
Chapel in the 
(Cosmological) 
Wild
Nikhil Padmanabhan

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



About…

• My day job is as an astrophysicist, specializing in cosmology

• A Chapel enthusiast

 Bumped into Chapel early in its (public) existence

 Was intrigued, but not compelled. 

 Revisited around 1.10

 Language looked more polished/stable

 Met up with Brad Chamberlain, discussed interest

 FFTW

 One use case to date, a few proof-of-principle applications

 1.13+ now has most bits that I need, hoping to use more broadly

• Performance is important, but so is ease of prototyping new ideas

 Happy to take a ~x2 hit over a well-tuned case

 Absolute “wall”-time matters; often the distinction between 1 min vs 1 s vs 1 
ms does not matter (I can’t think that fast!)

 But sometimes it does – so important to be able to find slow steps to optimize

• C++/Mathematica/Python are my usual tools

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



Warnings!

• I’m not trained in CS, nor am I a “computational scientist”

 Code is just a means to an end…

 Expect to see non-optimal code

• These slides have not been vetted by the Chapel team

 Although they’ve helped significantly in lots of the Chapel code I’ve written 

 Brad Chamberlain, Michael Ferguson, Ben Harshbarger

 Mistakes are all mine

 Some slow code may not be Chapel’s fault, but mine!

• Not my usual patter, so apologies in advance for any glitches…

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



A cosmological constant

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



His biggest blunder?

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



A big surprise : an accelerating Universe

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



Cosmic cartography

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



Cosmic cartography

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6

www.sdss3.org



Constructing a Standard Ruler
Begin : hot “soup” of 

electrons, photons

A sound wave starts.

Shell expands at speed 

of sound 0.578c

Universe “freezes” 300,000 yrs ABB.

“Ripple” frozen in.

A standard ruler

Statistical in nature



Measuring The Ruler : Galaxies 

A preferred scale for galaxy 

separations

www.sdss3.org

Eisenstein et al, 2006



Constructing a galaxy survey

Survey Image Sky

SDSS-I/II imaged 14K 

sq. deg (1/3 of sky)

~ billion objects 

detected

Select objects

Get Spectra

1000 at a time

1.5M

Measure 

redshifts

3D Map



Constructing a galaxy survey

Survey Image Sky

SDSS-I/II imaged 14K 

sq. deg (1/3 of sky)

~ billion objects 

detected

Select objects

Get Spectra

1000 at a time

1.5

M

Measure 

redshifts

3D Map



Constructing a galaxy survey

Survey Image Sky

SDSS-I/II imaged 14K 

sq. deg (1/3 of sky)

~ billion objects 

detected

Select objects

Get Spectra

1000 at a time

1.5M

Measure 

redshifts

3D Map



Constructing a galaxy survey

Survey Image Sky

SDSS-I/II imaged 14K 

sq. deg (1/3 of sky)

~ billion objects 

detected

Select objects

Get Spectra

1000 at a time

1.5M

Measure 

redshifts

3D Map



Constructing a galaxy survey

Survey Image Sky

SDSS-I/II imaged 14K 

sq. deg (1/3 of sky)

~ billion objects 

detected

Select objects

Get Spectra

1000 at a time

1.5

M

Measure 

redshifts

3D Map



Constructing a galaxy survey

Survey Image Sky

SDSS-I/II imaged 14K 

sq. deg (1/3 of sky)

~ billion objects 

detected

Select objects

Get Spectra

1000 at a time

1.5

M

Measure 

redshifts

3D Map



What kinds of computations
• Often the question isn’t one of implementation, it’s the question

• Simulations of the formation of structure in the galaxy distribution
 See Katrin Heitmann’s keynote talk yesterday 

 Performance matters!

• Characterize spatial distributions of galaxies
 N-point functions

 Find groups/clusters of galaxies

 Simplest algorithms here are analogous to N-body calculations

• Potential/force calculations

 Solving variants of the Poisson equation

 FFTs

 Multigrid

• Simulations

 We observe a random realization from all possible Universes.

 Theory predicts averaged quantities

 Need to understand the distributions

 Need to repeat calculations many times

• Many computations are embarrassingly parallel!

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



Why Chapel? And not something else?

• Python?

 Python works well when doing well optimized tasks

 Great ecosystem – lots of users

 Not so good when first statement is not true.

 Sometimes forces you to use unnatural idioms for tasks (a for loop is 
sometimes the simplest answer)

 Memory/temporaries

• C++/MPI?

 C++11/14 is getting quite high-level

 Performance

 OpenMP/MPI is well-established, good tooling

 MPI is rather verbose/tedious, especially for simple tasks

 Still no native multidimensional support

• Chapel?

 Promise of easy abstractions for parallelism

 Promise of performance

 Domains are GREAT!

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



A Particle-Mesh Code

• “Toy” problem

 There are more efficient/accurate algorithms

 The pieces are quite reusable

• Particles 

 Track the distribution of matter

 Evolve under gravity

• Mesh

 Used to accelerate gravity calculation by solving Poisson’s equation on a grid

 Thin wrapper around FFTW

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



Setup

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6

Config parameters are great – no longer need to parse input files

(reproducibility – saving all config parameters?)

Domains are very expressive (handle FFTW storage)



Grid deposition

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



Velocity updates

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



NAS Multigrid example

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6

Exercise stencil calculations

Uses StencilDist

Thanks to Ben Harshbarger, Brad Chamberlain

Elegant, but slow (> 10x slower than benchmark)



NAS Multigrid -- Speedup

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6

Within x3 of benchmark, both OpenMP and 

single thread. “Easy” to parallelize….



Interoperability is important

• Any new language must be able to interface with existing code

 This is, in part, responsible for the success of Python – wrappers to existing C 
code

• Most such interfaces are too domain specific to be of general interest

 These don’t need to be general Chapel packages

• An FFI should be lightweight and easy for the end-user.

• Chapel has a compelling C story here.

• Some examples :

 FFTW (Fourier Transforms – my first real introduction to Chapel)

 GNU Scientific Library (GSL)

 MPI

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



Interfacing to GSL

• GNU Scientific Library 

• Collection of common numeric algorithms (special functions, 
interpolation, random numbers and distributions, integration, etc)

• Large package, many headers

• Chapel’s “extern block” supports these natively (thanks to Michael 
Ferguson, who fixed a few issues remaining in 1.13)

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6

http://www.gnu.org/software/gsl/



Interfacing to GSL

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6

• The C-API is exposed (no better 

or worse than calls in C)

• Some calls can be a little verbose 

• Not hard for the user to wrap as 

needed, to improve interfacing



A rough edge : callbacks into Chapel

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6

A specific use case : integrating a function



Chapel + MPI

• A large number of scientific/numerical packages are built off MPI

 Chapel needs to interop with these

• Performance

 Currently (and anecdotally), single locale programs run slower in multi-locale 
mode, even if minimal/no communication 

 Big hit for otherwise trivially parallelizable jobs

 Use MPI to fix this

• Parallel programming idioms are often taught with MPI

 Use Chapel for convenience/productivity

 MPI for performance

• MPI 1.1 (mostly) support upcoming

 Currently on master

 Wrapper mostly auto-generated by a simple Python script + Python-C parser 
(pycparser : https://github.com/eliben/pycparser)

 Currently designed for Chapel in single-locale mode

 Hopefully, can be extended to Chapel in multi-locale mode 

 GASNet already allows for MPI interop

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6

https://github.com/eliben/pycparser


Chapel + MPI : Hello, Chapel!

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6

The MPI module does the initialization; currently requires a 

call to MPI_Finalize().



Chapel + MPI : Ring communication

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



Chapel + MPI : More complicated

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



Interactive Chapel?

• The challenge is often not implementation, but what to implement…

• Trial and error

• Interactivity is a good thing

 Python/Mathematica/MatLab etc do this very well

 Jupyter notebooks are becoming very popular

• Chapel needs an interactivity story

 Cling : CERN’s implementation of a C++ REPL, based of Clang/LLVM

 Doesn’t have to be pure Chapel

 Eg. a maintained Python interface (this is the mode in which I use Python –
interfacing into C, thanks to tools like Cython)

 A Python interface could also ease people into Chapel

 Easy access to Python package ecosystem

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



Tooling?

• Debugging/profiling using standard tools hard, because of the C 
translation

• Tedious to track down performance issues

 I’d love to be able to quickly see where a program is spending most of its time 
in a semi-automated manner (i.e. not print statements)

 Could be at a line/function level (for functions, need to handle inlining)

• Compiler is slow; error messages one at a time

• Rebuild the world from scratch each time around

• Chapel idioms

 It’s easy to write Chapel code like C, harder to determine what better idioms 
are. 

 Flag what idioms are currently slow, and how to optimize when necessary

 Eg. When reduce works, when array accesses might be slow etc

 Maybe time for a Chapel Cookbook!

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6



Some final thoughts

• Chapel is fun to use…

• If I were the only person writing the code, I’d probably use Chapel a 
significant portion of time…

 A year ago, that would not have been true

 Missing interactivity, tooling…

 Compiler speed

• The Chapel team has been wonderfully responsive -- thanks!

2
 J

u
n

e
 2

0
1

6
C

H
IU

W
 2

0
1

6


