
C O M P U T E | S T O R E | A N A L Y Z E

Chapel Boot Camp

Ben Albrecht
Chapel Team, Cray Inc.

June 2, 2017

C O M P U T E | S T O R E | A N A L Y Z E

This presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

Safe Harbor Statement

Copyright 2017 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Motivation for Chapel

Q: Why doesn’t HPC programming have an equivalent to
Python / Matlab / Java / C++ / (your favorite programming language here) ?
● one that makes it easy to get programs up and running quickly
● one that is portable across system architectures and scales
● one that bridges the HPC, data analysis, and mainstream communities

A: We believe this is due not to any particular technical
challenge, but rather a lack of sufficient…
…long-term efforts
…resources
…community will
…patience

Chapel is our attempt to reverse this trend!

Copyright 2017 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

What is Chapel?

Chapel: An emerging parallel programming language
● portable
● open-source
● a collaborative effort
● a work-in-progress

Goals:
● Support general parallel programming

● “any parallel algorithm on any parallel hardware”
● Make parallel programming far more productive

Copyright 2017 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

What does “Productivity” mean to you?

Copyright 2017 Cray Inc.

Recent Graduates:
“something similar to what I used in school: Python, Matlab, Java, …”

Seasoned HPC Programmers:
“that sugary stuff that I don’t need because I was born to suffer”

Computational Scientists:
“something that lets me express my parallel computations
without having to wrestle with architecture-specific details”

Chapel Team:
“something that lets computational scientists express what they want,
without taking away the control that HPC programmers want,
implemented in a language as attractive as recent graduates want.”

want full control
to ensure performance”

C O M P U T E | S T O R E | A N A L Y Z E

Chapel is Portable

Copyright 2017 Cray Inc.

● Chapel is designed to be hardware-independent

● The current release requires:
● a C/C++ compiler
● a *NIX environment (Linux, OS X, BSD, Cygwin, WSL, …)
● POSIX threads
● RDMA, MPI, or UDP (for distributed memory execution)

● Chapel can run on…
…laptops and workstations
…commodity clusters
…the cloud
…HPC systems from Cray and other vendors
…modern processors like Intel Xeon Phi, GPUs*, etc.

* = not yet supported in the official release

C O M P U T E | S T O R E | A N A L Y Z E

Chapel is Open-Source

Copyright 2017 Cray Inc.

● Chapel’s development is hosted at GitHub
● https://github.com/chapel-lang

● Chapel is licensed as Apache v2.0 software

● Instructions for download + install are online
● http://chapel.cray.com/download.html

C O M P U T E | S T O R E | A N A L Y Z E

The Chapel Team at Cray (May 2017)

Copyright 2017 Cray Inc.

14 full-time employees + 2 summer interns
(one of each started after photo taken)

C O M P U T E | S T O R E | A N A L Y Z E

Chapel Community R&D Efforts

Copyright 2017 Cray Inc.

http://chapel.cray.com/collaborations.html

(and several others, some of whom you will hear from today…)

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2017 Cray Inc.

üChapel Motivation and Background
ØChapel in a Nutshell
● Chapel Project: Past, Present, Future
● Chapel Resources

C O M P U T E | S T O R E | A N A L Y Z E

Multiresolution Design: Support multiple tiers of features
● higher levels for programmability, productivity
● lower levels for greater degrees of control

● build the higher-level concepts in terms of the lower
● permit the user to intermix layers arbitrarily

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target Machine

Locality Control

Chapel language concepts

Copyright 2017 Cray Inc.

Chapel’s Multiresolution Philosophy

C O M P U T E | S T O R E | A N A L Y Z E

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target Machine

Locality Control

Chapel language concepts

Copyright 2017 Cray Inc.

Lower-Level Features

Lower-level Chapel

C O M P U T E | S T O R E | A N A L Y Z E

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target Machine

Locality Control

Chapel language concepts

Copyright 2017 Cray Inc.

Lower-Level Features

Lower-level Chapel

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features: Fibonacci Example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2017 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features: Fibonacci Example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2017 Cray Inc.

CLU-style iteratorsiteratorsCLU-style iteratorsiterators

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features: Fibonacci Example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2017 Cray Inc.

range types and
operators

built-in range types
and operators

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features: Fibonacci Example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2017 Cray Inc.

zippered iteration

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features: Fibonacci Example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2017 Cray Inc.

tuples

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features: Fibonacci Example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2017 Cray Inc.

Static Type Inference for:
• arguments
• return types
• variables

Static Type Inference for:
• arguments
• return types
• variables

Static Type Inference for:
• arguments
• return types
• variables

Static Type Inference for:
• arguments
• return types
• variables

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features: Fibonacci Example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2017 Cray Inc.

swap operator

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features: Fibonacci Example

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2017 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target Machine

Locality Control

Chapel language concepts

Copyright 2017 Cray Inc.

Lower-Level Features

Lower-level Chapel

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism

Copyright 2017 Cray Inc.

beginTask.chpl

begin writeln("Hello!");
writeln(”Goodbye...");

prompt> chpl beginTask.chpl –o beginTask
prompt> ./beginTask
Hello!

Goodbye...

prompt> ./beginTask
Goodbye...

Hello!

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism

Copyright 2017 Cray Inc.

beginTask.chpl

begin writeln("Hello!");
writeln(”Goodbye...");

prompt> chpl beginTask.chpl –o beginTask
prompt> ./beginTask
Hello!

Goodbye...

prompt> ./beginTask
Goodbye...

Hello!

Creates	a	new	task

C O M P U T E | S T O R E | A N A L Y Z E

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target Machine

Locality Control

Chapel language concepts

Copyright 2017 Cray Inc.

Lower-Level Features

Lower-level Chapel

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism & Locality Control

Copyright 2017 Cray Inc.

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism & Locality Control

Copyright 2017 Cray Inc.

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

High-Level
Task	Parallelism

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism & Locality Control

Copyright 2017 Cray Inc.

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

Abstraction	of
System	Resources

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism & Locality Control

Copyright 2017 Cray Inc.

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

Control	of	Locality/Affinity

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism & Locality Control

Copyright 2017 Cray Inc.

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

Abstraction	of
System	Resources

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism & Locality Control

Copyright 2017 Cray Inc.

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

High-Level
Task	Parallelism

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism & Locality Control

Copyright 2017 Cray Inc.

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

Not	seen	here:

Data-centric	task	coordination
via	atomic	and	full/empty	vars

C O M P U T E | S T O R E | A N A L Y Z E

Parallelism and Locality: Orthogonal in Chapel

Copyright 2017 Cray Inc.

● This is a parallel, but local program:

● This is a distributed, but serial program:

● This is a distributed parallel program:

writeln(“Hello from locale 0!”);
on Locales[1] do writeln(“Hello from locale 1!”);
on Locales[2] do writeln(“Hello from locale 2!”);

coforall i in 1..msgs do
writeln(“Hello from task ”, i);

coforall i in 1..msgs do
on Locales[i%numLocales] do
writeln(“Hello from task ”, i,

“ running on locale ”, here.id);

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism
Base Language

Target Machine

Locality Control

Chapel language concepts

Copyright 2017 Cray Inc.

Higher-Level Features

Higher-level Chapel
Domain Maps

Data Parallelism

C O M P U T E | S T O R E | A N A L Y Z E

Data Parallelism

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

C O M P U T E | S T O R E | A N A L Y Z E

Data Parallelism

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chplDomains	(Index	Sets)

C O M P U T E | S T O R E | A N A L Y Z E

Data Parallelism

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

Arrays

C O M P U T E | S T O R E | A N A L Y Z E

Data Parallelism

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

Data-Parallel	Forall	Loops

C O M P U T E | S T O R E | A N A L Y Z E

Distributed Data Parallelism

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;

var D = {1..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

Domain	Maps	
(Map	Data Parallelism	to	the	System)

C O M P U T E | S T O R E | A N A L Y Z E

Distributed Data Parallelism

Copyright 2017 Cray Inc.

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;

var D = {1..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chplDistributions

• BlockCycDist
• BlockDist
• CyclicDist
• DimensionalDist2D
• PrivateDist
• ReplicatedDist
• SparseBlockDist
• StencilDist

Layouts

• CSR

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2017 Cray Inc.

üChapel Motivation and Background
üChapel in a Nutshell
ØChapel Project: Past, Present, Future
● Chapel Resources

C O M P U T E | S T O R E | A N A L Y Z E

Chapel’s Origins: HPCS

Copyright 2017 Cray Inc.

DARPA HPCS: High Productivity Computing Systems
● Goal: improve productivity by a factor of 10x
● Timeframe: Summer 2002 – Fall 2012
● Cray developed a new system architecture, network, software stack…

● this became the very successful Cray XC30™ Supercomputer Series

…and a new programming language: Chapel

C O M P U T E | S T O R E | A N A L Y Z E

Chapel’s focus areas

Copyright 2017 Cray Inc.

● Based on positive user response to Chapel under HPCS,
Cray undertook a longer-term effort to improve it
● we’ve just completed our fourth year of this effort

● Focus Areas:
1. Improving performance and scaling
2. Fixing immature aspects of the language and implementation

● e.g., strings, memory management, error handling, …
3. Porting to emerging architectures

● Intel Xeon Phi, accelerators, heterogeneous processors and memories, …
4. Improving interoperability
5. Growing the Chapel user and developer community

● including non-scientific computing communities
6. Exploring transition of Chapel governance to a neutral, external body

C O M P U T E | S T O R E | A N A L Y Z E

Chapel is a Work-in-Progress

Copyright 2017 Cray Inc.

● Currently being picked up by early adopters
● Users who try it generally like what they see

● Most current features are functional and working well
● some areas under active development, particularly:

● Initializers
● Error handling

● Performance is improving, but remains hit-or-miss
● shared memory performance is often competitive with C+OpenMP
● distributed memory performance continues to need more work

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2017 Cray Inc.

üChapel Motivation and Background
üChapel in a Nutshell
üChapel Project: Past, Present, Future
ØChapel Resources

C O M P U T E | S T O R E | A N A L Y Z E

Chapel Websites

Project page: http://chapel.cray.com
● overview, papers, presentations, language spec, …

GitHub: https://github.com/chapel-lang
● download Chapel; browse source repository; contribute code

Facebook: https://www.facebook.com/ChapelLanguage

Twitter: https://twitter.com/ChapelLanguage

Copyright 2017 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Suggested Reading

Chapel chapter from Programming Models for Parallel Computing
● a detailed overview of Chapel’s history, motivating themes, features
● edited by Pavan Balaji, published by MIT Press, November 2015
● chapter is now also available online

Other Chapel papers/publications available at http://chapel.cray.com/papers.html

Copyright 2017 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Chapel Blog Articles

Chapel: Productive Parallel Programming, Cray Blog, May 2013.
● a short-and-sweet introduction to Chapel

Chapel Springs into a Summer of Code, Cray Blog, April 2016.
● a run-down of some current events

Six Ways to Say “Hello” in Chapel (parts 1, 2, 3), Cray Blog, Sep-Oct 2015.
● a series of articles illustrating the basics of parallelism and locality in Chapel

Why Chapel? (parts 1, 2, 3), Cray Blog, Jun-Oct 2014.
● a series of articles answering common questions about why we are pursuing

Chapel in spite of the inherent challenges

[Ten] Myths About Scalable Programming Languages, IEEE TCSC Blog
(index available on chapel.cray.com “blog articles” page), Apr-Nov 2012.

● a series of technical opinion pieces designed to argue against standard
reasons given for not developing high-level parallel languages

Copyright 2017 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Mailing Lists

low-traffic (read-only):
chapel-announce@lists.sourceforge.net: announcements about Chapel

community lists:
chapel-users@lists.sourceforge.net: user-oriented discussion list
chapel-developers@lists.sourceforge.net: developer discussions
chapel-education@lists.sourceforge.net: educator discussions

(subscribe at SourceForge: http://sourceforge.net/p/chapel/mailman/)

To contact the Cray team:
chapel_info@cray.com: contact the team at Cray
chapel_bugs@cray.com: for reporting non-public bugs

Copyright 2017 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Other Community Resources

IRC channels (freenode.net):
#chapel: user-oriented discussions
#chapel-developers: developer discussions

Stack Overflow
stackoverflow.com: [chapel] tag monitored by core team

GitHub Issues:
github.com/chapel-lang/chapel/issues: bug reports & feature requests

Copyright 2017 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Questions about Chapel?

Copyright 2017 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Legal Disclaimer

Copyright 2017 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2,
CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE,
THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

