

Building a Big Data Chapel

Chris Taylor

DoD

Overview

● Big Data?
● Chapel on Mesos
● libhdfs3
● Machine Learning
● Current Projects

Big Data?

“Software, systems, and runtimes supporting
– at minimum – resilient database style

operations and features at scale.”

Chapel on Mesos

Chapel on Mesos
● What is Mesos?

– Cluster/Cloud orchestration technology
– Event/Actor/CSP communication model

● Uses futures, options, and libevent/libev
– cgroup containers

● Specially identified pid_t's operating under kernel-level
resource isolation

– Emphasizes multi-tenancy, over-subscription

Chapel on Mesos

● Definitions
– Mesos-Agents

Chapel on Mesos

● Definitions
– Mesos-Agents
– Mesos-Master(s)

Chapel on Mesos

● Definitions
– Mesos-Agents
– Mesos-Master(s)
– Mesos-Framework

● Executor
● Scheduler

Chapel on Mesos

● Frameworks can be general or technology
specific
– General deployment solution

● Aurora, Marathon, Chronos
– Technology-specific deployment

● Myriad (Hadoop-Yarn), Spark, Hadoop, MPI, Chapel

Chapel on Mesos

● Built a Mesos Scheduler for Chapel
– User-friendly, integrates w/GASNET Customized

Spawning
– GASNET feature request
– Consistently handles <= 32 tasks “well”

● Greedy “task packing”

Chapel on Mesos

● Next work?
– Needs a Customized Executor!

● Handling task start-up issues
● Exponential back-off
● Core binding

– Needs deployment hints added to Scheduler!
– Mesos-Agents need CPU Isolation**

Chapel on Mesos

● Thank you to GASNET team
– For providing the new Custom Spawning feature!

Chapel HDFS Support

libhdfs

● Apache's libhdfs
– C wrapper library for Java Hadoop jars
– This complicates life for Mesos users

● Mesos “sandbox” needs libjvm.(so/a) and Hadoop jars
● Deploy using Docker images?

– Several hundreds of megabytes or gigabyte images

libhdfs3

● PivotalHD
– libhdfs3 rooted in the native-hadoop project
– C++ implementation of HDFS protocol for client

applications
– Deployment complications gone!

● New complications related to HDFS deployment
configuration!

libhdfs3
● Chapel runtime

– Very approachable and well organized
– Moving between Chapel code and the runtime was

easy
– Runtime's io system “plugin-like” design
– ~1-2 weeks to get something working**
– Took a couple months on/off again work to debug

and tune

** Working != perfect

libhdfs3
● libhdfs3 now an CHPL_AUX_IO option in the

runtime's io system!
– Thank you Chapel team for sheparding!

● Next?
– GlusterFS support

● Avoid cgroup container access to FUSE
● Initial version complete
● Needs testing

Machine Learning with Chapel

Machine Learning
● Implemented

– RandomForest (C++/Chapel)
– Stochastic Logistic Regression (Python/Chapel)
– Latent Dirichlet Allocation (Octave/Chapel)

● Measuring training time!
● Execution Environment

– Amazon EC2 node
– Chapel 0.13

● jemalloc
● qthreads
● hwloc

– CHPL_FLAGS=--fast --vectorize

Machine Learning
● Removed from evaluation

– RandomForest (C++/Chapel)
● 0.13 compiler caught use of undocumented

features the 0.12 compiler permitted
– Specifically domain-related
– Implementation heavily leveraged the undocumented

features :(
– Not enough time to fix the spaghetti code's issues

Machine Learning
● Stochastic Logistic Regression
● Data set?

– MNIST training data – hand-written numbers, {0..9}
– Samples have 784 features

● Left of Slide Graph – Stratified samples (sklearn)
● Label 5 - 25000 samples
● Label 6 - 20000 samples
● Label 7 - 15000 samples
● Label 8 - 10000 samples
● Label 9 – 5000 samples

● Right of Slide Graph - All training samples
● 50000 per Label

Machine Learning

25000 20000 15000 10000 5000
0

1

2

3

4

5

6

7

8

9

Chapel

Python

Examples

T
im

e
 (

s
e

c)

5 Digit 6 Digit 7 Digit 8 Digit 9 Digit
0

2

4

6

8

10

12

14

16

18

Chapel

Python

Labels

T
im

e
 (

s
e

c)

Model Training

Machine Learning

● Latent Dirichlet Allocation
● Data set?

– Stored as doc/word count matrix
● 6906 Words across 3000 Documents

● Performance for computing T topics
– T = { 2, 4, 8, 16, 32, 64 }

Machine Learning

2 4 8 16 32 64
0

5000

10000

15000

20000

25000

Chapel

Octave

Topics

T
im

e
 (

s
e

c)

Model Training

Machine Learning

References – Latent Dirichlet Allocation
● D. Newman, A. Asuncion, P. Smyth, M. Welling.

"Distributed Algorithms for Topic Models." JMLR
2009

● D. Newman, A. Asuncion, P. Smyth, M. Welling.
"Distributed Inference for Latent Dirichlet
Allocation." NIPS 2007

● http://www.ics.uci.edu/~asuncion/software/fast.h
tm

http://www.ics.uci.edu/~asuncion/software/fast.htm
http://www.ics.uci.edu/~asuncion/software/fast.htm

Current Work

Current Projects
● Resilient Key-Value storage for Chapel

– Google's Big Table
● Log-Structured Merge Tree

– Append-only log
– Transaction is a tree
– Transaction buffer is a forest
– Compact forest operation

● Distributed domains/dmap support
● Implementation in progress

Current Projects
● Directed Acyclic Graph processing for Chapel!

– Tensorflow, Dask, Storm, Heron, Spark, Theano, etc
● Users build execution DAGs, runtime executes the DAG
● Graph optimizations/transformations

– Optimization/Simplification/Computer Algebra (auto-differentiation)
– Scheduling
– Communications
– Track Graph Execution for “replay/recovery”

● Prototype implementation – basic “calculator math”
– Works for scalar-scalar and vector-vector
– scalar-vector should be easy - has been problematic

Thank you!

● Chapel Team
● GASNET Team
● Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

