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Big Data?

“Software, systems, and runtimes supporting 
– at minimum – resilient database style 

operations and features at scale.”



  

Chapel on Mesos



  

Chapel on Mesos
● What is Mesos?

– Cluster/Cloud orchestration technology
– Event/Actor/CSP communication model

● Uses futures, options, and libevent/libev
– cgroup containers

● Specially identified pid_t's operating under kernel-level 
resource isolation

– Emphasizes multi-tenancy, over-subscription



  

Chapel on Mesos

● Definitions
– Mesos-Agents



  

Chapel on Mesos

● Definitions
– Mesos-Agents
– Mesos-Master(s)



  

Chapel on Mesos

● Definitions
– Mesos-Agents
– Mesos-Master(s)
– Mesos-Framework

● Executor
● Scheduler



  

Chapel on Mesos

● Frameworks can be general or technology 
specific
– General deployment solution

● Aurora, Marathon, Chronos
– Technology-specific deployment

● Myriad (Hadoop-Yarn), Spark, Hadoop, MPI, Chapel



  

Chapel on Mesos

● Built a Mesos Scheduler for Chapel
– User-friendly, integrates w/GASNET Customized 

Spawning
– GASNET feature request
– Consistently handles <= 32 tasks “well”

● Greedy “task packing”



  

Chapel on Mesos

● Next work?
– Needs a Customized Executor!

● Handling task start-up issues
● Exponential back-off
● Core binding

– Needs deployment hints added to Scheduler!
– Mesos-Agents need CPU Isolation**



  

Chapel on Mesos

● Thank you to GASNET team
– For providing the new Custom Spawning feature!



  

Chapel HDFS Support



  

libhdfs

● Apache's libhdfs
– C wrapper library for Java Hadoop jars
– This complicates life for Mesos users

● Mesos “sandbox” needs libjvm.(so/a) and Hadoop jars
● Deploy using Docker images?

– Several hundreds of megabytes or gigabyte images



  

libhdfs3

● PivotalHD
– libhdfs3 rooted in the native-hadoop project
– C++ implementation of HDFS protocol for client 

applications
– Deployment complications gone!

● New complications related to HDFS deployment 
configuration!



  

libhdfs3
● Chapel runtime

– Very approachable and well organized
– Moving between Chapel code and the runtime was 

easy
– Runtime's io system “plugin-like” design
– ~1-2 weeks to get something working**
– Took a couple months on/off again work to debug 

and tune

** Working != perfect



  

libhdfs3
● libhdfs3 now an CHPL_AUX_IO option in the 

runtime's io system!
– Thank you Chapel team for sheparding!

● Next?
– GlusterFS support

● Avoid cgroup container access to FUSE
● Initial version complete
● Needs testing



  

Machine Learning with Chapel



  

Machine Learning
● Implemented

– RandomForest (C++/Chapel)
– Stochastic Logistic Regression (Python/Chapel)
– Latent Dirichlet Allocation (Octave/Chapel)

● Measuring training time!
● Execution Environment

– Amazon EC2 node
– Chapel 0.13

● jemalloc
● qthreads
● hwloc

– CHPL_FLAGS=--fast --vectorize



  

Machine Learning
● Removed from evaluation

– RandomForest (C++/Chapel)
● 0.13 compiler caught use of undocumented 

features the 0.12 compiler permitted
– Specifically domain-related
– Implementation heavily leveraged the undocumented 

features :(
– Not enough time to fix the spaghetti code's issues



  

Machine Learning
● Stochastic Logistic Regression
● Data set?

– MNIST training data – hand-written numbers, {0..9}
– Samples have 784 features

● Left of Slide Graph – Stratified samples (sklearn)
● Label 5 - 25000 samples
● Label 6 - 20000 samples
● Label 7 - 15000 samples
● Label 8 - 10000 samples
● Label 9 – 5000 samples

● Right of Slide Graph - All training samples
● 50000 per Label



  

Machine Learning
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Machine Learning

● Latent Dirichlet Allocation
● Data set?

– Stored as doc/word count matrix
● 6906 Words across 3000 Documents 

● Performance for computing T topics
– T = { 2, 4, 8, 16, 32, 64 }



  

Machine Learning
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Machine Learning

References – Latent Dirichlet Allocation
● D. Newman, A. Asuncion, P. Smyth, M. Welling. 

"Distributed Algorithms for Topic Models." JMLR 
2009

● D. Newman, A. Asuncion, P. Smyth, M. Welling. 
"Distributed Inference for Latent Dirichlet 
Allocation." NIPS 2007

● http://www.ics.uci.edu/~asuncion/software/fast.h
tm

http://www.ics.uci.edu/~asuncion/software/fast.htm
http://www.ics.uci.edu/~asuncion/software/fast.htm


  

Current Work



  

Current Projects
● Resilient Key-Value storage for Chapel

– Google's Big Table
● Log-Structured Merge Tree

– Append-only log
– Transaction is a tree
– Transaction buffer is a forest
– Compact forest operation

● Distributed domains/dmap support
● Implementation in progress



  

Current Projects
● Directed Acyclic Graph processing for Chapel!

– Tensorflow, Dask, Storm, Heron, Spark, Theano, etc
● Users build execution DAGs, runtime executes the DAG
● Graph optimizations/transformations

– Optimization/Simplification/Computer Algebra (auto-differentiation)
– Scheduling
– Communications
– Track Graph Execution for “replay/recovery”

● Prototype implementation – basic “calculator math”
– Works for scalar-scalar and vector-vector
– scalar-vector should be easy - has been problematic



  

Thank you!

● Chapel Team
● GASNET Team
● Questions?
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