.\ A
Steaa — | s
; oAt AT e s] T
: R N
. N 1% 1 T s TN eV A
. S % 222
t._ : - “’

L% == BERKELEY LAB

. -~ Lawrence Berkeloy National Laboratory
. o o

Towards a GraphBLAS Library in Chapel

Ariful Azad & Aydin Bulug
Lawrence Berkeley National Laboratory (LBNL)

CHIUW, IPDPS 2017

Overview

a High-level research objective:
— Enable productive and high-performance graph analytics
— We used GraphBLAS and Chapel to achieve this goal

GraphBLAS Chapel
Building blocks for graph An emerging parallel language
algorithms in the language of designed for productive
sparse linear algebra parallel computing at scale

¥ ¥

Both promise: Productivity + Performance

Q Scope of this paper: A GraphBLAS library in Chapel

1.
2.

Outline

Overview of GraphBLAS primitives

Implementation of a subset of GraphBLAS
primitives in Chapel with experimental results

Warning: this is just an early evaluation as Chapel’s sparse'!
matrix support is actively under development. All!
experiments were conducted on Chapel 1.13.1. Thei
performance numbers are expected to improve:
significantly in future releases of Chapel.

Part 1. GraphBLAS overview

GraphBLAS analogy
e furniture shop (lkea)

A ready-to-assemb

Building blocks

FR E [E |

12x 24x 30x 2x 2X

T

Objects
(Algorithms)

Final product
(Applications)

Graph algorithm building blocks

Q GraphBLAS (http://graphblas.orqg)

— Standard building blocks for graph
algorithms in the language of sparse
linear algebra

— Inspired by the Basic Linear Algebra
Subprograms (BLAS)

— Participants from industry, academia
and national labs

— C APl is available in the website

(Design of the GraphBLAS API for C, A Bulug, T Mattson,

S McMiillan, J Moreira, C Yang, IPDPS Workshops 2017)

T: T E Ti §

12x 24x 30x 2x 2X

TR

\

|

= {
g , g @ B
s & 2 8

8x 8x 2X
) |

\ o B N =
| g\ =N TR

]

l

GraphBLAS as algorithm building blocks

Q Employs graph-matrix duality
— Graphs => sparse matrix
— A subset of vertex/edges => sparse/dense vector

Q Benefits
— Standard set of operations
— Learn from the rich history of numerical linear algebra

— Offers structured and regular memory accesses and
communications (as opposed to irregular memory
accesses in tradition graph algorithm)

— Opportunity for communication avoiding algorithms

Some GraphBLAS basic primitives

Function Parameters Returns Matlab notation

MxM - sparse matrices A and B sparse matrix C=A*B
(SpGEMM) - optional unary functs

MxV - sparse matrix A sparse/dense vector y=A *x
(SpM{Sp}V) - sparse/dense vector x

EwiseMult, Add, ... - sparse matrices or vectors in place or sparse C=A.*B
(SpEWiseX) - binary funct, optional unarys matrix/vector C=A+8B
Reduce - sparse matrix A and funct dense vector y =sum(A, op)
(Reduce)

Extract - sparse matrix A sparse matrix B=A(p, q)
(SpRef) - index vectors p and g

Assign - sparse matrices A and B none A(p,q)=B
(SpAsgn) - index vectors p and g

BuildMatrix - list of edges/triples (i, j, v) sparse matrix A = sparse(i, j, v, m, n)
(Sparse)

ExtractTuples - sparse matrix A edge list [i, j, v] = find(A)
(Find)

General purpose operations via semirings
(overloading addition and multiplication operations)

Real field: (R, +, X)

Classical numerical linear algebra

Boolean algebra: ({01}, |, &)

Graph traversal

Tropical semiring: (RU {00}, min, +)

Shortest paths

(S, select, select)

Select subgraph, or contract nodes to
form quotient graph

(edge/vertex attributes, vertex data
aggregation, edge data processing)

Schema for user-specified
computation at vertices and edges

(R, max, +)

Graph matching &network alignment

(R, min, times)

Maximal independent set

Shortened semiring notation: (Set, Add, Multiply). Both identities omitted.
Add: Traverses edges, Multiply: Combines edges/paths at a vertex

Example: Exploring the next-level vertices via SpMSpV

Overload (multiply,add) with (select2nd, min)

E 2 |
abcde fgh
Current 3
frontier b X X
X X X
C X X | X X —> | 2
d X
Next. e | x X X
frontier
f X x| |7 |3
g X X I
h X X |—> 2

Adjacency matrix

>0m O O 6 T Q

Algorithmic coverage

Higher-level combinatorial and machine learning algorithms

<€ >
Miscellaneous: Classification Graph clustering Centrality Dimensionality Shortest paths
connectivity, traversal (support vector (Markov cluster, (PageRank, reduction (all-pairs,
(BFS), independent sets machines, Logistic peer pressure, betweenness, (NMF, PCA) single- source,
(MIS), graph matching regression) spectral, local) closeness) temporal)
Sparse Matrix- Sparse Matrix- Sparse Matrix Times Sparse - Sparse Sparse - Dense
Sparse Vector Dense Vector Multiple Dense Vectors Matrix Product Matrix Product
(SpMSpV) (SpMV) (SpMM) (SPGEMM) (SpDM3)
>

GraphBLAS primitives in increasing arithmetic intensity

* Develop high-performance algorithms for 10-12 primitives.
e Use them in many algorithms (boost productivity).

Expectation: two-layer productivity

Graph algorithms

[0 we

GraphBLAS operations

[0 we

Chapel’s productivity features

user space

library

language

Part 2. Implementing a subset of
GraphBLAS operations in Chapel

For Chapel: A subset of GraphBLAS operations

Parameters Returns

Apply X: sparse matrix/vector None x[i] = f(x[i])
f: unary function

Assign X: sparse matrix/vector None x[i] = y]i]
y: sparse matrix/vector

eWiseMult x: sparse matrix/vector z: sparse z[i] = x[i] * y[i]
y: sparse matrix/vector matrix/vector

SpMSpV A: sparse matrix y: sparse y = AX
X: sparse vector vector

Experimental platform

Q Chapel details
— Chapel 1.13.1 (the latest version before the IPDPS deadline)
— Chapel built from source
— CHPL_COMM: gasnet/gemini
— Job launcher: slurm-srun

QO Experiment platform: NERSC/Edison
— Intel Ivy Bridge processor
— 24 cores on 2 sockets

— 64 GB memory per node
— 30-MB L3 Cache

Sparse matrices in Chapel

Q Block distributed sparse matrices. The dense
container is block distributed.

Q We used compressed sparse block (CSR) layout to
store local matrices.

In this example:

#locales =9
varn=06 ° o °
const D = {0..n-1, 0..n-1} ° °
dmapped Block(1..3,1..3); o
var spD: sparse subdomain(D); °
o o
var A = [spD] real;

In our results, we did not include time to construct arrays

The simplest GraphBLAS operation: Apply (x[i] = f(x[i]))

[~ LA . - (=] —

/ Implementing apply() using forall 1oo0p
proc Applyl (spArr, unaryOp)

forall a in spArr do
a = unaryOp(a);

D= L T R - N

Implementing apply() with local arrays

‘proc Apply2 (spArr, unaryOp) {

var locArrs = sSpArr._value.locCArr;

coforall locArr in locArrs do
on locArr {
forall a in locArr.myElems do
a = unaryOp(a);

Applyl:
high-level
(Chapel style)

Apply2
manipulating
internal arrays
(MPI style)

Time (ms)

Example, simple case : Apply (x[i] = f(x][i]))

256— . .
ﬁ —O~ Apply1

T8 A N

N N ——

—— Apply2

1 2 4 8 16 32
Number of Threads (single node)

>

Data parallel loops perform
well in shared memory

But do not perform
well in distributed memory

)

Applyl: high-level (Chapel style)
Apply2: manipulating internal

arrays

(C++ style)

X: 10M nonzeros
Platform: NERSC/Edison

256

Time (second)

0.015625} -
0.00390625} -
0.000976562} -

0.25} -
0.0625} -

—O— Apply1
=& Apply2

0.000244141 L4

1 2 4 8 16 32 64
Number of Nodes (24 threads per node)

Performance on distributed-memory

Using chplvis on four locales
Red: data in, blue: data out

Apply 1

Apply 2
All work at
locale O

=]

This issue with sparse arrays has been addressed about a week ago

Assign x[i] = y[i]

= - -l o wn o w N -
~ g

(S

roc Assignl (A: [?DA], B: [?DB]) {

) e~
/—————— ASs

DA. clear(); /7 destroy A

[31
Q
-
' Q,
)
=
L
[31
-
|
|
|
|
|
|
|

_______ .,’_‘\

forall iin D
A[i] = B[i];

‘_‘»rfl

| proc Assign2 (A: [?DA], B: [?7DB]) {

DA.clear(); // destroy A

lf(DB size == 0) then return;

-—-——-—-— Assign domailn —————-

e T - S ¥ N N PC R}

oo

var locDAs DA._value.locDoms;

var locDBs = DB._value.locDoms;
coforall (locDA,locDB) in zip(locDAs, locD
Bs) do
on locDA {
locDA.mySparseBlock += locDB.mySparseB
lock;

}

Assignl:
high-level
(Chapel style)

Assign2:
manipulating
internal arrays
(MPI style)

Shared-memory performance: Assign (x[i] =v]i])

?Z‘: o] Assignl: high-level (Chapel style)
| Assign2: manipulating internal
W T | arrays(C++style)
% el o __ __ o | x:1M nonzeros
£l | | | | Platform: NERSC/Edison
8 5 ; : TR
Number of Threads (single node)
>
Big performance gap Why?
Even in shared memory Indexing a sparse domain uses

binary search. For assignment
it can be avoided

distributed-memory performance: Assign (x[i] =yl[i])

1024

sl . |=Zf=] Assignl: high-level (Chapel style)

0.0625}

ot Assign2: manipulating internal
_ L R AL S (e R S arrays (C++ style)

1/] x1Mnonzeros

g osfd ... Platform: NERSC/Edison

0.015625}

0.00390625} -

0.000976562 1 2 4 8 1' 5 3'2 6 ”
Number of Nodes (24 threads per node)

<

Big performance gap
Even in distributed memory

Example, complex case: SpMSpV (y = Ax)

Algorithm overview

o ® O D —
v v 3
o o o O
o o o o
o o
\ - o o * o
o o o o
[) ®
o PS o(o|0
O A X
O
¢ scatter/
gather C: accumulate

SPA

Sparse matrix-sparse vector multiply (SpMSpV)

< >
® €T
n/p| | ® ® ,:; ® P processors are arranged in
oo o9 _
o °_~ “o X |leo \/;X \/; Processor grid
o, 0 @ o
e oo
O e
A X
Algorithm (MPI Style) Algorithm (Chapel Style)

1. Gather vertices in processor column Multiply (access remote data

2. Local multiplication as needed). No collective
3. Scatter results in processor row communication

Distributed-memory performance of SpMSpV on Edison

A: random; 16M nonzeros x:random; 2000 nonzeros

=>=@Gather Input “=~Local Multiply ==Scatter output
4

. _(\1:\T

0.25

0.0625

&= We don’t know
the reason

Time (s)

0.015625 £

0.0039063

0.0009766
1 2 4 8 16 32 64

Number of Nodes (24 threads/node)

Remote atomics are expensive in Chapel

Requirements for achieving high performance

Q Exploit available spatial locality in sparse manipulations
— Efficient access of nonzeros of sparse matrices/vectors
— Chapel is almost there, needs improved parallel iterators

Q Use bulk-synchronous communication whenever
possible
— Avoid latency-bound communication
— Team collectives are useful

Our experience: productivity vs. performance

Productivity (easy to develop a prototype)

Task Hardness Why?
Data structure medium Manipulating domains and arrays
Functionality easy Fewer lines of code with built-in features
Parallelization easy No need to think about communication

Performance (hard to achieve performance)

Task Hardness Why?
Data structure hard Manipulating low level data structures
Shared-memory medium Data parallel iterators for sparse data
Distributed- hard Needs bulk synchronous

memory

communication, team collectives, etc.

Summary

QO We have implemented a prototype GraphBLAS library
in Chapel

— Implemented breadth-first search as a representative
algorithm using these primitives

Q Library development in Chapel is easy (relative to C++)

Q Chapel’s distributed-sparse matrix support is still
under development. The distributed-memory
performance is expected to improve over time.

Future direction

Q Finish a complete GraphBLAS-compliant library in a
PGAS language (including Chapel)
— Achieving high performance is our focus
— Benchmark our library against other programming models
and languages
Q Desigh complex graph algorithms using the library to
demonstrate its utility

— Understand the impact of programming models on graph
analytics

Acknowledgement and relevant references

0 Funded in part by DOD/ACS and in part by DOE/ASCR

Q Acknowledgement: Costin lancu (LBNL), Brad Chamberlain
(Cray), Michael Ferguson (Cray), Engin Kayraklioglu (George
Washington University)

ad References:

— A. Azad and A. Bulug, IPDPS Workshops 2017, Towards a
GraphBLAS library in Chapel.

— A. Azad and A. Bulug, IPDPS 2017, A work-efficient algorithm
for sparse matrix-sparse vector multiplication algorithm.

Questions?

