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 General Purpose GPUs (GPGPUs) are becoming a standard in high-performance computing

‒ Most common accelerator in top supercomputers

‒ Important for both improving performance and energy efficiency

 GPUs can better exploit parallelism

‒ Many ops per instruction (e.g., 64)

‒ Many threads per Compute Engine (hundreds)

‒ Many Compute Engines per GPU (tens)

 GPUs can reduce overheads

‒ SIMD operations: 1 instruction -> many ops

‒ In-order pipeline

‒ Overlap memory latency by thread oversubscription (SMT-like)

 Bonus! You already have one in your desktop/laptop/tablet/smartphone

WHY GPGPUS?
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 AMD’s software stack for heterogeneous computing

‒ Implementation of the Heterogeneous System Architecture

‒ Interface between programming models/languages and AMD hardware

 Provides a software stack for heterogeneous computing

‒ HCC C/C++ compiler (LLVM/CLANG based)

‒ Support for APUs and Radeon discrete GPUs with HBM

‒ Runtime APIs for task queuing, signaling, etc.

 Our goal: study how to interface Chapel with ROCm

RADEON OPEN COMPUTE PLATFORM (ROCM)
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 GPU could simply rely on Chapel’s built-in 
C-interoperability functionality

‒ Chapel developers would need to write: 

‒ Kernel code in GPU-specific language (e.g., OpenCL™)

‒ C-host code which handles initialization and queues the 
kernel for execution

‒ Chapel code to call the extern C-function

 Can we make this better?

WHAT WORKS TODAY?

GPU PROGRAMMING IN CHAPEL

// OpenCL kernel file 
_global hello(void * A, …)
{

int idx= get_global_id(0);
A[idx] =0;

} 

// C host code file
void cpu_func()
{

// initiate Device, Allocate and copy A on device
// start the kernel 
err=clEnqueueNDRangeKernel(hello); 
….

} 

// Chapel file
proc run ()
{

extern proc cpu_func(int* A) : void; 
// will call the hello kernel which will be executed on GPU
cpu_func(A); 

} 
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 Simple extension for easier launching of current 
GPU code/libraries

 Removes the need for user to write C-host code

‒ Chapel developers would just write in Chapel and their 
GPU language of choice

 Can the “GPU language of choice” be Chapel itself?

PROPOSED EXTENSION FOR LAUNCHING KERNELS

// Chapel file

proc run ()
{

chpl_launch (gpu_func, gpu_file, A);

coforall loc in Locales 
{

on loc do chpl_launch (gpu_func, gpu_file, A);
} 

} 
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 What if we relied on Chapel’s hierarchical locales to handle what is on/not on GPU?

‒ Let the compiler generate the required host and kernel code

‒ Chapel developer could then just write Chapel code

HSA LOCALE

// Chapel file

proc run (){
var A : [0..100] int; 

on here.GPU do
{

// transform this loop to a kernel when    
// compiling with GPU support
forall (x, i) in zip(A, A.domain) {

x = i + 147;
}

}
}
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 Can currently handle a variety of parallel statements 
within a GPU sublocale

 OpenCL™ is generated for kernel code

 Required C-host code is generated

‒ if/else statement which checks if GPU is requested

‒ Otherwise, executes original CPU implementation

 Runtime interfaces with ROCm to launch kernels

AUTOMATIC GENERATION OF GPU LOOPS

// Chapel file

proc run() {

var A: [D] int;

var B: [D] int;

var C: [D] int;

on (Locales[0]:LocaleModel).GPU do {

// 1. Reduction

var sum = + reduce A;

// 2. for-all expression

[i in D] A(i) = i;

// 3. for-all statement 

forall i in 1..n {

A[i] = A[i] + 1164;

}

// 4. Array assignment

B = A;

// 5. Function promotion

C = square(B);

// 6. for-all with filtering

[i in D] if i % 2 == 1 then C[i] = 0;

}

}
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CHAPEL CODEBASE MODIFICATIONS
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Compiler & 
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 Both algorithms show benefit over CPU for large input sizes

‒ Running on AMD A10-8700B APU

DAXPY & VECADD
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 However, speedups do not translate over to matrix-vector multiplication

 CPU performs better because:

‒ Generated GPU code only parallelizing outer loop

‒ Each kernel thread is executing another loop

‒ GPU programmers typically merge loops, and use
grid size and workgroup size parameters to split the loop

‒ But… our current implementation cannot merge loops 
and has no way to specify GPU execution parameters

 How can we make this better? 

MATRIX-VECTOR MULTIPLICATION
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 Optimized GPU code requires specification of execution parameters for:

‒ Workgroup size

‒ Grid size

 Discussions have started on how to best add this to the
Chapel language

 Current proposal extends “with” intent clause

PROPOSED EXTENSIONS FOR EXECUTION PARAMETERS

// Chapel file

proc run ()
{

var A : [0..100] int;
on here.GPU do
{

// transform this loop to a kernel when 
// compiling with GPU support
forall a in A with (WG(64) GRID(4096)) do {

// loop body
}

}
}
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 GPUs have concepts of local memory (local data store, or LDS)

‒ Fast and shared across workgroups

‒ High-performance code needs to make use of different memories

PROPOSED EXTENSIONS – MEMORY MANAGEMENT
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// Chapel file

proc run ()
{

var lid = get_locale_id();
scratch buf : int[64]; 
// if called inside Kernel, compiler will 
// automatically allocate a space of 64*sizeof(int) 
// in the LDS.

} 
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 Presented our work at a Chapel deep dive in May 2017

 Open sourced our implementation:

‒ git clone –b chpl-hsa-master https://github.com/RadeonOpenCompute/chapel

 Begun working with Cray to look at:

‒ What parts of current implementation can move back into master branch

‒ How proposed language changes should evolve going forward (created CHIP)

CURRENT STATUS & WHAT’S NEXT?

https://github.com/RadeonOpenCompute/chapel
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 GPUs can be supported in the Chapel language today

‒ The interface may be unwieldy and require three programming languages

 By interfacing with ROCm and developing an OpenCL™ codegen compiler pass we can make this better

‒ Parallel loops can be translated to kernel language

‒ Required host code to launch kernels can be generated by the compiler

‒ Runtime can handle queuing of kernel tasks

 To fully exploit capabilities of a GPU, language extensions may be necessary

CONCLUSION
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