
Enabling	Sparse	Matrix	Computation	
in	Multi-locale	Chapel

Tyler	Simon	
Laboratory	for	Physical	Sciences,	College	Park,	MD

Amer Tahir
Milton	Halem

University	of	Maryland	Baltimore	County,	MD



Motivation

Ø Large sparse matrices often appear in Science or 
Engineering problems, Social Network analysis, 
Topic modeling, Graph analytics, Sentiment 
analysis, Cyber security and so on.

Ø Storage and processing of these matrices is not 
possible on a single computer, so high 
performance computing (HPC) systems are used.

Ø HPC systems are evaluated with benchmarks. 
Conjugate Gradient algorithm on sparse matrices 
is used in popular HPC benchmarks, HPCG and 
NAS CG.

Ø Chapel, an emerging PGAS (partitioned global 
address space) language built for parallel 
computation offers flexibility and abstraction –
significantly less lines of code compared to 
existing solutions (MPI/OpenMP).

Related Work
Ø HPCG & NASCG

• Sequential, OpenMP and MPI reference 
implementations

Ø Chapel port of NAS CG - uses CSR
• Single-locale only – Doesn’t scale to multiple 

nodes!

Ø Unified Parallel C (UPC) and Titanium
• UPC implementation offers better speed than 

MPI but doesn’t scale as well as MPI based 
matrix multiplication

Aims

Motivation,	Objectives	&	Related	Work

Ø “To provide a data structure in the Chapel 
programming language that enables the 
implementation of CG benchmark for 
compressed large sparse matrices”

Ø Chapel programming language currently unable to 
deal with distributed compressed/sparse matrices 
over multiple locales.

Ø This work develops MSBD, a Multilocale Sparse 
Block Distribution for Chapel.



• Proposed	solution	is	a	custom	Chapel	distribution	for	
sparse	matrices

• Behaves	like	Block	distribution	but	only	non-zeros	
stored	locally	at	compute	nodes	in	Coordinate	format	
(COO)	– matrix	values	as	[i,	j,	x],	where	x	is	the	non-
zero	at	row	i and	column	j	in	the	sparse	matrix

• Local-to-global	mapping	of	indices	and	values	done	at	
each	node	as	a	communication	optimization

MSBD	Overview



MSBD	distributes	sparse	matrix	by	partitioning	it	over	
nodes:

• Sparse	matrix	is	mapped	into	fixed	boundary	partitions	
to	locales

• Sparse	matrix	values	are	accessed/modified	only	when	
required	– reduces	extra	communication	overhead

MSBD	Overview

1, 1, 3.0 1, 3, 1.0 1, 4, 2.0
2, 2, 4.0
3, 2, 7.0 3, 3, 5.0 4, 9.0

4, 5.0 5, 7.0
4, 6.0

Node	1 Node	2

Node	3 Node	4
4, 5.0

4, 6.0

Sparse	matrix Non-zeros	in	block	partitions Assigned	 to	locales



• MSBD	evaluated	by	using	NAS	CG	algorithm	in	Chapel

• Sparse	matrix	A	is	a	synthetic	positive
definite	square	matrix	of	4%
sparseness	where	each	element
∈ (0.0,	1.0)

• CG	algorithm	consists	of	25	iterations

• At	the	end	of	iterations,	final	result	is
compared	with	predefined	values
given	in	NAS	CG	benchmark	for	error

• Multi-locale	CG	algorithm	that	uses	MSDB	is	run	parallel	on	
varying	number	of	nodes,	1	– 10.	Multiple	tests	are	done	each	for	
different	size	of	the	matrix,	14000,	50000	and	100000.	The	
objective	is	to	show	scalability	of	the	proposed	MSBD.

Evaluation



Results



• This	work	presents	a	generalized	multi-locale	sparse	
block	distribution	for	Chapel,	MSBD

• MSBD	partitions	2-D	sparse	data	into	blocks	
compressed	in	COO	format	that	are	assigned	to	nodes	
in	the	cluster

• Using	a	Chapel	NAS	CG	algorithm,	MSBD	is	evaluated	
on	UMBC’s	Bluewave cluster	and	shown	to	be	
scalable

Conclusion



Contact

tasimon@lps.umd.edu


