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Motivation

Ø Large sparse matrices often appear in Science or 
Engineering problems, Social Network analysis, 
Topic modeling, Graph analytics, Sentiment 
analysis, Cyber security and so on.

Ø Storage and processing of these matrices is not 
possible on a single computer, so high 
performance computing (HPC) systems are used.

Ø HPC systems are evaluated with benchmarks. 
Conjugate Gradient algorithm on sparse matrices 
is used in popular HPC benchmarks, HPCG and 
NAS CG.

Ø Chapel, an emerging PGAS (partitioned global 
address space) language built for parallel 
computation offers flexibility and abstraction –
significantly less lines of code compared to 
existing solutions (MPI/OpenMP).

Related Work
Ø HPCG & NASCG

• Sequential, OpenMP and MPI reference 
implementations

Ø Chapel port of NAS CG - uses CSR
• Single-locale only – Doesn’t scale to multiple 

nodes!

Ø Unified Parallel C (UPC) and Titanium
• UPC implementation offers better speed than 

MPI but doesn’t scale as well as MPI based 
matrix multiplication

Aims

Motivation,	Objectives	&	Related	Work

Ø “To provide a data structure in the Chapel 
programming language that enables the 
implementation of CG benchmark for 
compressed large sparse matrices”

Ø Chapel programming language currently unable to 
deal with distributed compressed/sparse matrices 
over multiple locales.

Ø This work develops MSBD, a Multilocale Sparse 
Block Distribution for Chapel.



• Proposed	solution	is	a	custom	Chapel	distribution	for	
sparse	matrices

• Behaves	like	Block	distribution	but	only	non-zeros	
stored	locally	at	compute	nodes	in	Coordinate	format	
(COO)	– matrix	values	as	[i,	j,	x],	where	x	is	the	non-
zero	at	row	i and	column	j	in	the	sparse	matrix

• Local-to-global	mapping	of	indices	and	values	done	at	
each	node	as	a	communication	optimization

MSBD	Overview



MSBD	distributes	sparse	matrix	by	partitioning	it	over	
nodes:

• Sparse	matrix	is	mapped	into	fixed	boundary	partitions	
to	locales

• Sparse	matrix	values	are	accessed/modified	only	when	
required	– reduces	extra	communication	overhead

MSBD	Overview
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• MSBD	evaluated	by	using	NAS	CG	algorithm	in	Chapel

• Sparse	matrix	A	is	a	synthetic	positive
definite	square	matrix	of	4%
sparseness	where	each	element
∈ (0.0,	1.0)

• CG	algorithm	consists	of	25	iterations

• At	the	end	of	iterations,	final	result	is
compared	with	predefined	values
given	in	NAS	CG	benchmark	for	error

• Multi-locale	CG	algorithm	that	uses	MSDB	is	run	parallel	on	
varying	number	of	nodes,	1	– 10.	Multiple	tests	are	done	each	for	
different	size	of	the	matrix,	14000,	50000	and	100000.	The	
objective	is	to	show	scalability	of	the	proposed	MSBD.

Evaluation



Results



• This	work	presents	a	generalized	multi-locale	sparse	
block	distribution	for	Chapel,	MSBD

• MSBD	partitions	2-D	sparse	data	into	blocks	
compressed	in	COO	format	that	are	assigned	to	nodes	
in	the	cluster

• Using	a	Chapel	NAS	CG	algorithm,	MSBD	is	evaluated	
on	UMBC’s	Bluewave cluster	and	shown	to	be	
scalable

Conclusion
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