

Towards a GraphBLAS Library in Chapel

Ariful Azad & Aydin Buluç

Lawrence Berkeley National Laboratory (LBNL)

CHIUW, IPDPS 2017

Overview

□ High-level research objective:

- Enable productive and high-performance graph analytics
- We used GraphBLAS and Chapel to achieve this goal

□ Scope of this paper: A GraphBLAS library in Chapel

Outline

- 1. Overview of GraphBLAS primitives
- 2. Implementation of a subset of GraphBLAS primitives in Chapel with experimental results

Warning: this is just an early evaluation as Chapel's sparse matrix support is actively under development. All experiments were conducted on **Chapel 1.13.1.** The performance numbers are expected to improve significantly in future releases of Chapel.

Part 1. GraphBLAS overview

GraphBLAS analogy A ready-to-assemble furniture shop (Ikea)

Graph algorithm building blocks

GraphBLAS (<u>http://graphblas.org</u>)

- Standard building blocks for graph algorithms in the language of sparse linear algebra
- Inspired by the Basic Linear Algebra Subprograms (BLAS)
- Participants from industry, academia and national labs
- C API is available in the website
 (*Design of the GraphBLAS API for C*, A Buluç, T Mattson,
 S McMillan, J Moreira, C Yang, IPDPS Workshops 2017)

Employs graph-matrix duality

- Graphs => sparse matrix
- A subset of vertex/edges => sparse/dense vector

- Benefits
 - Standard set of operations
 - Learn from the rich history of numerical linear algebra
 - Offers structured and regular memory accesses and communications (as opposed to irregular memory accesses in tradition graph algorithm)
 - Opportunity for communication avoiding algorithms

Some GraphBLAS basic primitives

Function	Parameters	Returns	Matlab notation
MxM (SpGEMM)	 sparse matrices A and B optional unary functs 	sparse matrix	C = A * B
MxV (SpM{Sp}V)	 sparse matrix A sparse/dense vector x 	sparse/dense vector	y = A * x
EwiseMult, Add, (SpEWiseX)	 sparse matrices or vectors binary funct, optional unarys 	in place or sparse matrix/vector	C = A .* B C = A + B
Reduce (Reduce)	- sparse matrix A and funct	dense vector	y = sum(A, op)
Extract (SpRef)	 sparse matrix A index vectors p and q 	sparse matrix	B = A(p, q)
Assign (SpAsgn)	 sparse matrices A and B index vectors p and q 	none	A(p, q) = B
BuildMatrix (Sparse)	 list of edges/triples (i, j, v) 	sparse matrix	A = sparse(i, j, v, m, n)
ExtractTuples (Find)	- sparse matrix A	edge list	[i, j, v] = find(A)

General purpose operations via semirings (overloading addition and multiplication operations)

Real field: (R, +, X)	Classical numerical linear algebra
Boolean algebra: ({0 1}, , &)	Graph traversal
Tropical semiring: (R U {∞}, min, +)	Shortest paths
(S, select, select)	Select subgraph, or contract nodes to form quotient graph
(edge/vertex attributes, vertex data aggregation, edge data processing)	Schema for user-specified computation at vertices and edges
(R, max, +)	Graph matching &network alignment
(R, min, times)	Maximal independent set

- Shortened semiring notation: (Set, Add, Multiply). Both identities omitted.
- Add: Traverses edges, Multiply: Combines edges/paths at a vertex

Example: Exploring the next-level vertices via SpMSpV

Algorithmic coverage

GraphBLAS primitives in increasing arithmetic intensity

- Develop high-performance algorithms for 10-12 primitives.
- Use them in many algorithms (boost productivity).

Expectation: two-layer productivity

Part 2. Implementing a subset of GraphBLAS operations in Chapel

	Parameters	Returns	
Apply	<pre>x: sparse matrix/vector f: unary function</pre>	None	x[i] = f(x[i])
Assign	<pre>x: sparse matrix/vector y: sparse matrix/vector</pre>	None	x[i] = y[i]
eWiseMult	x: sparse matrix/vector y: sparse matrix/vector	z: sparse matrix/vector	z[i] = x[i] * y[i]
SpMSpV	A: sparse matrix x: sparse vector	y: sparse vector	y = Ax

Experimental platform

Chapel details

- Chapel 1.13.1 (the latest version before the IPDPS deadline)
- Chapel built from source
- CHPL_COMM: gasnet/gemini
- Job launcher: slurm-srun
- □ Experiment platform: NERSC/Edison
 - Intel Ivy Bridge processor
 - 24 cores on 2 sockets
 - 64 GB memory per node
 - 30-MB L3 Cache

- Block distributed sparse matrices. The dense container is block distributed.
- We used compressed sparse block (CSR) layout to store local matrices.

var n = 6
const D = {0..n-1, 0..n-1}
 dmapped Block(1..3,1..3);
var spD: sparse subdomain(D);
var A = [spD] real;

In this example: #locales = 9

In our results, we did not include time to construct arrays

```
1 // Implementing apply() using forall loop
2 proc Apply1(spArr, unaryOp)
3 {
4 forall a in spArr do
5 a = unaryOp(a);
6 }
```

Apply1: high-level (Chapel style)

```
// Implementing apply() with local arrays
   proc Apply2(spArr, unaryOp){
2
       var locArrs = spArr._value.locArr;
3
        coforall locArr in locArrs do
4
       on locArr {
5
           forall a in locArr.myElems do
6
               a = unaryOp(a);
7
        ł
8
g
```

Apply2

manipulating internal arrays (MPI style)

Example, simple case : Apply (x[i] = f(x[i]))

Apply1: high-level (Chapel style)
Apply2: manipulating internal
arrays (C++ style)
x: 10M nonzeros
Platform: NERSC/Edison

Performance on distributed-memory

Using chplvis on four locales Red: data in, blue: data out

This issue with sparse arrays has been addressed about a week ago

Assign x[i] = y[i]


```
Assign1:
high-level
(Chapel style)
```

```
proc Assign2(A: [?DA], B: [?DB]) {
   DA.clear(); // destroy A
2
   if(DB.size == 0) then return;
3
   //---- Assign domain -----
4
   var locDAs = DA. value.locDoms;
5
   var locDBs = DB._value.locDoms;
6
   coforall (locDA, locDB) in zip(locDAs, locD
7
       Bs) do
       on locDA {
8
       locDA.mySparseBlock += locDB.mySparseB
9
           lock;
0
```

```
Assign2:
manipulating
internal arrays
(MPI style)
```

Shared-memory performance: Assign (x[i] = y[i])

Assign1: high-level (Chapel style) Assign2: manipulating internal arrays (C++ style) x: 1M nonzeros Platform: NERSC/Edison

Even in shared memory

Why? Indexing a sparse domain uses binary search. For assignment it can be avoided

distributed-memory performance: Assign (x[i] = y[i])

Assign1: high-level (Chapel style) Assign2: manipulating internal arrays (C++ style) x: 1M nonzeros Platform: NERSC/Edison

Example, complex case: SpMSpV (y = Ax)

Algorithm overview

Sparse matrix-sparse vector multiply (SpMSpV)

Algorithm (MPI Style)	Algorithm (Chapel Style)	
 Gather vertices in processor column Local multiplication Scatter results in processor row 	Multiply (access remote data as needed). No collective communication	

Distributed-memory performance of SpMSpV on Edison

A: random; 16M nonzeros x: random; 2000 nonzeros

Number of Nodes (24 threads/node)

Remote atomics are expensive in Chapel

- □ Exploit available spatial locality in sparse manipulations
 - Efficient access of nonzeros of sparse matrices/vectors
 - Chapel is almost there, needs improved parallel iterators
- Use bulk-synchronous communication whenever possible
 - Avoid latency-bound communication
 - Team collectives are useful

Our experience: productivity vs. performance

Productivity (easy to develop a prototype)

Task	Hardness	Why?
Data structure	medium	Manipulating domains and arrays
Functionality	easy	Fewer lines of code with built-in features
Parallelization	easy	No need to think about communication

Performance (hard to achieve performance)

Task	Hardness	Why?
Data structure	hard	Manipulating low level data structures
Shared-memory	medium	Data parallel iterators for sparse data
Distributed-	hard	Needs bulk synchronous
memory		communication, team collectives, etc.

Summary

- We have implemented a prototype GraphBLAS library in Chapel
 - Implemented breadth-first search as a representative algorithm using these primitives
- □ Library development in Chapel is easy (relative to C++)
- Chapel's distributed-sparse matrix support is still under development. The distributed-memory performance is expected to improve over time.

Future direction

- Finish a complete GraphBLAS-compliant library in a PGAS language (including Chapel)
 - Achieving high performance is our focus
 - Benchmark our library against other programming models and languages
- Design complex graph algorithms using the library to demonstrate its utility
 - Understand the impact of programming models on graph analytics

□ Funded in part by DOD/ACS and in part by DOE/ASCR

- Acknowledgement: Costin Iancu (LBNL), Brad Chamberlain (Cray), Michael Ferguson (Cray), Engin Kayraklioglu (George Washington University)
- □ References:
 - A. Azad and A. Buluç, IPDPS Workshops 2017, Towards a GraphBLAS library in Chapel.
 - A. Azad and A. Buluç, IPDPS 2017, A work-efficient algorithm for sparse matrix-sparse vector multiplication algorithm.

Questions?