
MIKE CHU, ASHWIN AJI,
DANIEL LOWELL, KHALED HAMIDOUCHE

AMD RESEARCH

GPGPU Support in Chapel with the
Radeon Open Compute Platform

2 | CHIUW 2017- GPGPU SUPPORT IN CHAPEL | JUNE 2, 2017

 General Purpose GPUs (GPGPUs) are becoming a standard in high-performance computing

‒ Most common accelerator in top supercomputers

‒ Important for both improving performance and energy efficiency

 GPUs can better exploit parallelism

‒ Many ops per instruction (e.g., 64)

‒ Many threads per Compute Engine (hundreds)

‒ Many Compute Engines per GPU (tens)

 GPUs can reduce overheads

‒ SIMD operations: 1 instruction -> many ops

‒ In-order pipeline

‒ Overlap memory latency by thread oversubscription (SMT-like)

 Bonus! You already have one in your desktop/laptop/tablet/smartphone

WHY GPGPUS?

3 | CHIUW 2017- GPGPU SUPPORT IN CHAPEL | JUNE 2, 2017

 AMD’s software stack for heterogeneous computing

‒ Implementation of the Heterogeneous System Architecture

‒ Interface between programming models/languages and AMD hardware

 Provides a software stack for heterogeneous computing

‒ HCC C/C++ compiler (LLVM/CLANG based)

‒ Support for APUs and Radeon discrete GPUs with HBM

‒ Runtime APIs for task queuing, signaling, etc.

 Our goal: study how to interface Chapel with ROCm

RADEON OPEN COMPUTE PLATFORM (ROCM)

4 | CHIUW 2017- GPGPU SUPPORT IN CHAPEL | JUNE 2, 2017

 GPU could simply rely on Chapel’s built-in
C-interoperability functionality

‒ Chapel developers would need to write:

‒ Kernel code in GPU-specific language (e.g., OpenCL™)

‒ C-host code which handles initialization and queues the
kernel for execution

‒ Chapel code to call the extern C-function

 Can we make this better?

WHAT WORKS TODAY?

GPU PROGRAMMING IN CHAPEL

// OpenCL kernel file
_global hello(void * A, …)
{

int idx= get_global_id(0);
A[idx] =0;

}

// C host code file
void cpu_func()
{

// initiate Device, Allocate and copy A on device
// start the kernel
err=clEnqueueNDRangeKernel(hello);
….

}

// Chapel file
proc run ()
{

extern proc cpu_func(int* A) : void;
// will call the hello kernel which will be executed on GPU
cpu_func(A);

}

5 | CHIUW 2017- GPGPU SUPPORT IN CHAPEL | JUNE 2, 2017

 Simple extension for easier launching of current
GPU code/libraries

 Removes the need for user to write C-host code

‒ Chapel developers would just write in Chapel and their
GPU language of choice

 Can the “GPU language of choice” be Chapel itself?

PROPOSED EXTENSION FOR LAUNCHING KERNELS

// Chapel file

proc run ()
{

chpl_launch (gpu_func, gpu_file, A);

coforall loc in Locales
{

on loc do chpl_launch (gpu_func, gpu_file, A);
}

}

6 | CHIUW 2017- GPGPU SUPPORT IN CHAPEL | JUNE 2, 2017

 What if we relied on Chapel’s hierarchical locales to handle what is on/not on GPU?

‒ Let the compiler generate the required host and kernel code

‒ Chapel developer could then just write Chapel code

HSA LOCALE

// Chapel file

proc run (){
var A : [0..100] int;

on here.GPU do
{

// transform this loop to a kernel when
// compiling with GPU support
forall (x, i) in zip(A, A.domain) {

x = i + 147;
}

}
}

7 | CHIUW 2017- GPGPU SUPPORT IN CHAPEL | JUNE 2, 2017

 Can currently handle a variety of parallel statements
within a GPU sublocale

 OpenCL™ is generated for kernel code

 Required C-host code is generated

‒ if/else statement which checks if GPU is requested

‒ Otherwise, executes original CPU implementation

 Runtime interfaces with ROCm to launch kernels

AUTOMATIC GENERATION OF GPU LOOPS

// Chapel file

proc run() {

var A: [D] int;

var B: [D] int;

var C: [D] int;

on (Locales[0]:LocaleModel).GPU do {

// 1. Reduction

var sum = + reduce A;

// 2. for-all expression

[i in D] A(i) = i;

// 3. for-all statement

forall i in 1..n {

A[i] = A[i] + 1164;

}

// 4. Array assignment

B = A;

// 5. Function promotion

C = square(B);

// 6. for-all with filtering

[i in D] if i % 2 == 1 then C[i] = 0;

}

}

8 | CHIUW 2017- GPGPU SUPPORT IN CHAPEL | JUNE 2, 2017

CHAPEL CODEBASE MODIFICATIONS

Chapel
Source Code

Standard
Modules

(in Chapel)

Chapel
Compiler

Chapel
Executable

Generated C
Code

Standard C
Compiler &

Linker

Chapel-to-C
Compiler

Internal Modules
(in Chapel)

Runtime Support Library
(in C)

HSA Locale Model ROCm

Generated
OpenCL Code

OpenCL
Compiler

9 | CHIUW 2017- GPGPU SUPPORT IN CHAPEL | JUNE 2, 2017

 Both algorithms show benefit over CPU for large input sizes

‒ Running on AMD A10-8700B APU

DAXPY & VECADD

0.0

0.5

1.0

1.5

2.0

2.5

10K 100K 1M 10M 100M

Sp
e

e
d

u
p

 o
ve

r
C

P
U

Input Size

DAXPY

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

10K 100K 1M 10M 100M

Sp
p

e
d

u
p

 o
ve

r
C

P
U

Input Size

VecAdd

10 | CHIUW 2017- GPGPU SUPPORT IN CHAPEL | JUNE 2, 2017

 However, speedups do not translate over to matrix-vector multiplication

 CPU performs better because:

‒ Generated GPU code only parallelizing outer loop

‒ Each kernel thread is executing another loop

‒ GPU programmers typically merge loops, and use
grid size and workgroup size parameters to split the loop

‒ But… our current implementation cannot merge loops
and has no way to specify GPU execution parameters

 How can we make this better?

MATRIX-VECTOR MULTIPLICATION

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1K 2K 10K 20K 30K

Sp
e

e
d

u
p

 o
ve

r
C

P
U

Input Size

MatVec

11 | CHIUW 2017- GPGPU SUPPORT IN CHAPEL | JUNE 2, 2017

 Optimized GPU code requires specification of execution parameters for:

‒ Workgroup size

‒ Grid size

 Discussions have started on how to best add this to the
Chapel language

 Current proposal extends “with” intent clause

PROPOSED EXTENSIONS FOR EXECUTION PARAMETERS

// Chapel file

proc run ()
{

var A : [0..100] int;
on here.GPU do
{

// transform this loop to a kernel when
// compiling with GPU support
forall a in A with (WG(64) GRID(4096)) do {

// loop body
}

}
}

12 | CHIUW 2017- GPGPU SUPPORT IN CHAPEL | JUNE 2, 2017

 GPUs have concepts of local memory (local data store, or LDS)

‒ Fast and shared across workgroups

‒ High-performance code needs to make use of different memories

PROPOSED EXTENSIONS – MEMORY MANAGEMENT

Compute Device

Work Group

Local Memory

Private
Memory

Work
Item

Private
Memory

Work
Item

Host

Global Memory & Constant Memory

Host Memory

Work Group

Local Memory

Private
Memory

Work
Item

Private
Memory

Work
Item

// Chapel file

proc run ()
{

var lid = get_locale_id();
scratch buf : int[64];
// if called inside Kernel, compiler will
// automatically allocate a space of 64*sizeof(int)
// in the LDS.

}

13 | CHIUW 2017- GPGPU SUPPORT IN CHAPEL | JUNE 2, 2017

 Presented our work at a Chapel deep dive in May 2017

 Open sourced our implementation:

‒ git clone –b chpl-hsa-master https://github.com/RadeonOpenCompute/chapel

 Begun working with Cray to look at:

‒ What parts of current implementation can move back into master branch

‒ How proposed language changes should evolve going forward (created CHIP)

CURRENT STATUS & WHAT’S NEXT?

https://github.com/RadeonOpenCompute/chapel

14 | CHIUW 2017- GPGPU SUPPORT IN CHAPEL | JUNE 2, 2017

 GPUs can be supported in the Chapel language today

‒ The interface may be unwieldy and require three programming languages

 By interfacing with ROCm and developing an OpenCL™ codegen compiler pass we can make this better

‒ Parallel loops can be translated to kernel language

‒ Required host code to launch kernels can be generated by the compiler

‒ Runtime can handle queuing of kernel tasks

 To fully exploit capabilities of a GPU, language extensions may be necessary

CONCLUSION

16 | CHIUW 2017- GPGPU SUPPORT IN CHAPEL | JUNE 2, 2017

DISCLAIMER & ATTRIBUTION

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new
model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise
this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS
INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR
OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2017 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names
are for informational purposes only and may be trademarks of their respective owners.

