Enabling Sparse Matrix Computation in Multi-locale Chapel

Tyler Simon
Laboratory for Physical Sciences, College Park, MD

Amer Tahir
Milton Halem
University of Maryland Baltimore County, MD
Motivation, Objectives & Related Work

Motivation

- Large sparse matrices often appear in Science or Engineering problems, Social Network analysis, Topic modeling, Graph analytics, Sentiment analysis, Cyber security and so on.

- Storage and processing of these matrices is not possible on a single computer, so high performance computing (HPC) systems are used.

- HPC systems are evaluated with benchmarks. Conjugate Gradient algorithm on sparse matrices is used in popular HPC benchmarks, HPCG and NAS CG.

- Chapel, an emerging PGAS (partitioned global address space) language built for parallel computation offers flexibility and abstraction – significantly less lines of code compared to existing solutions (MPI/OpenMP).

Aims

- “To provide a data structure in the Chapel programming language that enables the implementation of CG benchmark for compressed large sparse matrices”

- Chapel programming language currently unable to deal with distributed compressed/sparse matrices over multiple locales.

- This work develops MSBD, a Multilocal Sparse Block Distribution for Chapel.

Related Work

- HPCG & NASCG
 - Sequential, OpenMP and MPI reference implementations

- Chapel port of NAS CG - uses CSR
 - Single-locale only – Doesn’t scale to multiple nodes!

- Unified Parallel C (UPC) and Titanium
 - UPC implementation offers better speed than MPI but doesn’t scale as well as MPI based matrix multiplication
MSBD Overview

• Proposed solution is a custom Chapel distribution for sparse matrices

• Behaves like Block distribution but only non-zeros stored locally at compute nodes in Coordinate format (COO) – matrix values as [i, j, x], where x is the non-zero at row i and column j in the sparse matrix

• Local-to-global mapping of indices and values done at each node as a communication optimization
MSBD Overview

MSBD distributes sparse matrix by partitioning it over nodes:

• Sparse matrix is mapped into fixed boundary partitions to locales
• Sparse matrix values are accessed/modified only when required – reduces extra communication overhead
Evaluation

• MSBD evaluated by using NAS CG algorithm in Chapel

 • Sparse matrix A is a synthetic positive definite square matrix of 4% sparseness where each element $\in (0.0, 1.0)$

 • CG algorithm consists of 25 iterations

 • At the end of iterations, final result is compared with predefined values given in NAS CG benchmark for error

• Multi-locale CG algorithm that uses MSDB is run parallel on varying number of nodes, 1 – 10. Multiple tests are done each for different size of the matrix, 14000, 50000 and 100000. The objective is to show scalability of the proposed MSBD.
Results

Number of Locales vs. Running time (sec)

- 1520.5
- 14000
- 50000
- 100000

Runtime (sec)

Number of Locales

- 160.55
- 113.78
- 87.16
- 66.27
- 57.14
- 48.01
- 35.21
- 27.27
- 21.11
- 14.23

- 164.3
- 107.3
- 88.7
- 68.7
Conclusion

• This work presents a generalized multi-locale sparse block distribution for Chapel, MSBD

• MSBD partitions 2-D sparse data into blocks compressed in COO format that are assigned to nodes in the cluster

• Using a Chapel NAS CG algorithm, MSBD is evaluated on UMBC’s Bluewave cluster and shown to be scalable
Contact

tasimon@lps.umd.edu