
Towards a GraphBLAS Library in Chapel

Ariful	Azad	&	Aydin	Buluç		
Lawrence	Berkeley	Na.onal	Laboratory	(LBNL)	
	

	

CHIUW,	IPDPS	2017	

Overview	

GraphBLAS	
Building	blocks	for	graph	
algorithms	in	the	language	of	
sparse	linear	algebra	

Chapel	
An	emerging	parallel	language	
designed	for	produc.ve	
parallel	compu.ng	at	scale	

Both	promise:	Produc.vity	+	Performance	

q  High-level	research	objec.ve:		
–  Enable	produc.ve	and	high-performance	graph	analy.cs	
– We	used	GraphBLAS	and	Chapel	to	achieve	this	goal	

q  Scope	of	this	paper:	A	GraphBLAS	library	in	Chapel	

1.  Overview	of	GraphBLAS	primi.ves	
2.  Implementa.on	of	a	subset	of	GraphBLAS	

primi.ves	in	Chapel	with	experimental	results	

Outline	

Warning:	this	is	just	an	early	evalua.on	as	Chapel’s	sparse	
matrix	 support	 is	 ac.vely	 under	 development.	 All	
experiments	 were	 conducted	 on	 Chapel	 1.13.1.	 The	
performance	 numbers	 are	 expected	 to	 improve	
significantly	in	future	releases	of	Chapel.	

Part	1.	GraphBLAS	overview	

5	

GraphBLAS	analogy	
A	ready-to-assemble	furniture	shop	(Ikea)	

Building	blocks	 Objects	
(Algorithms)	

Final	product	
(Applica.ons)	

6	

	
q  GraphBLAS	(http://graphblas.org)	

–  Standard	building	blocks	for	graph	
algorithms	in	the	language	of	sparse	
linear	algebra	

–  Inspired	by	the	Basic	Linear	Algebra	
Subprograms	(BLAS)	

–  Par.cipants	from	industry,	academia	
and	na.onal	labs	

–  C	API	is	available	in	the	website		
(Design	of	the	GraphBLAS	API	for	C,	A	Buluç,	T	MaYson,	
S	McMillan,	J	Moreira,	C	Yang,	IPDPS	Workshops	2017)	
	

Graph	algorithm	building	blocks	

7	

q  Employs	graph-matrix	duality	
–  Graphs	=>	sparse	matrix	
–  A	subset	of	vertex/edges	=>	sparse/dense	vector	
	
	

q  Benefits	
–  Standard	set	of	opera.ons		
–  Learn	from	the	rich	history	of	numerical	linear	algebra		
–  Offers	structured	and	regular	memory	accesses	and	
communica.ons	(as	opposed	to	irregular	memory	
accesses	in	tradi.on	graph	algorithm)	

–  Opportunity	for	communica.on	avoiding	algorithms	

GraphBLAS	as	algorithm	building	blocks	

8	

Some	GraphBLAS	basic	primi.ves		

FuncJon	
	

Parameters	 Returns	 Matlab	notaJon	

MxM	
(SpGEMM)	

-	sparse	matrices	A	and	B	
-	op.onal	unary	functs	

sparse	matrix	 C	=	A	*	B	

MxV	
(SpM{Sp}V)	

-	sparse	matrix	A		
-	sparse/dense	vector	x	

sparse/dense	vector	 y	=	A	*	x	

EwiseMult,	Add,	…	
(SpEWiseX)	

-	sparse	matrices	or	vectors	
-	binary	funct,	op.onal	unarys	

in	place	or	sparse	
matrix/vector	

C	=	A	.*	B	
C	=	A	+	B	

Reduce	
(Reduce)	

-	sparse	matrix	A	and	funct	 dense	vector	 y	=	sum(A,	op)	

Extract	
(SpRef)	

-	sparse	matrix	A	
-	index	vectors	p	and	q	

sparse	matrix	 B	=	A(p,	q)	

Assign	
(SpAsgn)	

-	sparse	matrices	A	and	B	
-	index	vectors	p	and	q	

none	 A(p,	q)	=	B	
	

BuildMatrix	
(Sparse)	

-	list	of	edges/triples	(i,	j,	v)	
	

sparse	matrix	 A	=	sparse(i,	j,	v,	m,	n)	
	

ExtractTuples	
(Find)	

-	sparse	matrix	A	
	

edge	list	 [i,	j,	v]	=	find(A)	

9	

General	purpose	opera.ons	via	semirings	
(overloading	addi.on	and	mul.plica.on	opera.ons)	

Real	field:		(R,	+,	x)	 Classical	numerical	linear	algebra	

Boolean	algebra:		({0	1},	|,	&)	 Graph	traversal	

Tropical	semiring:	(R	U	{∞}, min, +) Shortest	paths	

(S, select, select) Select	subgraph,	or	contract	nodes	to	
form	quo.ent	graph	

(edge/vertex	aYributes,	vertex	data	
aggrega.on,	edge	data	processing)	

Schema	for	user-specified	
computa.on	at	ver.ces	and	edges	

(R,	max,	+)	 Graph	matching	&network	alignment	

(R,	min,	Jmes)	 Maximal	independent	set	

•  Shortened	semiring	notaJon:	(Set,	Add,	MulJply).	Both	iden..es	omiYed.		
•  Add:	Traverses	edges,	MulJply:	Combines	edges/paths	at	a	vertex	

Example:	Exploring	the	next-level	ver.ces	via	SpMSpV	

a	

e	 b	

c	 f	

g	d	

1	

2	 3	
3	 2	

x	 x	
x	 x	 x	

x	 x	 x	 x	
x	

x	 x	 x	
x	 x	

x	 x	
x	 x	

a	
b	
c	
d	
e	
f	
g	
h	

a			b			c			d			e				f			g			h	

2	

3	

2	

Overload	(mul.ply,add)	with	(select2nd,	min)	

a	
b	
c	
d	
e	
f	
g	
h	

Current		
fronJer	

Next		
fronJer	

Adjacency	matrix	

h	

11	

Sparse	-	Dense		
Matrix	Product

(SpDM3)

Sparse	-	Sparse	
Matrix	Product
(SpGEMM)

Sparse	Matrix	Times	
Mul<ple	Dense	Vectors

(SpMM)

Sparse	Matrix-	
Dense	Vector		

(SpMV)

Sparse	Matrix-	
Sparse	Vector		
(SpMSpV)

GraphBLAS	primi<ves	in	increasing	arithme<c	intensity

Shortest	paths	
(all-pairs,	

single-	source,	
temporal)

Graph	clustering	
(Markov	cluster,	
peer	pressure,	
spectral,	local)

Miscellaneous:	
connec<vity,	traversal	
(BFS),	independent	sets	
(MIS),	graph	matching	

Centrality	
(PageRank,	

betweenness,	
closeness)

Higher-level	combinatorial	and	machine	learning	algorithms

Classifica7on	
(support	vector	

machines,	Logis<c	
regression)

Dimensionality	
reduc7on	
(NMF,	PCA)	

Algorithmic	coverage	

•  Develop	high-performance	algorithms	for	10-12	primi.ves.	
•  Use	them	in	many	algorithms	(boost	produc.vity).			

Expecta.on:	two-layer	produc.vity	

Graph	algorithms	

GraphBLAS	opera.ons	

Chapel’s	produc.vity	features		

use	

use	

library	

user	space	

language	

Part	2.	ImplemenJng	a	subset	of	
GraphBLAS	operaJons	in	Chapel	

Parameters	 Returns	
Apply	 x:	sparse	matrix/vector		

f:	unary	func.on		
None	 x[i]		=	f(x[i])	

Assign	 x:	sparse	matrix/vector		
y:	sparse	matrix/vector		

None	 x[i]	=	y[i]	

eWiseMult	 x:	sparse	matrix/vector		
y:	sparse	matrix/vector		
	

z:	sparse	
matrix/vector		
	

z[i]	=	x[i]	*	y[i]	

SpMSpV	 A:	sparse	matrix	
x:	sparse	vector		
	

y:	sparse	
vector		
	

y	=	Ax	

For	Chapel:	A	subset	of	GraphBLAS	opera.ons	

q  Chapel	details	
–  Chapel	1.13.1	(the	latest	version	before	the	IPDPS	deadline)	
–  Chapel	built	from	source	
–  CHPL_COMM:	gasnet/gemini		
–  Job	launcher:	slurm-srun		

q  Experiment	platorm:	NERSC/Edison	
–  Intel	Ivy	Bridge	processor	
–  24	cores	on	2	sockets	
–  64	GB	memory	per	node	
–  30-MB	L3	Cache	

Experimental	platorm	

Sparse	matrices	in	Chapel	

q  Block	distributed	sparse	matrices.	The	dense	
container	is	block	distributed.	

q We	used	compressed	sparse	block	(CSR)	layout	to	
store	local	matrices.		

	
	

	

	

var	n	=	6	
const	D	=	{0..n-1,	0..n-1}			
									dmapped	Block(1..3,1..3);	
var	spD:	sparse	subdomain(D);	
var	A	=	[spD]	real;	

In	this	example:	
#locales	=	9	

In	our	results,	we	did	not	include	.me	to	construct	arrays	

The	simplest	GraphBLAS	opera.on:	Apply	(x[i]		=	f(x[i]))	

Apply1:		
high-level		
(Chapel	style)	

Apply2	
manipula.ng		
internal	arrays		
(MPI	style)	

1 2 4 8 16 324

8

16

32

64

128

256

Number of Threads (single node)

Ti
m

e
(m

s)

Apply1
Apply2

Example,	simple	case	:	Apply	(x[i]		=	f(x[i]))	

1 2 4 8 16 32 640.000244141

0.000976562

0.00390625

0.015625

0.0625

0.25

1

4

16

64

256

Number of Nodes (24 threads per node)

Ti
m

e
(s

ec
on

d)

Apply1
Apply2

Apply1:	high-level	(Chapel	style)	
Apply2:	manipula.ng	internal		
arrays	(C++	style)	
x:	10M	nonzeros	
Platorm:	NERSC/Edison	

Data	parallel	loops	perform		
well	in	shared	memory		

But	do	not	perform	
well	in	distributed	memory		

Performance	on	distributed-memory	

Apply	1	 Apply	2	

Using	chplvis	on	four	locales	
Red:	data	in,	blue:	data	out	

This		issue	with	sparse	arrays	has	been	addressed	about	a	week	ago	

All	work	at		
locale	0	

Assign	x[i]	=	y[i]	

Assign1:		
high-level		
(Chapel	style)	

Assign2:		
manipula.ng		
internal	arrays		
(MPI	style)	

Shared-memory	performance:	Assign	(x[i]		=	y[i])	

Assign1:	high-level	(Chapel	style)	
Assign2:	manipula.ng	internal		
arrays	(C++	style)	
x:	1M	nonzeros	
Platorm:	NERSC/Edison	

Big	performance	gap		
Even	in	shared	memory		

1 2 4 8 16 328

16

32

64

128

256

512

1024

2048

Number of Threads (single node)

Ti
m

e
(m

s)

Assign1
Assign2

Why?	
Indexing	a	sparse	domain	uses	
binary	search.	For	assignment		

it	can	be	avoided	

distributed-memory	performance:	Assign	(x[i]		=	y[i])	

Assign1:	high-level	(Chapel	style)	
Assign2:	manipula.ng	internal		
arrays	(C++	style)	
x:	1M	nonzeros	
Platorm:	NERSC/Edison	

Big	performance	gap		
Even	in	distributed	memory		

1 2 4 8 16 32 640.000976562

0.00390625

0.015625

0.0625

0.25

1

4

16

64

256

1024

Number of Nodes (24 threads per node)

Ti
m

e
(s

ec
on

d)

Assign1
Assign2

x"

= *"

A"

SPA$

gather"
sca-er/"

accumulate"

y"

Example,	complex	case:	SpMSpV	(y	=	Ax)	

Algorithm	overview	

Sparse	matrix-sparse	vector	mul.ply	(SpMSpV)	

xA x	

à	x

1.	Gather	ver.ces	in	processor	column	
2.	Local	mul.plica.on		
3.	ScaYer	results	in	processor	row	

n p

n p

p × p Processor	grid	

P	processors	are	arranged	in	

	
	

Mul.ply	(access	remote	data	
as	needed).	No	collec.ve	
communica.on	
	

Algorithm	(Chapel	Style)	Algorithm	(MPI	Style)	

0.0009766	

0.0039063	

0.015625	

0.0625	

0.25	

1	

4	

1	 2	 4	 8	 16	 32	 64	

Ti
m
e	
(s
)	

Number	of	Nodes	(24	threads/node)	

ER	matrix	(n=1M,	d=16,	f=2%)	

Gather	Input	 Local	Mul<ply	 Sca?er	output	

0.0004883	

0.0019531	

0.0078125	

0.03125	

0.125	

0.5	

1	 2	 4	 8	 16	 32	 64	

Ti
m
e	
(s
)	

Number	of	Nodes	(24	threads/node)	

ER	matrix	(n=1M,	d=4,	f=2%)	
Gather	Input	 Local	Mul<ply	 Sca?er	output	

0.0039063	

0.015625	

0.0625	

0.25	

1	

4	

16	

1	 2	 4	 8	 16	 32	 64	

Ti
m
e	
(s
)	

Number	of	Nodes	(24	threads/node)	

ER	matrix	(n=1M,	d=16,	f=20%)	
Gather	Input	 Local	Mul<ply	 Sca?er	output	

Distributed-memory	performance	of	SpMSpV	on	Edison	

A:	random;	16M	nonzeros				x:	random;		2000	nonzeros	

Remote	atomics	are	expensive	in	Chapel	

We	don’t	know	
	the	reason	

q  Exploit	available	spa.al	locality	in	sparse	manipula.ons	
–  Efficient	access	of	nonzeros	of	sparse	matrices/vectors	
–  Chapel	is	almost	there,	needs	improved	parallel	iterators	

q Use	bulk-synchronous	communica.on	whenever	
possible	
–  Avoid	latency-bound	communica.on			
–  Team	collec.ves	are	useful		

Requirements	for	achieving	high	performance	

Task	 Hardness	 Why?	
Data	structure	 medium	 Manipula.ng	domains	and	arrays	
Func.onality	 easy	 Fewer	lines	of	code	with	built-in	features	
Paralleliza.on	 easy	 No	need	to	think	about	communica.on	

Our	experience:	produc.vity	vs.	performance	

ProducJvity	(easy	to	develop	a	prototype)	

Task	 Hardness	 Why?	
Data	structure	 hard	 Manipula.ng	low	level	data	structures	
Shared-memory	 medium	 Data	parallel	iterators	for	sparse	data	
Distributed-
memory	

hard	 Needs	bulk	synchronous	
communica.on,	team	collec.ves,	etc.	

Performance	(hard	to	achieve	performance)	

q We	have	implemented	a	prototype	GraphBLAS	library	
in	Chapel		
–  Implemented	breadth-first	search	as	a	representa.ve	
algorithm	using	these	primi.ves	

q  Library	development	in	Chapel	is	easy	(rela.ve	to	C++)		

q  Chapel’s	distributed-sparse	matrix	support	is	s.ll	
under	development.	The	distributed-memory	
performance	is	expected	to	improve	over	.me.	

Summary	

q  Finish	a	complete	GraphBLAS-compliant	library	in	a		
PGAS	language	(including	Chapel)	
–  Achieving	high	performance	is	our	focus	
–  Benchmark	our	library	against	other	programming	models	
and	languages	

q  Design	complex	graph	algorithms	using	the	library	to	
demonstrate	its	u.lity		
–  Understand	the	impact	of	programming	models		on	graph	
analy.cs	

	

Future	direc.on	

q  Funded	in	part	by	DOD/ACS	and	in	part	by	DOE/ASCR		
q  Acknowledgement:	Cos.n	Iancu	(LBNL),	Brad	Chamberlain	

(Cray),	Michael	Ferguson	(Cray),	Engin	Kayraklioglu	(George	
Washington	University)	

q  References:	
–  A.	Azad	and	A.	Buluç,	IPDPS		Workshops	2017,	Towards	a	
GraphBLAS	library	in	Chapel.		

–  A.	Azad	and	A.	Buluç,	IPDPS	2017,	A	work-efficient	algorithm	
for	sparse	matrix-sparse	vector	mul.plica.on	algorithm.		

Acknowledgement	and	relevant	references	

QuesJons?	

