
Chapel	With	Polyhedral	
Transformation	Using	

Autotuning

TuowenZhao	and	Mary	Hall
The	3rd	Annual	Chapel	Implementers	and	Users	Workshop,2016



Loop	Transformation
• Manipulation	of	loop	nest
• Structure
• Schedule

• Prior	work:	manually	apply	loop	transformations	in	
Chapel
• I.	J.	Bertolacci et	al.	Parameterized	diamond	tiling	for	
stencil	computations	with	Chapel	parallel	iterators.	ICS	
2015
• A.	Sharma	et	al.	Affine	loop	optimization	based	on	
modulo	unrolling	in	Chapel.		PGAS	2014

• We:	Automatically	applied	loop	transformations	
using	recipes	from	script	which	enables	integration	
with	autotuning framework



Contribution

• Uses	C	code	to	capture	sequential	computation
• Generates	Chapel	programs	by	composing	
polyhedral	transformations	on	the	sequential	
computation	and	mapping	from	iteration	spaces	to	
Chapel	domains	and	iterator
• Demonstrates	with	a	simple	example	in	Chapel	the	
benefits	of	applying	such	transformations	in	
conjunction	with	autotuning



Chapel	Language

proc	mm(A:[]real,B:[]real,
an:int,ambn:int,bm:int){
constD	=	{0..an-1,	0..bm-1};				//	Domain
var C	:	[D]	real;																											//	Domain	mapped	array
forall (i,j)	in	D	do	{																					//	Iterator
C[i,j]	=	0;
for	k	in	{0..ambn-1}	do
C[i,	j]	+=	A[i,	k]	*	B[k,j];

}
return	C;

}



Polyhedral	Framework

• Iteration	Spaces
• A	set	of	iteration	vectors	represented	as	integer	tuples
• Direct		mapping	from	Chapel	domain

• Transformation	done	by	linear	mapping
• Affine	loop	bounds,	conditional	expressions,	array	
subscripts



Dependence	analysis

• Ensure	validity	of	transformation	and	correctness	of	
program
• Have	to	know	the	order	of	references	to	each	array	
elements
• Cannot	be	applied	to	Chapel	iterator	without	
programmer	intervention	or	runtime	information



CHiLL

• Composable High-Level	Loop	transformation	
framework
• A	polyhedral	transformation	and	code	generation	
framework
• Relies	on	autotuning to	generate	highly-tuned	
implementations	for	a	specific	target	architecture
• Uses	a	transformation	recipe		to	express	optimization	
strategy	(recipe	may	be	generated	by	a	compiler)



Architecture	Overview



Experiment	– matrix	multiply

• Input	in	C
for(i =	0;	i <	an;	i++)
for(j	=	0;	j	<	bm;	j++)
{
C[i][j]=0.0f;
for(n	=	0;	n	<	ambn;	n++)
C[i][j]	+=	A[i][n]	*	B[n][j];

}

• Tile	sizes	{8;	16;	32;	64;	
128;	256}
• Distribution	of	the	
initialization	code
• Tile	sizes
• Chapel’s	configuration	
variable
• Literal	constant

• Intel	Haswell	i7-4790K
• 16GB	DDR3	RAM



Result



Stencil	Computations

• Operations	on	structured	grids
• MiniGMG
• Geometric	multigrid	benchmark
• Uses	stencil	computations	extensively	especially	in	
smooth	and	residual	operators

• CHiLL on	MiniGMG
• P.	Basu (2015)	Compiler	Optimizations	and	Autotuning
for	Stencils	and	Geometric	Multigrid.	PhD	thesis.	
University	of	Utah



Stencil	Optimizations

• Communication	avoiding	optimizations
• Wavefront(loop	fusing)
• Deeper	ghost	zones	with	redundant	computation



User-defined	library

• StencilDist library
• Problems
• Can’t	guarantee	correctness(dependence)
• Handwrite	optimized	code
• Generality	concern



Multi-locale	Stencil



Multi-locale	Stencil



Multi-locale	Stencil

• Programmer	writes	simple	serial	code	fragments	
• Recipes	provided	by	programmer	or	generated	by	
autotuner
• Behind-the-scene	generation	of	distributed	
computation and	distributed	data
• Produce	fine-tuned	code	without	programmer’s	
rewriting



Conclusion
• Integrating	Chapel	with	CHiLL
• Instantly	enables	a	lot	of	different	optimization	
techniques	that	can	be	composed	in	complex	sequences
• Autotuningcan	be	used	to	find	the	best	performing	
combination	of		transformations	under	target	
architecture

Future	work
• Expanding	the	domain	of	autotuning by	generating	
and	tuning	domain	maps	and	iterators
• Relaxing	the	transformation	requirements	by	
generalize	to	non-affine	loop	bounds	and	subscripts	
that	employ	indirection	through	an	index	array



Questions?


