
An OFI libfabric Communication Layer for the

Chapel Runtime

Sung-Eun Choi
Cray Inc.

March 20, 2017

The Chapel communication layer is a runtime component for exchanging
data between locales typically on different physical nodes of a system. The in-
terfaces it exports are used by the compiler and runtime to bootstrap execution
and perform data transfer. Currently, the most commonly used Chapel commu-
nication layer is GASNet, a portable networking interface designed specifically
for PGAS languages [1]. GASNet is easy to use and invaluable for portability via
it’s conduit implementations, and it can deliver good performance. That said,
for low-latency networks like the Aries interconnect in Cray XC systemsTM, the
GASNet communication layer often performs significantly worse than Cray’s
native communication layer written directly to uGNI (User-level Generic Net-
work Interface) [2], the low-level Aries API. There are a number of reasons for
this, some of which may just be a matter of implementation choices, but one
notable problem is that GASNet’s API does not include a way to take advantage
of hardware specific features such as Aries atomic memory operations.

So what’s a language runtime implementer to do? Forego performance for
portability on high end systems or hope that the vendor will invest in a native
communication layer? Perhaps there’s another way.

The OpenFabrics Interfaces (OFI) project is a community effort aimed at
creating high performance, hardware-agnostic networking APIs. The first prod-
uct of the OFI working group is the user-level networking API called libfab-
ric. Libfabric was designed by a broad group of experts from across industry,
academia, and government with the goal of providing a standardized inter-
face for HPC middleware clients such as PGAS language runtime libraries [3].
The result is an open source implementation (hosted on GitHub) targeting up-
wards of seven different networking fabrics via pluggable implementations called
providers. Because libfabric was designed from the start with performance in
mind, the interfaces are quite rich and also include an extension mechanism
for exposing for provider-specific functionality. The libfabric implementation is
relatively new, but it holds great promise for a happy middle ground between
that of an easy-to-use, purpose-specific library like GASNet and a extremely
low-level, vendor-specific library like uGNI.

In this talk, I will describe the design and implementation of an OFI libfabric

1



communication layer for the Chapel runtime. I will start with an overview
of OFI libfabric, followed by an overview of the Chapel communication layer
functions and how they are mapped to the libfabric API. I will conclude with
some of the general caveats and lessons learned from using libfabric as well as
implementing a Chapel communication layer.

References

[1] D. Bonachea, “GASNet Specification Version 1.1,” Tech. Rep. UCB/CSD-
02-1207, University of California Berkeley, 2002.

[2] “Chapel Performance Graphs for 16 node XC.” http://chapel.

sourceforge.net/perf/16-node-xc/. Accessed: 2017.

[3] P. Grun, S. Hefty, S. Sur, D. Goodell, R. Russell, H. Pritchard, and
J. Squyres, “A Brief Introduction to the OpenFabrics Interfaces–A New
Network API for Maximizing High Performance Application Efficiency,” in
Proceedings of the 23rd Annual Symposium on High-Performance Intercon-
nects, August 2015.

2


