
C O M P U T E | S T O R E | A N A L Y Z E

Entering the Fray
Chapel’s Computer Language Benchmarks Game Entry

Brad Chamberlain, Ben Albrecht, Lydia Duncan, Ben Harshbarger,
Elliot Ronaghan, Preston Sahabu, Mike Noakes, and Laura Delaney

CHIUW 2017, Orlando, FL
June 2, 2017

C O M P U T E | S T O R E | A N A L Y Z E

This presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

Safe Harbor Statement

Copyright 2017 Cray Inc.
2

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: What it is

Copyright 2017 Cray Inc.
3

● A suite of 13 “toy” benchmarks
● exercise key features like…

…memory management
…tasking and synchronization
…arbitrary-precision math
…vectorization
…strings and regular expressions

● single-node
● serial, vectorizable, or multicore parallel

C O M P U T E | S T O R E | A N A L Y Z E

But wait…

Copyright 2017 Cray Inc.
4

● This is IPDPS / HPC / Chapel…
…do we really care about a single-node benchmark suite?

● Yes:
● success at the largest scales depends on good scalar performance
● despite its focus on large-scale systems, Chapel is also intended for

productive programming on workstations
● several CLBG features match early user wishes

● memory management
● tasking and lightweight synchronization
● arbitrary precision arithmetic
● strings and regular expressions
● vectorization
● …

● who doesn’t enjoy a good game?

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: What it is

Copyright 2017 Cray Inc.
5

● A suite of 13 “toy” benchmarks
● exercise key features like…

…memory management
…tasking and synchronization
…arbitrary-precision math
…vectorization
…strings and regular expressions

● single-node
● serial, vectorizable, or multicore parallel

● Imagine a 3D ragged matrix:
● with 13 benchmarks

x ~28 languages
x as many impls as are interesting

● each entry contains:
● source code
● performance statistics
● “code size”

C O M P U T E | S T O R E | A N A L Y Z E

Timeline

Copyright 2017 Cray Inc.
6

Feb 2016: Inquired about adding Chapel to the contest
Apr 2016: Chapel entries began to be accepted

Our approach:
● Submit codes that strive for performance without sacrificing elegance
● Submit codes that would serve as good models for learning the benchmark

May 2016: First program accepted
Sept 2016: Last program accepted, Chapel added to the site

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: What it is

Copyright 2017 Cray Inc.
7

● A suite of 13 “toy” benchmarks
● exercise key features like…

…memory management
…tasking and synchronization
…arbitrary-precision math
…vectorization
…strings and regular expressions

● single-node
● serial, vectorizable, or multicore parallel

● Imagine a 3D ragged matrix:
● with 13 benchmarks

x ~28 languages
x as many impls as are interesting

● each entry contains:
● source code
● performance information
● “code size”

Chapel added to site in
September 2016

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: What it is

Copyright 2017 Cray Inc.
8

● A suite of 13 “toy” benchmarks
● exercise key features like…

…memory management
…tasking and synchronization
…arbitrary-precision math
…vectorization
…strings and regular expressions

● single-node
● serial, vectorizable, or multicore parallel

● Imagine a 3D ragged matrix:
● with 13 benchmarks

x ~28 languages
x as many impls as are interesting

● each entry contains:
● source code
● performance information
● “code size”

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Fast-faster-fastest graph (Sep 2016)

Copyright 2017 Cray Inc.
9

Site summary: relative performance (sorted by geometric mean)

better

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Fast-faster-fastest graph (May 2017)

Copyright 2017 Cray Inc.
13

Site summary: relative performance (sorted by geometric mean)

better

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Viewing per-benchmark results

Copyright 2017 Cray Inc.
14

Can sort results by execution time, code size, memory or CPU use:

gz == code size metric
strip comments and extra

whitespace, then gzip

C O M P U T E | S T O R E | A N A L Y Z E

Timeline

Copyright 2017 Cray Inc.
15

Feb 2016: Inquired about adding Chapel to the contest
Apr 2016: Chapel entries began to be accepted

Our approach:
● Submit codes that strive for performance without sacrificing elegance
● Submit codes that would serve as good models for learning the benchmark

May 2016: First program accepted
Sept 2016: Last program accepted, Chapel added to the site
Oct 2016: Upgraded to 1.14

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Improvements due to 1.14

Copyright 2016 Cray Inc.
16

1.14 improved many benchmarks with no code changes:
● thread-ring: benefitted from qthread sync variable improvements

● climbed ~16 slots ⇒ 5th fastest after Haskell, Go, F#, Scala
● 1st most compact code followed by Ruby, Racket, Erlang, Ocaml, Python

● specifically, Chapel 1.14…
…extended Qthreads sync vars to handle all Chapel operations
…mapped Chapel sync vars directly to Qthreads sync vars (for simple types)

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Improvements due to 1.14

Copyright 2016 Cray Inc.
17

1.14 improved many benchmarks with no code changes:
● fannkuch-redux: benefitted from optimized array accesses

● climbed from ~#22 to #6 in performance
● ~1.5–2x more compact than most other top entries

● specifically, Chapel 1.14…
…optimized an unnecessary multiply out of typical array accesses

● this helped several other performance benchmarks as well
● Chapel 1.15 made this optimization more precise and robust

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Improvements due to 1.14

Copyright 2016 Cray Inc.
18

1.14 improved many benchmarks with no code changes:
● chameneos-redux: benefitted from tasking improvements

● climbed from ~#11 to #8 in terms of performance
● binary-trees: benefitted from jemalloc improvements

● climbed ~2 performance slots as a result
● still ~5x off from top entries which use explicit memory pools

● n-body: saw marginal improvements, but climbed ~17 slots
● regex-dna, revcomp: saw marginal improvements, climbed ~3 slots
● meteor: saw marginal improvements, climbed ~1 slot

C O M P U T E | S T O R E | A N A L Y Z E

Chapel CLBG Standings (Oct 17th)

Copyright 2017 Cray Inc.
19

● 8 / 13 programs in top-20 fastest:
● one #1 fastest:

pidigits

● 2 others in the top-5 fastest:
meteor-contest
thread-ring

● 2 others in the top-10 fastest:
chameneos-redux
fannkuch-redux

● 3 others in the top-20 fastest:
binary-trees
n-body
spectral-norm

● 8 / 13 programs in top-20 smallest:
● two #1 smallest:

n-body
thread-ring

● 2 others in the top-5 smallest:
pidigits
spectral-norm

● 4 others in the top-20 smallest:
chameneos-redux
mandelbrot
meteor-contest
regex-dna

C O M P U T E | S T O R E | A N A L Y Z E

Chapel CLBG Standings (Apr 20th)

Copyright 2017 Cray Inc.
20

● 12 /13 programs in top-20 fastest:
● one #1 fastest:

pidigits

● 3 others in the top-5 fastest:
chameneos-redux
meteor-contest
thread-ring

● 3 others in the top-10 fastest:
fannkuch-redux
fasta
mandelbrot

● 5 others in the top-20 fastest:
binary-trees
k-nucleotide
n-body
regex-redux
spectral-norm

● 8 / 13 programs in top-20 smallest:
● two #1 smallest:

n-body
thread-ring

● 2 others in the top-5 smallest:
pidigits
spectral-norm

● 1 other in the top-10 smallest:
regex-redux

● 3 others in the top-20 smallest:
chameneos-redux
mandelbrot
meteor-contest

C O M P U T E | S T O R E | A N A L Y Z E

Timeline

Copyright 2017 Cray Inc.
21

Feb 2016: Inquired about adding Chapel to the contest
Apr 2016: Chapel entries began to be accepted

Our approach:
● Submit codes that strive for performance without sacrificing elegance
● Submit codes that would serve as good models for learning the benchmark

May 2016: First program accepted
Sept 2016: Last program accepted, Chapel added to the site
Oct 2016: Upgraded to 1.14
ongoing: Improved programs themselves in spare time
Apr 2017: Upgraded to 1.15

C O M P U T E | S T O R E | A N A L Y Z E

What’s new with the CLBG since then?

Copyright 2017 Cray Inc.
22

● Two programs changed their official definitions:
binary-trees:

● improved checksum to avoid false positives at 1/2, 1/4, 1/8 the memory
● eliminated per-node data field
● changed what trees are allocated and freed, slightly
● increased the problem size

regex:
● changed the regular expression used
● renamed the test to regex-redux
● several versions are not currently passing due to these changes

● our current standings may be due in part to this

C O M P U T E | S T O R E | A N A L Y Z E

What’s new with the Chapel CLBG entries?

Copyright 2017 Cray Inc.
23

● We’ve submitted some new versions:
binary-trees: used an initializer rather than a factory type method

factory type method

initializer

C O M P U T E | S T O R E | A N A L Y Z E

What’s new with the Chapel CLBG entries?

Copyright 2017 Cray Inc.
24

● We’ve submitted some new versions:
binary-trees: used an initializer rather than a factory type method
chameneos-redux: increased parallelism and tuned a spin-wait

original version

new version

C O M P U T E | S T O R E | A N A L Y Z E

What’s new with the Chapel CLBG entries?

Copyright 2017 Cray Inc.
25

● We’ve submitted some new versions:
binary-trees: used an initializer rather than a factory type method
chameneos-redux: increased parallelism and tuned a spin-wait
fasta: implemented a parallel version and tuned for clarity and speed

● also, changed some ‘var’ declarations due to const-checking improvements

C O M P U T E | S T O R E | A N A L Y Z E

What’s new with the Chapel CLBG entries?

Copyright 2017 Cray Inc.
26

● We’ve submitted some new versions:
binary-trees: used an initializer rather than a factory type method
chameneos-redux: increased parallelism and tuned a spin-wait
fasta: implemented a parallel version and tuned for clarity and speed

● also, changed some ‘var’ declarations due to const-checking improvements
mandelbrot: accelerated by hoisting values and using tuples of values

original version

new version

C O M P U T E | S T O R E | A N A L Y Z E

What’s new with the Chapel CLBG entries?

Copyright 2017 Cray Inc.
27

● We’ve submitted some new versions:
binary-trees: used an initializer rather than a factory type method
chameneos-redux: increased parallelism and tuned a spin-wait
fasta: implemented a parallel version and tuned for clarity and speed

● also, changed some ‘var’ declarations due to const-checking improvements
mandelbrot: accelerated by hoisting values and using tuples of values
meteor-fast: fixed a race condition caused by array memory changes

● textbook example of an array being used by a ’begin’ task
pidigits: submitted a version that uses ‘bigint’s

● currently the #1 fastest version, and also quite elegant

● Note that some of these changes followed the 1.15 release
● As such, not all are found in examples/benchmarks/shootout/ for 1.15

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Comparing Pairs of Languages

Copyright 2017 Cray Inc.
28

Can also compare languages pair-wise (for performance only):

Happily, all the data is open!

C O M P U T E | S T O R E | A N A L Y Z E

CLBG Scatter Plots

Copyright 2017 Cray Inc.
29

● The following graphs use the CLBG’s normalized ratios
● Graphs were created using April 20th data (current at time of creation)

● things have continued to be in flux again since that date…

C O M P U T E | S T O R E | A N A L Y Z E

Chapel entries (Apr 2017)

Copyright 2017 Cray Inc.
31

C O M P U T E | S T O R E | A N A L Y Z E

Chapel entries (Apr 2017, noting outliers)

Copyright 2017 Cray Inc.
32

regex-redux

binary-trees

k-nucleotide

meteor-contest

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. 9 other languages

Copyright 2017 Cray Inc.
33

C C++ Fortran

Go Rust Swift

PythonScalaJava

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. 9 other languages (zoomed out)

Copyright 2017 Cray Inc.
34

C C++ Fortran

Go Rust Swift

PythonScalaJava

C O M P U T E | S T O R E | A N A L Y Z E

Cross-Language Summary

Copyright 2017 Cray Inc.
35

C O M P U T E | S T O R E | A N A L Y Z E

Cross-Language Summary (no Python)

Copyright 2017 Cray Inc.
36

C O M P U T E | S T O R E | A N A L Y Z E

Chapel CLBG Standings as of Apr 20th

Copyright 2017 Cray Inc.
37

● 12 /13 programs in top-20 fastest:
● one #1 fastest:

pidigits

● 3 others in the top-5 fastest:
chameneos-redux
meteor-contest
thread-ring

● 3 others in the top-10 fastest:
fannkuch-redux
fasta
mandelbrot

● 5 others in the top-20 fastest:
binary-trees
k-nucleotide
n-body
regex-redux
spectral-norm

● 8 / 13 programs in top-20 smallest:
● two #1 smallest:

n-body
thread-ring

● 2 others in the top-5 smallest:
pidigits
spectral-norm

● 1 other in the top-10 smallest:
regex-redux

● 3 others in the top-20 smallest:
chameneos-redux
mandelbrot
meteor-contest

C O M P U T E | S T O R E | A N A L Y Z E

Comparing Chapel vs. C Chameneos

Copyright 2017 Cray Inc.
38

Can also browse program source code (but this requires actual thought):

excerpt from 1210 gz 4th-place Chapel entry excerpt from 2863 gz 1st-place C gcc entry

C O M P U T E | S T O R E | A N A L Y Z E

Comparing Chapel vs. C Chameneos

Copyright 2017 Cray Inc.
39

Can also browse program source code (but this requires actual thought):

excerpt from 1210 gz 4th-place Chapel entry excerpt from 2863 gz 1st-place C gcc entry

C O M P U T E | S T O R E | A N A L Y Z E

Comparing Chapel vs. C Chameneos

Copyright 2017 Cray Inc.
40

Can also browse program source code (but this requires actual thought):

excerpt from 1210 gz 4th-place Chapel entry excerpt from 2863 gz 1st-place C gcc entry

C O M P U T E | S T O R E | A N A L Y Z E

Chapel CLBG Standings as of Apr 20th

Copyright 2017 Cray Inc.
41

● 12 /13 programs in top-20 fastest:
● one #1 fastest:

pidigits

● 3 others in the top-5 fastest:
chameneos-redux
meteor-contest
thread-ring

● 3 others in the top-10 fastest:
fannkuch-redux
fasta
mandelbrot

● 5 others in the top-20 fastest:
binary-trees
k-nucleotide
n-body
regex-redux
spectral-norm

● 8 / 13 programs in top-20 smallest:
● two #1 smallest:

n-body
thread-ring

● 2 others in the top-5 smallest:
pidigits
spectral-norm

● 1 other in the top-10 smallest:
regex-redux

● 3 others in the top-20 smallest:
chameneos-redux
mandelbrot
meteor-contest

C O M P U T E | S T O R E | A N A L Y Z E

Comparing Chapel vs. C pidigits

Copyright 2017 Cray Inc.
42

excerpt from 423 gz 1st-place Chapel entry excerpt from 448 gz 4th-place C gcc entry

C O M P U T E | S T O R E | A N A L Y Z E

Comparing Chapel vs. C pidigits

Copyright 2017 Cray Inc.
43

excerpt from 423 gz 1st-place Chapel entry excerpt from 448 gz 4th-place C gcc entry

C O M P U T E | S T O R E | A N A L Y Z E

Comparing Chapel vs. C pidigits

Copyright 2017 Cray Inc.
44

excerpt from 423 gz 1st-place Chapel entry excerpt from 448 gz 4th-place C gcc entry

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Next Steps

Copyright 2017 Cray Inc.
45

● Additional Performance Improvements
● Improve vectorization support
● Optimize idioms used by string-related benchmarks

● strings, associative domains/arrays, byte arrays
● Support memory pools?

● How to shine a light on these qualitative comparisons?
● Chapel blog articles?

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Next Major Steps

Copyright 2017 Cray Inc.
46

● How can we create a similar competition within HPC?
(where “we” == “the HPC community”, not Chapel)
● multi-language
● ongoing
● open
● addictive

● Intel Parallel Research Kernels (PRK) as a possible basis
● My EMBRACE talk this morning has related thoughts

C O M P U T E | S T O R E | A N A L Y Z E

Questions?

Copyright 2017 Cray Inc.
47

C O M P U T E | S T O R E | A N A L Y Z E

CLBG Scatter Plots

Copyright 2016 Cray Inc.
48

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. C

Copyright 2017 Cray Inc.
49

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. C (zoomed out)

Copyright 2017 Cray Inc.
50

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. C++

Copyright 2017 Cray Inc.
51

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. C++ (zoomed out)

Copyright 2017 Cray Inc.
52

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Fortran

Copyright 2017 Cray Inc.
53

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Fortran (zoomed out)

Copyright 2017 Cray Inc.
54

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Go

Copyright 2017 Cray Inc.
55

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Go (zoomed out)

Copyright 2017 Cray Inc.
56

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Rust

Copyright 2017 Cray Inc.
57

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Rust (zoomed out)

Copyright 2017 Cray Inc.
58

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Swift

Copyright 2017 Cray Inc.
59

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Swift (zoomed out)

Copyright 2017 Cray Inc.
60

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Java

Copyright 2017 Cray Inc.
61

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Java (zoomed out)

Copyright 2017 Cray Inc.
62

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Scala

Copyright 2017 Cray Inc.
63

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Scala (zoomed out)

Copyright 2017 Cray Inc.
64

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Python

Copyright 2017 Cray Inc.
65

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Python (zoomed out)

Copyright 2017 Cray Inc.
66

C O M P U T E | S T O R E | A N A L Y Z E

Legal Disclaimer

Copyright 2017 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2,
CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE,
THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

67

