
C O M P U T E | S T O R E | A N A L Y Z E

An OFI Communication Layer for
the Chapel Runtime

Sung-Eun Choi
Principal Engineer

Cray R&D

Chapel Implementers and Users Workshop
2 June 2017

C O M P U T E | S T O R E | A N A L Y Z E

Portability

Copyright 2017 Cray Inc. 2

● End users: Problem solved.
● Chapel is one of many options for portable parallel programming

● Some are better than others J

● Middleware now bears the responsibility
● Chapel (and other languages and libraries) use internal APIs to

manage portability issues
● Fewer people need to be experts
● But still need to be an expert in a number of vendor options

C O M P U T E | S T O R E | A N A L Y Z E

OFI libfabric

Copyright 2017 Cray Inc. 3

● OpenFabrics Interfaces Working Group (OFIWG) was
formed in August 2013, chaired by Intel and Cray
● Open working group and open source development

● Diverse set of experts from industry, government and academia
● Input collected from HPC middleware developers
● Enable best performance on any vendor hardware

Charter: Develop an extensible, open source framework and interface
aligned with upper-layer protocols and applications needs for high-

performance fabric services.

Result: libfabric

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2017 Cray Inc. 4

● Brief overview of libfabric
● Chapel ofi communication layer
● Lessons learned
● Status and conclusions

C O M P U T E | S T O R E | A N A L Y Z E

libfabric in a nutshell

Copyright 2017 Cray Inc. 55

Fabric	Interfaces
Control

Discovery

Communication

Address	
Vectors

Connection	
Management

Data	Transfer

Message

Tagged	
Message

RMA

Atomics Tr
ig
ge
re
d	

O
pe

ra
tio

ns

Completion

Counters

Event	
Queues

Fabric	
Provider

Fabric	
Provider

Fabric	
Provider …

Framework	defines	portable	
interfaces	for	HPC	middleware

Vendors	implement	providers to	
map	these	interfaces	to	their	fabric

C O M P U T E | S T O R E | A N A L Y Z E

libfabric in real life

Copyright 2017 Cray Inc. 66

libfabric API

socketsbgq gni netdir psm/
psm2

usnic verbs …

GASNet/
Berkeley	
UPC

GNU/
Clang	
UPC

udp

…Cray
PGAS

Chapel Charm++ HPX

C O M P U T E | S T O R E | A N A L Y Z E

The libfabric API

Copyright 2017 Cray Inc. 7

● Control services
● Discovery of available providers and services

● Communication services
● Connection and address management including address vectors

● Data transfer services
● One-sided (RMA)
● Two-sided (send/recv and tagged send/recv)
● Atomic memory operations
● Triggered operations

C O M P U T E | S T O R E | A N A L Y Z E

The libfabric API (cont.)

Copyright 2017 Cray Inc. 8

● Completion services
● Completion queues (CQs) and counters for requested operations
● Upon success…

● indicates that source buffer can be reused (transmit)
● returns result of data transfer operations (receive)

● Upon failure…
● returns error code

C O M P U T E | S T O R E | A N A L Y Z E

Other libfabric features

Copyright 2017 Cray Inc. 9

● Connected and unconnected endpoint types
● Thread safety options
● Data and control progress models
● Memory registration
● Extensible interface
● …

C O M P U T E | S T O R E | A N A L Y Z E

Unique features of libfabric

Copyright 2017 Cray Inc. 10

● Dynamic provider selection
● Can use more than one provider in a single program

● Providers are not required to implement the entire API
● May choose to omit functionality not available in hardware
● Client and provider negotiate

● API is portable, but may still want provider-specific code
● Provider-specific extensions

● All data transfer calls are non-blocking
● Must use completion queues or counters (in most cases)

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2017 Cray Inc. 11

● Brief overview of libfabric
● Chapel ofi communication layer
● Lessons learned
● Status and conclusions

C O M P U T E | S T O R E | A N A L Y Z E

Chapel’s communication layer

Copyright 2017 Cray Inc. 12

● Compiler’s interface to low level data transfer
● Initialization, global coordination and tear down
● Data transfer operations (put and gets)
● Active message interface (remote on statements)

● Other stuff
● Progression
● Interactions with the rest of the runtime
● Comm layer diagnostics
● Comm layer callbacks (e.g., for chplvis)

C O M P U T E | S T O R E | A N A L Y Z E

Comm layer design (sort of)

Copyright 2017 Cray Inc. 13

tx CQ

rx CQ
EP

tx CQ

rx CQ
EP

tx CQ

rx CQ
EP

…
AM tx CQ

AM rx CQ
EP

Each	pthread
has	its	own	
endpoint

Each	endpoint	
has	transmit	and	

receive	CQs

The	progress	
thread	manages	
active	messages

C O M P U T E | S T O R E | A N A L Y Z E

Progression

Copyright 2017 Cray Inc. 14

● Chapel progression is about servicing active messages
● Execute on statement

● Network progression is about resource management
● Must free up hardware resources consumed by in flight messages

● Comm layer must do both
● Does not use libfabric auto-progress
● All about checking CQs

C O M P U T E | S T O R E | A N A L Y Z E

Progress loop (sort of)

Copyright 2017 Cray Inc. 15

tx CQ

rx CQ
EP

tx CQ

rx CQ
EP

tx CQ

rx CQ
EP

…
AM tx CQ

AM rx CQ
EP

Query	tx CQs	
and	restart	tasks

C O M P U T E | S T O R E | A N A L Y Z E

Progress loop (sort of)

Copyright 2017 Cray Inc. 16

tx CQ

rx CQ
EP

tx CQ

rx CQ
EP

tx CQ

rx CQ
EP

…
AM tx CQ

AM rx CQ
EP

Query	tx CQs	
and	restart	tasks

Query	rx CQs	
(for	remote	
progress)

C O M P U T E | S T O R E | A N A L Y Z E

Progress loop (sort of)

Copyright 2017 Cray Inc. 17

tx CQ

rx CQ
EP

tx CQ

rx CQ
EP

tx CQ

rx CQ
EP

…
AM tx CQ

AM rx CQ
EP

Query	tx CQs	
and	restart	tasks

Query	rx CQs	
(for	remote	
progress)

Query	AM	tx CQ

C O M P U T E | S T O R E | A N A L Y Z E

Progress loop (sort of)

Copyright 2017 Cray Inc. 18

tx CQ

rx CQ
EP

tx CQ

rx CQ
EP

tx CQ

rx CQ
EP

…
AM tx CQ

AM rx CQ
EP

Query	tx CQs	
and	restart	tasks

Query	rx CQs	
(for	remote	
progress)

Query	AM	tx CQ

Query	AM	rx
CQ,	launch	AMs,	

send	acks

C O M P U T E | S T O R E | A N A L Y Z E

Progress loop (sort of)

Copyright 2017 Cray Inc. 19

tx CQ

rx CQ
EP

tx CQ

rx CQ
EP

tx CQ

rx CQ
EP

…
AM tx CQ

AM rx CQ
EP

Query	tx CQs	
and	restart	tasks

Query	rx CQs	
(for	remote	
progress)

Query	AM	tx CQ

Query	AM	rx
CQ,	launch	AMs,	

send	acks

C O M P U T E | S T O R E | A N A L Y Z E

Active message implementation

Copyright 2017 Cray Inc. 20

● Two-sided operation (send/recv)
● Initiating locale sends an message to the remote endpoint
● Remote locale posts one or more multi-recv buffers on the endpoint

● Active message processing
● Query AM rx CQ
● Run or launch on statement body
● Ack using address in the active message (put)
● Provider returns a special CQ event when the buffer is consumed

C O M P U T E | S T O R E | A N A L Y Z E

Active message example

Copyright 2017 Cray Inc. 21

AM

EP

multirecv buffer

AM rx CQ

EP

AM EP

C O M P U T E | S T O R E | A N A L Y Z E

Active message example

Copyright 2017 Cray Inc. 22

AM

EP

multirecv buffer

AM rx CQ

EP

AM EP

AM	received

CQ	event	
generated

C O M P U T E | S T O R E | A N A L Y Z E

Active message example

Copyright 2017 Cray Inc. 23

AM

EP

multirecv buffer

AM rx CQ

EP

AM EP

C O M P U T E | S T O R E | A N A L Y Z E

Active message example

Copyright 2017 Cray Inc. 24

AM

EP

multirecv buffer

AM rx CQ

EP

AM EP

AM	received

CQ	event	
generated

C O M P U T E | S T O R E | A N A L Y Z E

Active message example

Copyright 2017 Cray Inc. 25

AM

EP

multirecv buffer

AM rx CQ

EP

AM EP

Run	or	launch	
on	statement	

bodies

C O M P U T E | S T O R E | A N A L Y Z E

Active message example

Copyright 2017 Cray Inc. 26

AM

EP

multirecv buffer

AM rx CQ

EP

AM EP

AM	acks

C O M P U T E | S T O R E | A N A L Y Z E

Active message example

Copyright 2017 Cray Inc. 27

AM

EP

multirecv buffer

AM rx CQ

EP

AM EP

More	AMs	
received

C O M P U T E | S T O R E | A N A L Y Z E

Active message example

Copyright 2017 Cray Inc. 28

AM

EP

multirecv buffer

AM rx CQ

EP

AM EP

End-of-buffer	CQ	
event	generated

C O M P U T E | S T O R E | A N A L Y Z E

Active message example

Copyright 2017 Cray Inc. 29

AM

EP

multirecv buffer

AM rx CQ

EP

AM EP

Re-post	buffer

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2017 Cray Inc. 30

● Brief overview of libfabric
● Chapel ofi communication layer
● Lessons learned
● Status and conclusions

C O M P U T E | S T O R E | A N A L Y Z E

Lessons learned: libfabric

Copyright 2017 Cray Inc. 31

● Writing portable code is not always easy
● If feature X is not available, must implement using feature Y

● Start up is still a pain
● I cheated and used PMI (for now)

● Want to know if an operation is supported in hardware
● e.g., I’d rather do the atomic with the module code if it’s not supported

● Manual progress as defined is cumbersome
● Must progress individual completion structures

● Can we utilize the auto progress thread?
● e.g., small function to be invoked by the internal progress thread

C O M P U T E | S T O R E | A N A L Y Z E

Lessons learned: Chapel

Copyright 2017 Cray Inc. 32

● Make comm layer a dynamic decision
● One (or more) fewer compile time constraints

● Refactor strided operations so as to reuse logic
● Currently logic is replicated in every comm layer

● Make network atomics part of comm layer interface
● Unsupported atomics should be implemented by the module

● Enable use of hardware support for collectives
● No way to use triggered operations or other hardware support

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2017 Cray Inc. 33

● Brief overview of libfabric
● Chapel ofi communication layer
● Lessons learned
● Status and conclusions

C O M P U T E | S T O R E | A N A L Y Z E

Status

Copyright 2017 Cray Inc. 34

● Basic initialization and teardown in place

● Comm diagnostics and callbacks in place

● External prototypes
● Put/get
● Progress loop (partially in place)
● AM infrastructure (partially in place)

C O M P U T E | S T O R E | A N A L Y Z E

Conclusions

Copyright 2017 Cray Inc. 35

● OFI libfabric promises portability and performance
● Still might need per-platform tuning (provider constraints, last 10%)
● Vendors must adopt it (outlook good)

● Chapel comm layer should use it J
● More complicated in some ways (start up, multiple implementations)
● Less complicated in other ways (API designed for middleware)

C O M P U T E | S T O R E | A N A L Y Z E

Legal Disclaimer

Copyright 2017 Cray Inc. 36

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any
intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without
notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product
to deviate from published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release.
Customers and other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing
and any use of Cray Inc. internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate
performance of Cray Inc. products as measured by those tests. Any difference in system hardware or software design or
configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design,
SONEXION, and URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER
CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system family
marks, and associated model number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The
registered trademark LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of
the mark on a worldwide basis. Other trademarks used in this document are the property of their respective owners.

C O M P U T E | S T O R E | A N A L Y Z E

For more info

Copyright 2017 Cray Inc. 37

● OFIWG libfabric: https://ofiwg.github.io/libfabric/
● General overview, man pages and other documentation

● ofiwg repo: https://github.com/ofiwg/libfabric
● Main upstream project (releases cut from here)

● ofi-cray repo: https://github.com/ofi-cray/libfabric-cray
● Cray XC development and GNI provider-specific wikis

