

@delayed
def increment(x, inc=1):
return x + inc

@delayed
def decrement(x, dec=1):
return x - dec

@delayed
def multiply(x, factor):
return x*factor

increment(1)
decrement(5)
multiply(w, Xx)
increment(y, 3)

N< X =

from dask.dot import dot_graph
dot_graph(z.dask)

z.compute()

Allows manual creation of quite general parallel computing data
flows (making it a great way to prototype parallel numerical
algorithms):

imcrenent-# |

| el

o b pl =42

decrement-#3

ngrement-#

60 /102

Dask

Overview

Task Graphs

Once the graph is constructed, computing means scheduling
either across threads, processes, or nodes

e Redundant tasks (recomputation) pruned

e Intermediate tasks discarded after use

e Memory use kept low

o If guesses wrong, task dies, scheduler retries
o Fault tolerance

Collections Task Graph Schedulers

|
CTa |

—_"T multiprocessing \
‘dataframe | ‘

{ distributed

“ synchronous
%;}D ’_‘::[threaded

http://dask pydata.org/en/latest/index html

61 /102

http://dask.pydata.org/en/latest/index.html

Dask

Overview
Task Graphs

Dask Arrays

Array support also includes a small but growing number of linear
algebra routines

Dask allows out-of-core computation on arrays (or dataframes, or
bags of objects): will be increasingly important in NVM era

e Graph scheduler automatically pulls only chunks necessary
for any task into memory
e New: intermediate results can be spilled to disk

file = h5py.File(hdf_filename,'r")

mtx = da.from_array(file['/M'], chunks=(1000, 1000))
u, s, v = da.linalg.svd(mtx)

u.compute()

Lesson 12: With NVMe, out-of-core is coming back, and some
packages are already thinking about it

62 /102

Dask

Overview
Task Graphs

Dask Arrays

Arrays have support for guardcells, which make certain sorts of
calculations trivial to parallelize (but lots of copying right now):

(From dask notebook)

subdomain_init = da.from_array(dens_init, chunks=((npts+1)//2

def dask_step(subdomain, nguard=2):
“advect® 1s just operator on a numpy array
return subdomain.map_overlap(advect, depth=nguard, boundai

with ResourceProfiler(0.5) as rprof, Profiler() as prof:
subdomain = subdomain_init
nsteps = 100
for step in range(0, nsteps//2):
subdomain = dask_step(subdomain)
subdomain = subdomain.compute(num_workers=2, get=mp_get)

010 1.0
0.8} Jst s
0.6 | o6 - $.6
0.4} Jo.at .4
02} Joz2t .2

0.0 0.0 — .0
0.0 0.2 04 0.6 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

63 /102

Dask
Overview
Task Graphs
Dask Arrays

Diagnostics

Comes with several very useful performance profiling tools which
will be instantly famiilar to HPC community members

H 0P E e ¢

Profile Results

Worker 1D
o

t
B

% CPU
g 8 g 8 B
S W\
JARRRRA M
ER 8 B
(gw) Liowap

=% CPU |
== Memory |

]
=

=
3

..........................

64 /102

Dask
Overview
Task Graphs
Dask Arrays
Diagnostics

Pros/Cons

Not going to be a killer platform for solving PDEs just yet

* [claim this is because you can't hint strongly enough to
scheduler yet about data placement

Could easily be of interest in very near term for large-scale
biostatistical data analysis (scikit-learn).

Out-of-core analysis makes scale down even more interesting.

Nothing really there for graph problems, but it's not impossible in
the medium term.

65 /102

Dask
Overview
Task Graphs
Dask Arrays
Diagnostics

Pros/Cons

Cons

o Performance: Aimed at analysis tasks (big, more loosely
coupled) rather than simulation
o Scheduler+TCP: 200 ps per-task overhead, orders of
magnitude larger than an MPI message
o Single scheduler processes
o Not intended as replacement in general for large-scale
tightly-coupled computing

Pros

e Trivial to install, start using

e Outstanding for prototyping parallel algorithms

e Out-of-core support baked in

e With Numba+Numpy, reasonable single-core performance
(~factor of 2 of Chapel)

e Automatically overlaps communication with computation:
200 ps might not be so bad for some methods

e Scheduler, communications all in pure python right now,
rapidly evolving:

o Much scope for speedup

66 /102

TensorFlow:

http://tensorflow.org/

TensorFlow

Overview

TensorFlow is an open-source dataflow for

numerical computation with dataflow el omm bR o
graphs, where the data is always in the form (o) (men) (] (o)
of “tensors” (n-d arrays). b
o)

Very new: Released November 2015 @ | /m/
From Google, who uses it for deep learning i ff
and othe rmachine learning tasks. =

o
Lots of BLAS operations and function i@
evaluations but also general numpy-type e
operations, can use GPUs or CPUs. Bew—o

Deep learning: largely (but not exclusively)

about breaking data (training set) into large chunks, performing
calculations, and updating each other with updates from those
calculations synchronously or asynchronously.

Lesson 13: Parts of “big data” are getting very close to traditional

HPC problems.

67 [102

Ten SO[‘FIOW As an example of how a computation is set up, here is a linear
regression example.

Overview TensorFlow notebook 1

In [1l1]: # Try to find values for W and b that compute y data = W * x data + b
Graphs # (We know that W should be 0.1 and b 0.3, but Tensorflow will
figure that out for us.)
W = tf.variable(tf.random uniform([1], -1.0, 1.0))
b = tf.vVariable(tf.zeros([1]))
y

=W * x data + b

Minimize the mean squared errors.

loss = tf.reduce_mean(tf.square(y - y_data))

optimizer = tf.train.GradientDescentOptimizer(0.5)

train = optimizer.minimize(loss)

Before starting, initialize the variables. We will 'run' this first.
init = tf.initialize_all_variables()

Launch the graph.
sess = tf.Session()
sess.run(init)

Fit the line.
for step in range(201):
sess.run(train)
if step % 20 == 0:
print(step, sess.run(W), sess.run(b))

68 /102

TensorFlow

Overview

Graphs

Linear regression is already built in, and doesn't need to be

iterative, but this example is quite general and shows how it works.

Variables are explicitly introduced to the TensorFlow runtime, and
a series of transformations on the variables are defined.

When the entire flowgraph is set up, the system can be run.

The integration of tensorflow tensors and numpy arrays is very
nice.

Out[12]: [<matplotlib.lines.Line2D at 0x7£9fc1d3c358>]

0.42

0.40

69 /102

TensorFlow
Overview
Graphs

Mandelbrot

All sorts of computations on regular arrays can be performed.

Some computations can be split across GPUs, or (eventually) even

nodes.

All are multi-threaded.

In [15]:

In [16]:

Compute the new values of z: z"2 + x
zs_ = zs*zs + Xs

Have we diverged with this new value?
not_diverged = tf.complex abs(zs_) < 4

Operation to update the zs and the iteration count.
#
Note: We keep computing zs after they diverge! This

is very wasteful! There are better, if a little
less simple, ways to do this.
#

step = tf.group(zs.assign(zs_),

n_iters.assign_add(tf.cast(not_diverged, tf.float32)))

for i in range(200):
step.run()

display_fractal(n_iters.eval())

0

100

200

300

400

70 /102

TensorFlow
Overview
Graphs
Mandelbrot

Wave Eqn

All sorts of computations on regular arrays can be performed.

Some computations can be split across GPUs, or (eventually) even
nodes.

All are multi-threaded.

In [87]: # Initialize state to initial conditions
tf.initialize all_variables().run()

Run 1000 steps of PDE
for i in range(1000):
Step simulation
step.run({eps: 0.03, damping: 0.04})
Visualize every 50 steps
if i & 50 == O:
display array(U.eval())

0

500

71 /102

TE“SOI‘FIOW As with laying out the computations, distributing the

computations is still quite manual:

OVBTVIBW with tf.device("/job:ps/task:0"):
weights_1 = tf.variable(...)
biases_1 = tf.Variable(...)
Graphs
with tf.device("/job:ps/task:1"):
weights_2 = tf.Variable(...)
Mandelbrot biases_2 = tf.Variable(...)

with tf.device("/job:worker/task:7"):

input, labels = ...
VVave Eqn layer_1 = tf.nn.relu(tf.matmul(input, weights_1) + biases_1
logits = tf.nn.relu(tf.matmul(layer_1, weights_2) + biases_.
.y - # ...
Distributed train_op = ...

with tf.Session("grpc://worker7.example.com:2222") as sess:
for _ in range(10000):
sess.run(train_op)

Communications is done using gRPC, a high-performance RPC
library based on what Google uses internally.

72 [102

http://www.grpc.io/

TensorFlow
Overview
Graphs
Mandelbrot
Wave Eqn
Distributed

Adoption

Very rapid adoption, even though targetted very narrowly: deep
learning

All threaded number crunching on arrays and communication of
results of those array calculations

+ Add comparison

Search term Topic

- BRI 2

73 /102

TensorFlow

Overview
Graphs
Mandelbrot
Wave Eqn
Distributed
Adoption

Pros/Cons

Cons

Pros

N-d arrays only means limited support for, e.g., unstructured
meshes, hash tables (bioinformatics)
Distribution of work remains limited and manual

C++ - interfacing is much simpler than Spark

Fast

GPU, CPU support, not unreasonable to expect Phi support
shortly

Can make use of infrastructure for synchronous,
asynchronous updates between data-parallel tasks

Great for data processing, image processing, or computations
on n-d arrays

74 [102

C(]mm[]n o Spark: Resilient distributed data set (table), upon which:

o Graphs
ThemBS o Dataframes/Datasets
o Machine learning algorithms (which require linear
: algebra)
Higher-Level o Mark of a good abstraction is you can build lots atop it!
Abstractions * Dask:

o Task Graph
o Dataframe, array, bag operations
e TensorFlow:
o Data flow
o Certain kinds of “Tensor” operations

75 /102

Common
Themes

Higher-Level
Abstractions

Data Flow

All of the approaches we've seen implicitly or explicitly
constructed dataflow graphs to describe where data needs to move.

Then can build optimization on top of that to improve data flow,
movement

These approaches are extremely promising, and already
completely usable at scale for some sorts of tasks.

Already starting to attract attention in HPC, e.g. PARSEC at ICL:

k = SIZE-1 kz0

FOR k|= 0 .. SIZE-1
_—‘———-___n&r__. Applicatien code &
distribution . Codelets

[atk1 k] [rik) k)] <~ peEordiarkl k)

Programmer
o Domain
\ | Dataflow Specific
Al represemaliun Extensions
Supercomputer
. FOR\n = k+l ~_ SIZE- 1
LOWER i
Damﬂaw Parallel SVS‘EW\ == moRa
compller tasks stubs :ampiler A[k][n] <- DORMOR(A[k](k]j [T(k][k]} Alk][n])
= 4 Additional FOR m = k+1 .. SIZE-1
Serlal PaRSEC v o librarles
Code compiler Rintenet pirvads Akl [n], [Arm]nl == =R
PaRSEC Toolchain PLASMA DSSMOR(A[m] [k], T[m][k], A[k][n], A[m][n])

MAGMA

76 [102

http://icl.utk.edu/parsec/

http://julialang.org/

oo is “a high-level, high-performance dynamic

Julia o ¢
JUIIaprogramming language for numerical computing.”

Overview Like Chapel, aims to be productive, performant, parallel. Targets
itself as a matlab-Kkiller.

Most notable features:
e Dynamic language: JIT, rich types, multiple dispatch

o Give a “scripting language” feel while giving performance
closer to C or Fortran

o Lisp-like metaprogramming: Code is Data
o With JIT, makes it possible to re-write Julia code on the
fly
o Makes it possible to write mini-DSLs for particular

problem types: differential equations, optimization

e Full suite of parallel primitives

77 [102

https://github.com/JuliaDiffEq/DifferentialEquations.jl
https://github.com/JuliaOpt/JuMP.jl

Julia

Overview

using PyPlot

julia set
function julia(z, c; maxiter=200)
for n = 1:maxiter
if abs2(z) > 4

return n-1
end
Z =2%*Z + C
end
return maxiter

end

jset = [UInt8(julia(complex(r,i), complex(-.06,.67)))
for 1=1:-.002:-1, r=-1.5:.002:1.5];

get_cmap("RdGy")

imshow(jset, cmap="RdGy", extent=[-1.5,1.5,-1,1]

78 102

Julia
Overview

Single-Core
Performance

Single-core performance is very good, particularly for a JIT.

Test below is for a simple 1-d stencil calculation (
https:/[www.dursi.ca/post/julia-vs-chapel.html)

time Julia Chapel Numpy + Numba Numpy

run 0.0084

0.0098 s

0.017 s

0.069 s

compile||0.57 s

4 8s

0.73 s

Julia edges out Chapel... but for this test, look at Python with

Numpy and numba, only a factor of two behind.

Single-core performance has been the main focus of Julia, to the
exclusion of almost all else - multithreading is still considered

experimental.

79 /102

https://www.dursi.ca/post/julia-vs-chapel.html

Julia

Overview

Single-Core
Performance

Distributed Data

Julia has a DistributedArray module, but it has very large
overhead; better suited for merging data once at the end of long
purely local computation (processing and then stacking images,
etc)

Below is a test for running on 8 cores of a (single) node:

Julia Chapel Dask
-p=1 |p=8 |nl=1 tasks=8|nl=8 tasks=1{workers=8
177s s[264 s[**0.4 s** |145s 193 s

Lesson 14: Hierarchical approach to parallelism matters.

Need to be able to easily exploit threading, NUMA locality, cross-
node communications...

Julia has good libraries for data analysis, modest support for graph
algorithms, but all single-node; very little support for distributed
memory computing.

80 /102

Julia
Overview

Single-Core
Performance

Distributed Data

Pros/Cons

Cons

o Very little performant support for distributed memory

Pros

computing, not clear it is forthcoming

Single core fast, and on-node fairly fast

Very nice interactive use, works with Jupyter or REPL
Some excellent libraries

Very powerful platform for writing DSLs

81 /102

My Benchmark Problems

My So where does this leave my “curated” (read: wildly biased) set of
benchmark problems?

Benchmark | | |
In a dystopic world without efforts like Chapel, what would I be
Problems using?

82 /102

My
Benchmark
Problems

PDEs

Heavy reliance on execution-graph optimizers has a lot of promise
for highly dynamic simulations.

But where we are now, big Data frameworks aren't going to come
save me from the current state of the art in large-scale PDE
frameworks:

e Trilinos

e BoxLib

Amazing efforts, great tools, and the world is much better with
them that it would be without them.

But huge code bases, very challenging to start with as a user, very
difficult to make significant changes.

Based on MPI, which you may have heard I have opinions about.

83 /102

https://trilinos.org/capability-areas/meshes-geometry-and-load-balancing/
https://ccse.lbl.gov/BoxLib/

My
Benchmark
Problems

PDEs

Genomics

Large genomics today means buying or renting very large (up to
1TB) RAM machines.

I'm starting to think that this reflects a failure of our parallel
programming community.

Good news: there's lots of great work algorithmic being done in
the genomics community

e Succinct data structures
e Approximate streaming methods

But this is work done because of scarsity, and the size of projects
being tackled is being limited.

84 /102

My
Benchmark
Problems

PDEs

Genomics

There are projects like HipMer (large-scale assembler, UPC++),
but not a general solution.

GraphX for Spark could be useful, but only becomes performant
on huge problems

e “Missing Middle” for where most of the work is, and for
adoption

85 /102

http://portal.nersc.gov/project/hipmer/

My
Benchmark
Problems

PDEs
Genomics

Biostatistics

Biostatistics is in exactly the same boat.
R works really, really well for ~desktop-scale problems.

Spark (or a number of other things) work if the data size starts
large enough.

e Big international genomics projects

Death valley in between.

86 /102

My
Benchmark
Problems

PDEs
Genomics

Biostatistics

Here's where we are now - the
Broad institute in Boston put
together the Hail project:

Based on Spark

"does person X have genetic
variant Y" matrix of records

Interactively query
reductions of rows and
columns

A big problem is several

Rows Indexed
by Variant

billion entries. Future proof, but..

This is not a hard problem!

Columns Indexed by Sample
s

va| Variant
Annotations

Genotype
Aggregable
By Sample
.ﬂ gs

Genotype
Genotype
Aggregable
gs <— By Variant

sa
‘ ‘ global

Sample Annotations

Global
Annotations

Very unwieldly for individual researchers on smaller sets.

871102

https://www.hail.is/hail/overview.html#variant-dataset-vds

Chapel So what does this mean for Chapel? Where does it sit in this

landscape?

88 /102

Chapel So what does this mean for Chapel? Where does it sit in this

landscape?

Here's my opinion, after casting about for langauges and
frameworks for these sorts of problems:

e Chapel is important.
e Chapel is mature.
e Chapel is just getting started.

89 /102

Chapel iS... If the science community is going to have scientific frameworks
designed for our problems, and not bolted on to LinkGoogBook's

next big data framework, it's going to come from a project like
Important Chapel

90 /102

Chapel iS... If the science community is going to have scientific frameworks
designed for our problems, and not bolted on to LinkGoogBook's

next big data framework, it's going to come from a project like
Important Chapel

Using MPI as a framework just isn't sustainable for increasingly
complex problems.

91/102

Chapel is...

Important

If the science community is going to have scientific frameworks
designed for our problems, and not bolted on to LinkGoogBook's
next big data framework, it's going to come from a project like
Chapel.

Using MPI as a framework just isn't sustainable for increasingly
complex problems.

Big data frameworks don't have any incentive to support scale-
down, or tightly-coupled computing.

92 /102

Chapel is...

Important

If the science community is going to have scientific frameworks
designed for our problems, and not bolted on to LinkGoogBook's
next big data framework, it's going to come from a project like
Chapel.

Using MPI as a framework just isn't sustainable for increasingly
complex problems.

Big data frameworks don't have any incentive to support scale-
down, or tightly-coupled computing.

Scientists need both.

93 /102

Chapel |S {z|z € Projects Like Chapel} = Chapel

Important

Mature

94 /102

Chapel |S {z|z € Projects Like Chapel} = Chapel

There are other research projects in this area - productive,
Important performant, parallel computing languages for distributed-memory
scientific computing,

Mature But Chapel, especially now with 115, is a mature product.

95 /102

Chapel is...
Important

Mature

{z|z € Projects Like Chapel} = Chapel

There are other research projects in this area - productive,
performant, parallel computing languages for distributed-memory
scientific computing,

But Chapel, especially now with 115, is a mature product.

It is crossing the barrier of “Fast Enough” for the problems that
map naturally to it.

It has the pieces to start expanding that set of problems.

96 /102

Chapel

Important
Mature

Just Getting
Started

Has a very solid base.

e Native compilation, non-crazy runtime: scales down well.

e Good single core performance.

 Strong distributed-memory performance for rectangular
dense or sparse arrays.

e Excellent set of parallel primitives.

 Useful tools.

97 [102

Chapel

Important
Mature

Just Getting
Started

I claim that there's enough of a foundation to start building an
ecosystem around.

e eg,in or close to the Spark regime, not the R regime

But may still have to help users across their own “Crevace of
Discouragement”

e Make it so easy for a scientist to start using Chapel for their
problems it's too hard to resist.

Existing HPC stack helps with this!

e Many excellent existing tools
e That are incredibly difficult to start using

User community can contribute significantly to this.

98 /102

Chapel

Important
Mature

Just Getting
Started

Large Linear
Solves?

PETSc is a widely used library for large sparse iterative solves.

e Excellent and comprehensive library of solvers

e It is the basis of a significant number of home-made
simulation codes

e It is notoriously hard to start getting running with; nontrivial
even for experts to install.

Significant fraction of PETSc functionality is tied up in large CSR
matrices of reasonable structure partitioned by row, vectors, and
solvers built on top.

What would a Chapel API to PETSc look like?

What would a Chapel implementation of some core PETSc solvers
look like?

How about Scalapack?

99 [102

http://www.mcs.anl.gov/petsc/
http://www.netlib.org/scalapack/

Chapel

Important
Mature

Just Getting
Started

Large Linear
Solves?

Genomics?

Graph and string problems in genomics is:

e Huge: vastly larger than Astrophysics, which is where I come
from
e Badly underserved
e Competition is threaded or even serial code on a single big
memory machine
o eg, lots of very nice code using Python dicts
o And no numba or numpy equivalent to speed up these
sorts of operations

Chapel already has associative, unstructured domains - what do
some simple genomics tasks look like in Chapel?

100 / 102

Still this missing middle problem:
ape g middle p

Nothing (yet) can span the range of both R and Spark

Important e Python is making inroads
e Parts of the pieces are there:
o partitioned arrays of records
Mature e But would need other things
_ o shuffles, very dynamic resizing
Just Getting o adoption may depend too strongly on libraries; R
Started interop?

Large Linear
Solves?

Genomics?

Data Science?

101 / 102

Chapel Chapel has established a TV R enl
stronghold on the outskirtsof = | Nl
modestly hostile territory. Chel [Gememics o Ml

Physical

Important ‘ . Sea
But there are scientists in N
Mature neighboring territories who need
help.
Just Getting In almost any direction, there are
Started communities that would love
arte what Chapel offers;
Large Linear e Productivity
o e Performance
Solves! e Desktop-to-Cluster scalability.
Genomics? Future's wide open!

Data Science?

Glorious Age Of
Expansion
102 / 102

