CHIUW 2017

Brad Chamberlain
Chapel Team, Cray Inc.
June 2, 2017

cRANY
A PRPEL

Welcome and State of the Project

COMPUTE STORE | ANALYZE

Safe Harbor Statement .

/7 N
N\

~

Kl'his presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

these forward-looking statements.
_ 0 Y,

Copyright 2017 Cray Inc.

Chapel, briefly

What is Chapel?

Chapel: A productive parallel programming language
e portable
e Open-source
e a collaborative effort

Goals:
e Support general parallel programming
e Make parallel programming at scale far more productive

=

Ay
CcCHAaRPEL
=

=

/é\ COMPUTE | STORE | ANALYZE
=

=/ Copyright 2017 Cray Inc.

Motivation for Chapel S0N

Q: Can a single language be... \
...as programmable as Python?
...as fast as Fortran?
...as portable as C?
...as scalable as MPI?
...as generic and meta- as C++7? (but using simpler notation?)
...as fun as <your favorite language here>?

A: We believe so.

Q: So why don’t we have such languages already?

A: Due to a lack of...
...long-term efforts

...resources Chapel is our attempt
...community will to change this
...developer/user co-design

...patience

A Year in the Life of Chapel .

e Two major releases per year (April / October)
e ~a month later: detailed release notes
o latest release: Chapel 1.15, released April 61" 2017

e CHIUW: Chapel Implementers and Users Workshop (~June)
e SC (November) B T Ei'"
- ’ ,’

e tutorials, panels, BoFs, posters,
educator sessions, exhibits, ...

e annual CHUG (Chapel Users Group)
happy hour

e Talks, tutorials, research visits, blog posts, ... (year-round)

A Year in the Life of Chapel

e Two major releases per year (April / October) \
e ~a month later: detailed release notes
o latest release: Chapel 1.15, released April 61" 2017

e CHIUW: Chapel Implementers and Users Workshop (~June)
e SC (November) B |

e tutorials, panels, BoFs, posters,
educator sessions, exhibits, ...

e annual CHUG (Chapel Users Group)
happy hour

e Talks, tutorials, research visits, blog posts, ... (year-round)

/é\ COMPUTE | STORE | ANALYZE
_'// Copyright 2017 Cray Inc. @

Welcome to CHIUW 2017!

the 4t annual Chapel Implementers and Users Workshop

CHIUW 2017: Keynote A

Chapel’s Home in the Landscape of
New Scientific Computing Languages

(and what it can learn from the neighbours)

Jonathan Dursi
The Hospital for Sick Children, Toronto

O)
®

CHIUW 2017: Keynote (“Why do | know that name...?”) S ‘

S \

HPCisdying, and MPl is killing it

7’,. Jonathan Dursi ¥ hpc e MPI e spark e chapel

LA RN RN NNENRNERNERNERNERNENNEHNBSERBNESRBSEHNRNERSNRSEHNNEHRBSESHSRBSEH:RBSERSEHNRSERHESRHERHERHERHE:NSHEH;M
]
. a
. "
n
[]
. a
. "
n
. "
Jonathan Dursi " .
n
n
[]
Q Toronto - :
. "
. .
u Pictured: The HPC community bravely holds off the incoming tide of new technologies and applications. Via the BBC. n
s\\ Iy g EER

g

¥y 0O 2in

This should be a golden age for High Performance Computing.

For decades, the work of developing algorithms and implementations for tackling simulation and data analysis problems at the largest possible scales was obscure if

canaca) ol el Wmeiicl Wil Westiooony important work. Then, suddenly, in the mid-2000s, two problems — analyzing internet-scale data, and interpreting an incoming flood of genomics data — arrived on the scene

gioinformaticsly cl Wchapelly (fdata)y Qfoctan with data volumes and performance requirements which seemed quite familiar to HPCers, but with a size of audience unlike anything that had come before.

gee hadoop hpc ieee754 julia

. . . Suddenly discussions of topics of scalability, accuracy, large-scale data storage, and distributed matrix arithmetic all became mainstream and urgent. The number of projects
machine-learning performance presentation

and workshops addressing these topics exploded, and new energy went into implementing solutions problems faced in these domains.
python software spark tensorflow tutorial
whitepaper In that environment, one might expect that programmers with HPC experience - who have dealt routinely with terabytes and now petabytes of data, and have years or

decades of experience with designing and optimizing distributed memory algorithms - would be in high demand.

CHIUW 2017: Keynote (“Why do | know that name...?”) S St

Pictured: The HPC community bravely holds off the incoming tide of new technologies

and applications. Via the BBC

Z=

> ©

CHIUW 2017: Research Papers KON

Identifying Use-After-Free Variables in Fire-and-Forget Tasks
Jyothi Krishna V S (//IT Madras) and Vassily Litvinov (Cray Inc.)

Towards a GraphBLAS Library in Chapel
Ariful Azad and Aydin Buluc (LBNL)

Comparative Performance and Optimization of Chapel in

Modern Manycore Architectures
Engin Kayraklioglu, Wo Chang, and Tarek El-Ghazawi (The George
Washington University)

CHIUW 2017: Technical Talks QO

Improving Chapel and Array Memory Management
Michael Ferguson, Vassily Litvinov, and Brad Chamberlain (Cray Inc.)

Try, Not Halt: An Error Handling Strategy for Chapel
Preston Sahabu, Michael Ferguson, Greg Titus, and Kyle Brady (Cray Inc.)

GPGPU support in Chapel with the Radeon Open Compute Platform
Michael Chu, Ashwin Aji, Daniel Lowell, and Khaled Hamidouche (AMD)

An OFI libfabric Communication Layer for the Chapel Runtime
Sung-Eun Choi (Cray Inc.)

Sketching Streams with Chapel
Christopher Taylor (DoD)

Entering the Fray: Chapel's Computer Language Benchmarks Game Entry
Brad Chamberlain, Ben Albrecht, Lydia Duncan, Ben Harshbarger, Elliot
Ronaghan, Preston Sahabu, Michael Noakes (Cray Inc.), and Laura Delaney
(Whitworth University)

C O,

CHIUW 2017: Planning Committee

General Chairs:
e Tom MacDonald, Cray Inc.
e Michael Ferguson, Cray Inc.

Program Committee:

e Brad Chamberlain (chair), Cray Inc.
Nikhil Padmanabhan (co-chair), Yale University
Richard Barrett, Sandia National Laboratories
Mike Chu, AMD
Mary Hall, University of Utah
Jeff Hammond, /ntel
Jeff Hollingsworth, University of Maryland
Cosmin Oancea, University of Copenhagen
David Richards, Lawrence Livermore National Laboratory
Michelle Strout, University of Arizona
Kenjiro Taura, University of Tokyo

CHIUIW 2017: Agenda (chapel.cray.com/CHIUW2017.html)

: Welcome, State of the Project
: Break
: Talks: Chapel Design and Implementation

Quick Break

: Talks: Targeting New Architectures
: Lunch

Keynote Talk: Jonathan Dursi

: Talks: Uses of Chapel

Break

: Talks: Benchmarking and Performance

Lightning Talks and Flash Discussions

: Wrap-up / Head to Dinner

CHIUW 2017: Lightning Talks & Flash Discussions — "~ s '

e \
\

e New this year! .
e Last session of the day!

e Goal: high-energy hot topics for low attention spans!

e Format: Short talks, Q&A, war stories, ...whatever!

e Sign up for a slot!

(@ ®

CHIUW 2017: Lightning Talks & Flash Discussions R

S \
\

e New this year! .
e Last session of the day!

e Goal: high-energy hot topics for low attention spans!

e Format: Short talks, Q&A, war stories, ...whatever!

e Sign up for a slot!

/é COMPUTE | STORE | ANALYZE

¢
®

Copyright 2017 Cray Inc.

CHIUIW 2017: Code Camp (Half) Day

e Tomorrow morning: 8:30-noon (room: Tangerine 5)

e Proposed topics (so far):

e write a user-defined domain map
Chapel on AWS
work on GPU support
introduction to Chapel code generation & optimizations
network atomics in Chapel’s runtime libraries
re-architect launcher scripts
unified communication diagnostics hooks
storage technologies
beef up Linear Algebra module
port gravitational n-body code to Chapel
pyChapel improvements

your idea here?

/é\ COMPUTE | STORE | ANALYZE
=

=/ Copyright 2017 Cray Inc.

SWAG and Surveys

e We have a few giveaways today:
e Chapel stickers
e Chapel microfiber wipes for screens / glasses

e We also have a CHIUW survey

e available in paper or online form—please fill one out

/é\ COMPUTE | STORE | ANALYZE

= Copyright 2017 Cray Inc.

State of the Chapel Project 2017

Releases since CHIUW 2016 .

e Since last year, two new major versions of Chapel:

e 1.14: October 6, 2016
e 1.15: April 6, 2017 < our most significant release ever!

e Significant progress in all areas of the release
e performance, memory leaks, libraries, documentation, portability, ...

e Achieving 1500+ downloads per release

Chapel 1.13.0-1.13.1 Chapel 1.14.0

1500 ’[47

1500

1000

1000 /
500 /) 4 ‘ 500 /
- 1 S

Jul 2016 Oct 2016 Jan 2017 Apr 2017 Jul 2016 Oct 2016 Jan 2017 Apr 2017

Downloads

Contributors to the Past Year’s Releases .

Contributors to 1.14/ 1.15:

Ben Albrecht, Cray Inc.

Matthew Baker, ORNL

Paul Cassella, Cray Inc.

Brad Chamberlain, Cray Inc.

Sung-Eun Choi, Cray Inc.

Marcos Cleison Silva Santana, individual

contributor

Laura Delaney, Whitworth University / Cray

Lydia Duncan, Cray Inc.

Michael Ferguson, Cray Inc.

Ben Harshbarger, Cray Inc.

Andrea Francesco luorio, Universita degli

Studi di Milano / GSoC

David Iten, Cray Inc.

e David Keaton, Cray Inc.

e Engin Kayraklioglu, George Washington
University / Cray Inc.

e Sagar Khatri, individual contributor

e Przemystaw Lesniak, individual contributor

Vassily Litvinov, Cray Inc.

Tom MacDonald, Cray Inc.

Deepak Majeti, individual contributor

Phil Nelson, Western Washington University / Cray
Michael Noakes, Cray Inc.

Nikhil Padmanabhan, Yale University
Nicholas Park, DOD

Sriraj Paul, Rice University

Kumar Prasun, individual contributor
Elliot Ronaghan, Cray Inc.

Preston Sahabu, Cray Inc.

Kushal Singh, Int'l Institute of Information
Technology, Hyderabad / GSoC

Kenijiro Taura, University of Tokyo

Chris Taylor, DOD

Greg Titus, Cray Inc.

Rob Upcraft, individual contributor

Tony Wallace, Cray Inc.

Hui Zhang, [University of Maryland]

This year saw a record number of contributors to the releases

Contributors to the Past Year’s Releases .

Contributors to 1.14/ 1.15:

Ben Albrecht, Cray Inc.

Matthew Baker, ORNL

Paul Cassella, Cray Inc.

Brad Chamberlain, Cray Inc.

Sung-Eun Choi, Cray Inc.

Marcos Cleison Silva Santana, individual

contributor

Laura Delaney, Whitworth University / Cray

Lydia Duncan, Cray Inc.

Michael Ferguson, Cray Inc.

Ben Harshbarger, Cray Inc.

Andrea Francesco luorio, Universita degli

Studi di Milano / GSoC

David Iten, Cray Inc.

e David Keaton, Cray Inc.

e Engin Kayraklioglu, George Washington
University / Cray Inc.

e Sagar Khatri, individual contributor

e Przemystaw Lesniak, individual contributor

Vassily Litvinov, Cray Inc.

Tom MacDonald, Cray Inc.

Deepak Majeti, individual contributor

Phil Nelson, Western Washington University / Cray
Michael Noakes, Cray Inc.

Nikhil Padmanabhan, Yale University
Nicholas Park, DOD

Sriraj Paul, Rice University

Kumar Prasun, individual contributor
Elliot Ronaghan, Cray Inc.

Preston Sahabu, Cray Inc.

Kushal Singh, Int'l Institute of Information
Technology, Hyderabad / GSoC

Kenijiro Taura, University of Tokyo

Chris Taylor, DOD

Greg Titus, Cray Inc.

Rob Upcraft, individual contributor

Tony Wallace, Cray Inc.

Hui Zhang, [University of Maryland]

17 Cray employees, 3 Cray summer interns/contractors, 15 external contributors

The Chapel Team at Cray (May 2017)
AARRAXXER XX HKEKX XXX
KRR

XXX

XY

TEEEEn mn

XX
TEEEER mnn S

5 KR
‘. \ / . / /\/
| oo e
o KX XU
o %ﬂﬂﬂﬁﬂ??fﬂﬂﬁhﬁﬂ%f;ng;*,@A,

SOSERRLLT
‘:‘ ok ')(-XV;‘:\ X XX
‘ £ Lo //.:7‘.’:

o

TR
Z

BRXCOBERRRRK
N vl g _.‘/ AV 999
g S O et

i -
[l I

Chapel R&D Organizations o

HERIOT ,,: THE GEORGE \/\/-/\
mwart LU e EEE R

UNIVERSITY WASHINGTON UNIVERSITY

‘ % RICE @ N

MARYLAND

51K

C ’ THE UNIVERSITY OF TOKYO

Umvets ity

B Lawrence Livermore
National Laboratory

-~

‘ ?
frreereer |

BERKELEY LAB
Lawrence Berkeley Sandia National Laboratories

National Laboratory

(and several others...)

http://chapel.cray.com/collaborations.html

@ @)

Single-Locale Performance

Single-Locale Performance: the past year

e Overall, single-locale performance improved dramatically

200
7
B 150
§
8
8
K]
E 100
50/
0
Apr 2016 Jul 2016 0ct 2016 Jan2017
Reductions Time (sec)
08
7
2 06
s S B
8
&
@ 04
E
£
02
0
Apr 2016 Jul 2016 Oct2016 Jan2017
HPCC PTRANS Time (numrows=5733)
20
g L
§
8
3
A 10, \
2 ~
£ ™~
5 \
ol |
Apr 2016 Jul 2016 Oct2016 Jan2017
HPCC RA Time
0,05,
0.04 A
z
2
g om
2
&
2 o0
E
001
0 |
Apr 2016 Jul 2016 0ct 2016 Jan2017

Serial 1D Array Performance

Time (seconds)

/

Time (seconds)

Time (seconds)

Time (seconds)

0
Apr 2016

25

20

Array Vector Operations

Jul 2016 0ct 2016 Jan2017

Empty Task Spawn Timings (500,000 x maxTaskPar)

06

04

02

08

0
Apr

05

0
Apr

r 201 Jul 201 Oct 201 Jan 201
HPCC FFT Time

2016 Jul 2016 Oct2016 Jan2017
HPCC HPL Time

2016 Jul 2016 0ct 2016 Jan2017

Time (seconds)

Time (seconds)

Time (seconds)

Time (seconds)

Meteor Shootout Benchmark (n=2098)

02 \

e

o
Apr 2016 Jul 2016 0ct 2016 Jan2017
N-body variations
70
60
L
—
40 o
30!
20
10
0 1
Apr 2016 Jul 2016 0Oct 2016 Jan2017
miniMD LJ (--size=10) Time
14
12
10
8
6 ——
4 —
2
ol |
Apr 2016 Jul 2016 0ct2016 Jan2017
SSCA#2 (SCALE=8)
015
0.1
005
0
Apr2016 Jui 2016 0ct 2016 Jan 2017

Time (seconds)

Time (seconds)

Time (seconds)

Time (seconds)

cl Redux k (n=6,000,000)
6
5 %\
' ———
3
2
1
o
Apr 2016 Jul 2016 Oct 2016 Jan2017
d Fasta Sh
7
—
6 —
5 = —
—_
4
3
2
1
oL L
Apr 2016 Jul 2016 Oct 2016 Jan2017
LCALS (raw_omp, short)
800
600
400
200
ol
Apr 2016 Jul 2016 Oct 2016 Jan2017
LULESH (release)
14
12
1
08
06
04
02
0
Apr 2016 Jul 2016 Oct 2016 Jan2017

\

n] | I
LCALS: Serial Timings, Chapel 1.13.0 oot
e \
\
Long problem size
(Similar results for medium Normalized time —
el shorproviem siee) Serial Chapel vs g++ serial reference is 1.0 |

N

Normalized Time
O O ~ O D O w

0. | ‘
oooQWromAakFEQO®A NEEEEFEsSLAan
||_|c\1—IE|::J<tZP808§O<D,:QQ§&NP
SISO za3 o _ml S aamn
COO00OD =QagaO=qgz" mw, 1 129
NPT Xe, Qi< 133 ro--oo
W>0>0 <Ly xTig 22
D:oghl JT 2> wWwao= |
DX =5 - I zz0O0 el RN TR TS
DW= = Z< Z LW
L = =3
(TETT]
o m
&

B g++ serial ®Chapel serial

HYDRO_2D

¥Xxaorzoz
Dm<<N§
O0=% A |
W IS Q-
x O X '
1Z2Qa 9
_D<—|IE
_lI ED' | [
=z oQ
| ==
(D LL
chpl --fast
--no-ieee-float

g++ -Ofast -fopenmp

LCALS: Serial Timings, Chapel 1.14.0 oot

Long problem size _ _
(Similar results for medium Normalized time —

el shor proplem sizee) Serial Chapel vs g++ serial reference is 1.0

N

Normalized Time
O O ~ O D O w

0. I
oooaurLcomAkEQNOA NRFEFFEFSLOOQXxOoEZAQZ
_I_I_IN—|E|:D{ZFQOS§O<D(Q_>Q_)§L_'—NFNDD{<<N§
<< < I ZNDT I(_)m I W DDU)D(_)lol Ioo§gol |
COOO2 =000 Q~az w1 1229W I 58
I WO Qi< 13O rorbEEoLoEx OX S X,
LIJ>-D>IQ <Ly xrig aQLRD o |<D|_|<(Dfr
oo, Jd-F> wo= lli i >zak3I>x=
20X S5 - r =z=z0 ey TTRETS T323a Tk
U)LU>Q = ZL<x Z L [D.lD
Az | T O -0 < Z
W w = <
o 0 =
o L © -
B hpl —f
chpl --fast
W g++ serial MWChapel serial p
--no-ieee-float

g++ -Ofast -fopenmp

LCALS: Parallel Timings, Chapel 1.14.0 oot

e Parallel variants still lagged behind the reference in 1.14 .
e between 1.5X and 8X slower for long problem size

Normalized time —
Parallel Chapel vs OMP parallel reference is 1.0

9

q‘,8

E 7

= 6

? 5

S

‘—54

£ 3
ol ol ol o of o of o ol ol s

O @ © O ¢ K & X80
o A R A AN V

KX c)‘?\'@cv\)‘z ¢S P o})vqf\c)/
Q,/A/Q/AQO ?‘OQ/Q?Q

& & Y

Eg++ OMP ®Chapel parallel

(@ ®

LCALS: Parallel Timings, Chapel 1.15.0 oot

e Chapel 1.15 closed the gap significantly ‘

e ~3-4x speedup: on par or very close to reference for most kernels

Normalized time —
Parallel Chapel vs g++/OMP parallel reference is 1.0

9
o 8
E 7
= 6
2 5
N
= 4
E 3
§ |
1
A N R RN R R
O O W O ¥ KL L ¥ v K WP
& & & LS NG Q§ o/
& A Qv AQ/ QO Q &7 e X
OQ‘ Q~® O\‘/’D O«/ O\Y X L
& & v 9 N
QQ~ Q((’

Eg++ OMP ®Chapel parallel

(@ ®

The Computer Language Benchmarks Game

The Computer Language
Benchmarks Game

64-bit quad core data set

Will your toy benchmark program be faster if you write it in
a different programming language? It depends how you write

Which programs are fast?
Which are succinct? Which are efficient?

Ada C C# C++ Dart

Erlang F# Fortran Go Hack

Haskell Java JavaScript Lisp Lua

OCaml Pascal Perl PHP Python

Racket Ruby JRuby Rust Smalltalk

Swift TypeScript

{ for researchers } fast-faster-fastest

stories

©
\
CRAY |

Since CHIUW 2016,

Chapel entry completed
and listed on site

CLBG: Fast-faster-fastest graph (Sep 2016) A

Relative performance, sorted by geometric mean

v How many times slower?
S300[8t 883 g SPOUE 033
O T =5 =2 © c v~ 0 0 = © S O F

; 0oGEE" =, @20 T2
o 100 T \n ~0 =3 © 0 O ~
4%50
@ 30
2
g T

10 T T
E T T .[_I_'l"l'
-E > I T TT I

3 'I' 'I'
5 1 LT Loy § P
g 1‘éllll | J' J‘ l
o

benchmarks game 09 Sep 2016 ub4q

CLBG: Fast-faster-fastest graph (May 2017) A

Relative performance, sorted by geometric mean

0 How many times slower?

Sawlg %1 EZITEEL TE

= Z o Z ©o O c = O » [©

o O | o c -0 o5 S

100 . t o9 5 6L T©

o — ‘ A |

a 50 =

:g’:, 30 i
i TT e
- 10 T _[-[T -

)

E 5 S A | i

— 3

% T il

(o — _ | e
1=l LTI 171

o benchmarks game 09 May 2017 ub4q

CLBG: Fast-faster-fastest graph (May 2017) .

Relative performance, sorted by geometric mean \

W
o
o

program time / fastest program time

GNAT

. 58 §I8Z 4
‘[TT-[_-T_[TT
i.—i& _-_i_lJ—_L-J- lJJJ_L

How

many times slower?

benchmarks game

09 May 2017 ub4q

Multi-Locale Performance

PPAVY

PGAS Applications Workshop

Monday, November 14th, 2016

Held in conjunction with SC16

In cooperation with:

Optimizing PGAS overhead in a multi-locale
Chapel implementation of CoMD

Riyaz Haque and David F. Richards

LLNL-PRES-708978 B Lawrence Livermore

This work was performed under the auspices of the U.S. Deﬁam'nent of Ener\g{ bg Lawrence Livermore National Laboratory
under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LL

National Laboratory

Performance is comparable to the reference implementation

= Code compiled using Chapel v1.13
— The compiler itself was compiled with gcc-4.9.2, ibv on gasnet and qthreads as the threading
framework

= Executed on 1-32 nodes of 64-bit Intel Xeon processors
— 12 cores, 24 GB RAM, Infiniband high-speed interconnect

8 locales 32 locales
B CoMD-Chapel ®CoMD-Ref] HCoMD-Chapel ®CoMD-Ref

— 300 m 100

g | Lower S

) 200 . n

s is o

g 100 - £

- 0 — bette I" = 0 b_

total force halo total force halo
CoMD-Chapel | 270.73 212.09 21.60 CoMD-Chapel 95.81 58.06 22.26
 CoMD-Ref 236.03 184.78 17.22 CoMD-Ref 59.24 40.52 11.35
Steps Steps

CoMD-Chapel vs. CoMD-Ref, 4x10¢ atoms

LLNL-PRES-708978

This work was performed under |
under contract DE-AC52-07NA2!

CoMD-Chapel performs to within 87% (8 locales) to 67% (32 locales) of the reference

‘ ‘ Lawrence Livermore National Laboratory NIS«('_&} 14

LLNL-PRES-708978 National Nuclear Securty Adeinistraton

Multi-locale Performance

e Significant multi-locale performance improvements

e NO known regressions

ISx (weakISO) --n=5592400

miniMD --size 20 (sec)

o o
c c
o o
[v] [v]
X X
Q Q
E £
[[
Release Release
reference —o— ugni-muxed —&— gn-mpi —e— reference —o— ugni-muxed —&—
ugni-gthreads —@— gn-aries —®— ugni-qthreads —&—
SSCAZ2 Size 22, 2* Vertices, Time DOE: Lulesh Dense Time (sec) sedovl5oct
160
140 _
ﬁ 120 ﬁ
S 100 3
4 80]
g 60 -ttt oo oo g
= L O ettt ilieliiietieiiefietietiii ittt =
20 [
0 1] 0 1 —
I.13 I.14 I.15 [.13 I.14 I.15
Release Release
ugni-qthreads —&— ugni-qthreads —&— gn-aries —®—
ugni-muxed —&— ugni-muxed —&—
’C COMPUTE | STORE | ANALYZE
= Copyright 2017 Cray Inc.

'
. CRAY |
Multi-locale Performance 08
) \
\

e Significant multi-locale performance improvements \
e Nno known regressions (qthreads now outperforms muxed even more)

HPCC FFT Perf (Gflop/s) n=2%0 HPCC HPL Release Perf (Gflop/s) n=255, nb=32
0.003 [===
0.0025 |- T
Y Y 0002 ‘i
o o
9 S 00015
© © 000l
0.0005
0
1.13 .14 I.15
Release Release
ugni-qthreads —&— gn-aries —®— ugni-qthreads —&— gn-aries —®—
ugni-muxed —®— gn-mpi —&— ugni-muxed —®— gn-mpi —&—
HPCC: PTRANS Perf (GB/sec) n=2,000, nb=100 HPCC: RA-atomics Perf (GUPS) n=233 N_U=10M
0.03 [~
0.025
0.02 "
B 0015 5
(] ’ o
0.0l
0.005
0 - y
1.13 I.14 [.15 [.13 I.14 I.15
Release Release
ugni-qthreads —&— gn-aries —®— ugni-qthreads —&— gn-aries —®—
ugni-muxed —&— gn-mpi —&— ugni-muxed —&— gn-mpi —&—
2N COMPUTE | STORE | ANALYZE

= Copyright 2017 Cray Inc.

ISx Execution Time: MPIl, SHMEM N

e 64 nodes on Cray XC
ISx weaklSO Total Time

14

RN
N

N
o

o

=—=SHMEM
—MPI

Time (seconds)

1 2 4 8 16 32 64
Nodes (x 36 cores per node)

/é\ COMPUTE | STORE | ANALYZE

=/ Copyright 2017 Cray Inc.

ISx Execution Time: MPI, SHMEM, Chapel 1.14 <= 37."

e 64 nodes on Cray XC *
ISx weaklSO Total Time

100
90

80
70
60

50 e=Chapel 1.14
—MPI

Time (seconds)

30
20

:’-—-

10

1 2 4 8 16 32 64
Nodes (x 36 cores per node)

ISx Execution Time: MPI, SHMEM, Chapel .

e 64 nodes on Cray XC
ISx weaklSO Total Time

100
90

80
70

60
=Chapel 1.14

=—=SHMEM
40 —MPI

50

Time (seconds)

30 —Chapel 1.15
20

10

1 2 4 8 16 32 64
Nodes (x 36 cores per node)

ISx Execution Time: MPI, SHMEM, Chapel 1.15 < =« "

e 64 nodes on Cray XC i
ISx weaklSO Total Time

14

RN
N

N
o

o

e—=SHMEM
6 —MP]
—=Chapel 1.15

Time (seconds)

1 2 4 8 16 32 64
Nodes (x 36 cores per node)

/é\ COMPUTE | STORE | ANALYZE

= Copyright 2017 Cray Inc.

\
=AY ||
RA Performance: Chapel vs. MPI o
e \
\

Performance of RA (atomics)

/
0 o~
16 32 64 128 256
Locales (x 36 cores per locale)
ref MPI no-bucketing —*— .15 utq ——
ref MPI bucketing —=— [.15 u+q oversubscribed ----¢----

(@ ®

Performance: Summary .o

Summary:
e Chapel has achieved dramatic performance improvements this year

Next steps:
e Multi-locale:
e benchmark-driven performance and scalability improvements
e particularly for stencils, PRKs, motivating applications
e Single-locale:
e vectorization

/é\ COMPUTE | STORE | ANALYZE
=

= Copyright 2017 Cray Inc. @

Memory Improvements

Reduction in Memory Leaks A

Summary:
e We've closed the last major source of compiler-introduced leaks:
Memory Leaks for all Tests — Total Leaked Memory
1.00e+9
8.00e+8
» 6.00e+8
2
z
4.00e+8
2.00e+8
0 -
Jul 2016 Oct 2016 Jan 2017 Apr 2017
Next Steps:

e Close user-introduced leaks in tests themselves

\
< cRAY
Reduction in Memory Leaks .o
e \
\

Summary:
e We've closed the last major source of compiler-introduced leaks:

Memory Leaks for all Tests — Total Leaked Memory

1.00e+9

8.00e+8

For further details, see Michael Ferguson’s talk after the break

bytes

4.00e+8

2.00e+8
0. L
Jul 2016 Oct 2016 Jan 2017 Apr 2017
Next Steps:

e Close user-introduced leaks in tests themselves

C

Library Improvements

Library Improvements in 1.14-1.15

New Libraries:

e Date/ Time

e Owned / Shared for delete-free class objects

e Futures
BLAS

MPI

ZeroMQ
Biginteger
MatrixMarket
RangeChunk

LinearAlgebra (first draft)

Improved Libraries:

e FFTW
e Sort/Search

COMPUTE

STORE

Copyright 2017 Cray Inc.

ANALYZE

Library Improvements in 1.14-1.15 A

New Libraries:
e Date/Time
e Owned / Shared for delete-free class objects
e Futures
BLAS
MPI
ZeroMQ (contributed by non-Cray developers)
Biginteger
MatrixMarket
RangeChunk
LinearAlgebra (first draft)

Improved Libraries:
e FFTW
e Sort/Search

/é\ COMPUTE | STORE | ANALYZE

= Copyright 2017 Cray Inc.

Libraries: Summary

Chapel Documentation 1.15

Search docs

Quickstart Instructions
Using Chapel
Platform-Specific Notes
Technical Notes

Tools

Quick Reference
Hello World Variants
Primers

Language Specification

Built-in Types and Functions

B Standard Modules

Assert

Barrier

Biginteger

BitOps

Buffers

CommDiagnostics

DateTime

Dynamiclters

FileSystem

GMP

Help

10

List

Math

Memory

Docs » Standard Modules

Standard Modules

Standard modules are those which de|
Standard Library.

All Chapel programs automatically u

e Assert

e Barrier

« Biginteger

« BitOps

« Buffers
 CommbDiagnostics
e DateTime

* Dynamiclters
e FileSystem
« GMP

* Help

« IO

e List

« Math

¢ Memory

e Path

e Random

¢ Reflection

* Regexp

e Spawn

e Sys

« SysBasic

e SysCTypes

e SysError

e Time

e Types

o UtilReplicatedVar

View page source

A Chapel Documentation 1.15

Search docs

Quickstart Instructions
Using Chapel
Platform-Specific Notes
Technical Notes

Tools

Quick Reference

Hello World Variants
Primers

Language Specification
Built-in Types and Functions

Standard Modules

B Package Modules
BLAS
Curl
FFTW
FFTW_MT
Futures
HDFS
HDFSiterator

Docs » Package Modules

Package Modules

Package modules are libraries that currently live outside of the CH
because they are not considered to be fundamental enough or beq

enough for inclusion there.

* BLAS

e Curl

o FFTW

e FFTW_MT

e Futures

« HDFS

+ HDFSiterator
o LAPACK

e LinearAlgebra
« MPI

e« Norm

e OwnedObiject
¢ RangeChunk
o RecordParser
e Search

e SharedObject
e Sort

¢ VisualDebug
¢ ZMQ

Libraries: Summary

Chapel Documentation 1.15

Quickstart Instructions

Using Chapel

Platform-Specific Notes

Technical Notes

Tool

Summary: Chapel has an increasingly capable suite of ough or b
libraries

Dynamiclters
FileSystem
GMP

Help

10

List

Math

Memory

Docs » Standard Modules

Standard Library.

All Chapel programs automatically us

Standard Modules

earch docs
Standard modules are those which de|

View page source

A Chapel Documentation 1.15

Docs » Package Modules

Package Modules

Next Steps: Continue to grow this suite
Make it simpler for users to do so as well

Support a Chapel package manager

e Regexp
e Spawn
e Sys

« SysBasic

e SysCTypes

e SysError

e Time

e Types

o UtilReplicatedVar

@

BLAS

Curl

FFTW
FFTW_MT
Futures
HDFS
HDFSiterator

¢ OwnedObject
¢ RangeChunk
¢ RecordParser
e Search

e SharedObject
e Sort

¢ VisualDebug
¢ ZMQ

Interoperability Improvements .o

e Users can now pass Chapel function pointers to C \

e Extern block support is far more robust
e Sample import of GSL routines from C:

extern ({
// Special functions
#include "gsl/gsl sf.h"
// Constants
#include "gsl/gsl const.h"
// Integration
#include "gsl/gsl integration.h"
// Random numbers and distributions
#include "gsl/gsl rng.h"
#include "gsl/gsl randist.h"
#include "gsl/gsl cdf.h"
// Interpolation
#include "gsl/gsl interp.h"
#include "gsl/gsl spline.h"

}

e Improvements to c2chapel script (see version on master)

C ®

Documentation Improvements

Documentation Improvements

e Significant Expansions / Improvements to online docs:

Chapel Documentation 1.14

Quickstart Instructions
Using Chapel
Platform-Specific Notes
Technical Notes

Tools

Quick Reference
Hello World Variants
B2 Primers
Language Basics
Iterators
Task Parallelism
Locality
Data Parallelism
Library Utilities
Numerical Libraries

Tools

Docs » Primers

Primers

Language Basics

e Variables

e Procedures

o Classes

* Generic Classes

e Variadic Arguments (var args
* Modules

Iterators

e |terators
e Parallel Iterators

Task Parallelism

e Task Parallelism
e Sync/Singles
e Atomics

Chapel Documentation 1.14

Quickstart Instructions
Using Chapel
Platform-Specific Notes
Technical Notes

Tools

Quick Reference
Hello World Variants
Primers
Language Specification
Built-in Types and Functions
Standard Modules
Package Modules
Standard Layouts and Distributions
© Chapel Users Guide (WIP)
Overview
Base Language
Task Parallelism
Data Parallelism

Locality

Chapel Evolution

Archived Language Specifications

Base Language

This is the core of Chapel and what remains when all features in support of parallelism and locality
are removed.

Hello world: simple console output
Variable Declarations

e Basic Types: booleans, numbers, and strings
e Literal Values for Basic Types

o Casts: explicit type conversions

o for-loops: structured serial iteration

Zippered Iteration

(more to come...)

Task Parallelism

These are Chapel's lower-level features for creating parallel explicitly and synchronizing between
them.

Task Parallelism Overview

¢ begin Statements: unstructured tasking
cobegin Statements: creating groups of tasks
coforall-loops: loop-based tasking

(more to come...)

Data Parallelism

These are Chapel's higher-level features for creating parallelism more abstractly using a rich set of
data structures.

o forall-loops: data-parallel loops
(more to come...)

Locality

These are Chapel's features for describing how data and tasks should be mapped to the target

hitoact, fnrih £ noct, " Lakili

O,

Pages of Online Docs across Releases

250

200

150

100

50

1.13

—Pages of online documentation

1.14

1.15

Portability / Packaging Improvements

Intel Xeon Phi (“KNL”) locale model SO0

e Chapel can target KNL's MCDRAM via on-clauses

on here.highBandwidthMemory () {

x = new myClass () ; // placed in MCDRAM
on here.defaultMemory () {
y = new myClass () ; // placed in DDR

on y.locale.highBandwidthMemory () {
z = new myClass () ; // same locale as y, but using MCDRAM

Other Portability / Packaging Improvements

o AWS EC2

e Windows 10 bash shell

e Docker package now available

e ARM64 support

e Support for Chapel configuration .dotfiles

e Improved portability across various *nix flavors

e in-progress:
e Debian
e AMD
o OFI/ libfabric

Other Portability / Packaging Improvements .o

e AWS EC2 \
e Windows 10 bash shell

e Docker package now available

e ARM64 support

e Support for Chapel configuration .dotfiles

e Improved portability across various *nix flavors

e in-progress:
e Debian
e AMD For further details on the AMD and OFI / libfabric

o OFI|/libfabric SN YTt oo portability talks by Mike Chu and
Sung-Eun Choi before lunch

Tool Improvements

chplvis: Chapel Execution Visualization Tool o

B [=]o[x|
File View Data Tags O
n N p [=]
file: E3 tag: computation File View Data Tags
L o ok 88 file: TREEvis

[=]ax]

T

1 max Tasks: 561 File Locale
max Comms: 3680

B fiere1 - ELE]

File Locale
1 max Concurrent: 6
0 16 3. S max Comms: 12 file: E1
0 o - T 1 max Concurrent: 6
» Concurrency for Locale 0, tag ALL, max 6, max Cl AN max Comms: 12

Get from 4 at modules/standard/10.chpl:4508

@ ProCTIanmErnTEautype T TTIam T ypeEST WITETT TTaTm TypeS I 1 :l
var tupleval: t;

for paramiin 1..numTypes do
tupleVal(i) = this.read(t(i));
return tupleval;

T .
: T
™
(Focir)

- // documented in style= error= version
pragma "no doc"
32 inline proc channel.write(args ...?k, out error:syserr):bool {
if twriting then compilerError("write on read-only channel");
error = ENOERR;
on this.home {
T for paramiin 1.k {
48 if lerror {
error = _write_one_internal(_channel_internal, kind, args(i));
} —
T }
this.unlock();
}
63 T - return !error;
|- // documented in style= error= version

pragma "no doc"
inline proc channel.write(args ...7k):bool {

http://chapel.cray.com/docs/latest/tools/chplvis/chplvis.html ==zzea==mon:

[l

D

Core Improvements

Language Improvements .o

e Improvements: \
improved array semantics

improved support for generic objects

first-class ‘void’ type

module-level de-initializers

forwarding fields in objects

fixed where-clause support

e In-Progress:
e initializers (constructor replacement)

UEIREEURIEE] Sec Preston Sahabu’s talk this morning

(@ ®

Domain Map Improvements o

New distributions: .
e Stencil distribution
e Sparse Block distribution (needs further tuning)

See early block sparse results in
Ariful Azad’s talk this afternoon

Domain map improvements:
e Added locality queries to distributed domains/arrays
e Simplified domain map standard interface

Misc Improvements .

e Open-sourced ‘ugni’ communication layer .

e Support for stack traces on program halt()s (GSoC project)

(@ ®

Meta Stuff

Google Summer of Code 2017 RS

e Google Summer of Code i

e Google’s way of supporting the open source community
e Chapel had 2 successful students in GSoC 2016

Google Summer of Code 2017:
e Przemyslaw Lesniak — LLVM backend

e Mentor: Michael Ferguson

e Sarthak Munshi — Cryptography module

e Mentor: Andrea Francesco lurio

e Louis Jenkins - Distributed data structures
e Mentor: Engin Kayraklioglu

e Nikhil Mahendran - Chapel online
e Mentors: Ashish Chaudhary and Ben Albrecht

/é\ COMPUTE | STORE | ANALYZE
,// Copyright 2017 Cray Inc. @

Chapel on Facebook and Twitter S A

= \
0 Home , Moments ’ Notifications p Messages 4 Search Twitter | \
7~ Chapel Language TWEETS FOLLOWING FOLLOWERS LIKES LISTS MOMENTS
N @ChapelLanguage 286 13 153 57 1 0 \
\
. /7~=> Chapel Language @ChapelLanguage - May 30
S
'i Chapel Programming Language Q ' @ If you've just joined us, we've been tweeting complete 140-character Chapel

programs for fun (#Chapel140). Here's a silly "O(n)" sort entry:
Page Messages Notifications Insights Publishing Tools

——————— ———— ————— —

A.ﬁush_béék(a);
ifs Liked v X\ Following~v | 4 Share @ -
2N coforall a in A {

6 Chapel Programming Language S 'Leep (a) .
X2/ May 29 at8:21am- @ p ’
writeln(a);
7/ As though it weren't enough that we asked him to give a keynote talk for
/4 us at CHIUW 2017 (at IPDPS) this week, Jonathan Dursi has written a new }
¢ blog post comparing and evaluating Chapel and Julia:
https://www.dursi.ca/post/julia-vs-chapel.html
Chapel '
Programming Should I use Chapel or Julia for my $ cat sleepsort.stdin
next project?

Language proj 52968141037

R&D computing at scale.

@ChapelLanguage $. /SleepSO e = Sleepso ri.stdan

Home
| DURSICA 2
Posts 3
Videos 4
188 people reached
Photos 5
il Like #8 Comment A Share C~ -
About & pg =
Likes 0 Vladimir Fuka, Russel Winder and 3 others
1 share
o ~r
rite a comment...
Manage Promotions &_// &)

(@ ®

Chapel YouTube Channel

Yllll ‘ Search Q
N> .
C Chapel Parallel Programming Language
=2/ 29 subscribers
HOME VIDEOS PLAYLISTS CHANNELS ABOUT O\

Chapel videos PLAY ALL

) The Audacity of Chapel: Scalable Parallel Programming Done Right - Brad
smatdoss Producsiy” syt <=2 Chamberlain [ACCU 2017]

ACCU Conference « 99 views ¢« 1 day ago

Programming language designers have to date largely failed the large-scale parallel computing
community, and arguably even parallel programmers targeting desktops or modest-scale clusters.

CHIUW 2016 keynote: "Chapel in the (Cosmological) Wild", Nikhil
Padmanabhan

Chapel Parallel Programming Language * 279 views * 10 months ago

This is Nikhil Padmanabhan's keynote talk from CHIUW 2016: the 3rd Annual Chapel Implementers and
Users workshop. The slides are available at: http://chapel.cray.com/CHIUW/2016/Padmanabhan-

Chapel Productive, Multiresolution Parallel Programming | Brad Chamberlain,
Cray, Inc.

ANL Training * 671 views « 7 months ago

Presented at the Argonne Training Program on Extreme-Scale Computing, Summer 2016. Slides for this
presentation are available here: http://extremecomputingtraining.anl.gov/sessions/chapel-producti...

Pycon 2016: Fast Python! Don't Bother?
PyCon UK « 4.5K views * 7 months ago

ODenet

Chapel StackOverflow and GitHub Issues

N

Tagged Questions

Chapel, the Cascade High Productivity Language, is a parallé

learn more...

2

votes

answers

22 views

3

votes

24 views

2

votes

45 views

3

votes

stackoverflow Questions

Jobs

top users synonyms

Can one generate a grid of the Localj

If | run the following code: use BlockDist; confi
0..#dimension}; const matrixBlock: domain(2) d

chapel

Is “[<var> in <distributed variable>]" et

| noticed something in a snippet of code | was
= Space; var A: [D] int; [a in A] a = a.locale.id;

syntax chapel

| want to compute some information in parallel

Get Non-primitive Variables from with:]
my requirement is to retrieve a domain (and of

chapel

Is there a default String conversion m¢

Is there a default method that gets called when
__str__in Python.) | want to be able to do the

Documentation

Tags Users Q_ [chapel]

\
O This repository Pull requests Issues Marketplace Gist
] chapel-lang / chapel @Watchv 45 | Y Unstar 455 | Y Fork 145
Code @® Issues 292 Pull requests 26 Projects 0 Settings Insights ~
Filters ~ is:issue is:open Labels Milestones m
| @® 292 0pen v 77 Closed Author ~ Labels ~ Projects ~ Milestones v Assignee v Sort ~
1 ® Implement "bounded-coforall" optimization for remote coforalls area: Compiler
type: Performance
#6357 opened 13 hours ago by ronawho
1 (® Consider using processor atomics for remote coforalls EndCount area: Compiler 113
type: Performance
#6356 opened 13 hours ago by ronawho 0of 6
~ (® make uninstall area: BTR |type: Feature Request
#6353 opened 14 hours ago by mppf
1 ® make check doesn't work with ./configure area: BTR a7
#6352 opened 16 hours ago by mppf
® Passing variable via in intent to a forall loop seems to create an iteration-private variable, J2
not a task-private one area: Compiler |type: Bug
#6351 opened a day ago by cassella
1 ® Remove chpl_comm_make_progress area: Runtime easy |type: Design 1
#6349 opened a day ago by sungeunchoi
® Runtime error after make on Linux Mint area: BTR user issue 3115
#6348 opened a day ago by danindiana

Chapel on cyber-dojo

the place to practice programming

100% of your donation

buys
Raspberry Pi computers to .I'.n'ﬁ:
* : help children learn to

program

cyher-tlojo Foundation

Commercial use of the public server requires a license
rdojo Foundation issues licenses
100% of the license fees buy Raspberry Pi computers to help children learn to program
Hosting costs for the public server are paid by Cucumber Limited

Coimbatore, India
o
Bray, Ireland

Scottish Charitable Incorporated Organisation
(magic number SC045890)

cyber-dojo is open sourced on github
Nadya Sivers drew the fantastic animal images
Jon Jagger designs and builds cyber-dojo

The starting files for your
chosen language+tests are
always a function called
answer that returns 6 * 9
and a test called 1ife,
the universe, and
everything that expects 42

The starting files are
unrelated to your chosen
exercise. They are simply

an example to start you
off.

Tests must complete in 10
seconds.

switch te custom cheices

assert

What’s Next?

Top Chapel Priorities for version 1.16

e Wrap up key language features:
e initializers
e error-handling
e delete-free class idioms (Shared, Owned)

e Package Manager

e Benchmark-/ App-/ User-driven...
...performance tuning
...library expansions

/é\ COMPUTE | STORE | ANALYZE

= Copyright 2017 Cray Inc.

Our #1 Challenge N

e How to grow the user and developer communities? .

e How to encourage people to look at Chapel again?
e oOvercome impressions made in our young, awkward years...

‘Scientific computing communities are very wary of new technologies (it took
10+ years for Python to start getting any traction), with the usual, self-fulfulling,
fear being “what if it goes away?”

- Jonathan Dursi, from Should | Use Chapel or Julia for my next project?

CHIUIW 2017: Agenda (chapel.cray.com/CHIUW2017.html)

: Welcome, State of the Project
: Break
: Talks: Chapel Design and Implementation

Quick Break

: Talks: Targeting New Architectures
: Lunch

Keynote Talk: Jonathan Dursi

: Talks: Uses of Chapel

Break

: Talks: Benchmarking and Performance

Lightning Talks and Flash Discussions

: Wrap-up / Head to Dinner

}
. . CRAY |
Legal Disclaimer SO0
e \
\
Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.:. ACE, APPRENTICEZ,
CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE,
THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

cRANY
A RPEL

