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Portability
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● End users: Problem solved.
● Chapel is one of many options for portable parallel programming

● Some are better than others J

● Middleware now bears the responsibility
● Chapel (and other languages and libraries) use internal APIs to 

manage portability issues
● Fewer people need to be experts
● But still need to be an expert in a number of vendor options
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OFI libfabric
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● OpenFabrics Interfaces Working Group (OFIWG) was 
formed in August 2013, chaired by Intel and Cray
● Open working group and open source development

● Diverse set of experts from industry, government and academia
● Input collected from HPC middleware developers
● Enable best performance on any vendor hardware

Charter: Develop an extensible, open source framework and interface 
aligned with upper-layer protocols and applications needs for high-

performance fabric services.

Result: libfabric
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Outline
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● Brief overview of libfabric
● Chapel ofi communication layer
● Lessons learned
● Status and conclusions
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libfabric in a nutshell
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libfabric in real life
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The libfabric API
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● Control services
● Discovery of available providers and services

● Communication services
● Connection and address management including address vectors

● Data transfer services
● One-sided (RMA)
● Two-sided (send/recv and tagged send/recv)
● Atomic memory operations
● Triggered operations



C O M P U T E      |      S T O R E      |      A N A L Y Z E

The libfabric API (cont.)
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● Completion services
● Completion queues (CQs) and counters for requested operations
● Upon success…

● indicates that source buffer can be reused (transmit)
● returns result of data transfer operations (receive)

● Upon failure…
● returns error code
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Other libfabric features
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● Connected and unconnected endpoint types
● Thread safety options
● Data and control progress models
● Memory registration
● Extensible interface
● …
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Unique features of libfabric
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● Dynamic provider selection
● Can use more than one provider in a single program

● Providers are not required to implement the entire API
● May choose to omit functionality not available in hardware
● Client and provider negotiate

● API is portable, but may still want provider-specific code
● Provider-specific extensions

● All data transfer calls are non-blocking
● Must use completion queues or counters (in most cases)
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Outline
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● Brief overview of libfabric
● Chapel ofi communication layer
● Lessons learned
● Status and conclusions
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Chapel’s communication layer
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● Compiler’s interface to low level data transfer
● Initialization, global coordination and tear down
● Data transfer operations (put and gets)
● Active message interface (remote on statements)

● Other stuff
● Progression
● Interactions with the rest of the runtime
● Comm layer diagnostics
● Comm layer callbacks (e.g., for chplvis)
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Comm layer design (sort of)
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Progression
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● Chapel progression is about servicing active messages
● Execute on statement

● Network progression is about resource management
● Must free up hardware resources consumed by in flight messages 

● Comm layer must do both
● Does not use libfabric auto-progress
● All about checking CQs
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Progress loop (sort of)
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Progress loop (sort of)
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Progress loop (sort of)
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Progress loop (sort of)
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Progress loop (sort of)
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Active message implementation
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● Two-sided operation (send/recv)
● Initiating locale sends an message to the remote endpoint
● Remote locale posts one or more multi-recv buffers on the endpoint

● Active message processing
● Query AM rx CQ
● Run or launch on statement body
● Ack using address in the active message (put)
● Provider returns a special CQ event when the buffer is consumed
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Active message example
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Active message example
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Active message example
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Active message example
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Active message example
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Active message example
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Active message example
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Active message example
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Active message example
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Outline
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● Brief overview of libfabric
● Chapel ofi communication layer
● Lessons learned
● Status and conclusions



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Lessons learned: libfabric
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● Writing portable code is not always easy
● If feature X is not available, must implement using feature Y

● Start up is still a pain
● I cheated and used PMI (for now)

● Want to know if an operation is supported in hardware
● e.g., I’d rather do the atomic with the module code if it’s not supported

● Manual progress as defined is cumbersome
● Must progress individual completion structures

● Can we utilize the auto progress thread?
● e.g., small function to be invoked by the internal progress thread



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Lessons learned: Chapel
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● Make comm layer a dynamic decision
● One (or more) fewer compile time constraints

● Refactor strided operations so as to reuse logic
● Currently logic is replicated in every comm layer

● Make network atomics part of comm layer interface
● Unsupported atomics should be implemented by the module

● Enable use of hardware support for collectives
● No way to use triggered operations or other hardware support
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Outline
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● Brief overview of libfabric
● Chapel ofi communication layer
● Lessons learned
● Status and conclusions
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Status
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● Basic initialization and teardown in place

● Comm diagnostics and callbacks in place

● External prototypes
● Put/get
● Progress loop (partially in place)
● AM infrastructure (partially in place)



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Conclusions
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● OFI libfabric promises portability and performance
● Still might need per-platform tuning (provider constraints, last 10%)
● Vendors must adopt it (outlook good)

● Chapel comm layer should use it J
● More complicated in some ways (start up, multiple implementations)
● Less complicated in other ways (API designed for middleware)
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Legal Disclaimer
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For more info
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● OFIWG libfabric: https://ofiwg.github.io/libfabric/
● General overview, man pages and other documentation

● ofiwg repo: https://github.com/ofiwg/libfabric
● Main upstream project (releases cut from here)

● ofi-cray repo: https://github.com/ofi-cray/libfabric-cray
● Cray XC development and GNI provider-specific wikis


