
C O M P U T E | S T O R E | A N A L Y Z E

LCALS: Livermore Compiler Analysis Loop Suite

David Iten, Elliot Ronaghan, Cray Inc.
CHIUW 2016

May 27th, 2016

C O M P U T E | S T O R E | A N A L Y Z E

This presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

Safe Harbor Statement

2
Copyright 2016 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

LCALS: Outline

Copyright 2016 Cray Inc.
3

ØLCALS Overview

ØLCALS Serial Performance Comparison

ØLCALS Parallel Performance Comparison

ØFuture work

C O M P U T E | S T O R E | A N A L Y Z E

LCALS: Background

4

● LCALS: Livermore Compiler Analysis Loop Suite
● Loop kernels designed to measure compiler performance
● Developed by LLNL
● https://codesign.llnl.gov/LCALS.php

● Three loop subsets (30 kernels total)
● Subset A: Loops representative of application codes
● Subset B: Simple, basic loops
● Subset C: Loops extracted from “Livermore Loops coded in C”

● Each kernel is run for three sizes (Short, Medium, Long)

● Each kernel is implemented in a number of “variants”
● RAW (traditional C usage), OpenMP, C++ template-based, etc.

LCALS Code
Richard D. Hornung
LCALS version 1.0
LLNL-CODE-638939
2013

Copyright 2016 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

LCALS: Chapel Port

5

● Chapel LCALS port consists of
● ~2400 lines of framework Chapel code
● ~2200 lines of kernel Chapel code

● Implements two kernel variants
● RAW+Serial: 30 kernels
● RAW+Parallel: 11 kernels

● RAW+Parallel kernels are a modified subset of the RAW serial kernels
● The OpenMP variant in the reference

● Performance compared vs. reference versions
● Executed on one Cray XC40 compute node
● 24 Intel Xeon cores per node
● Compiled with: gcc 5.3.0
● The following charts show results for the “Long” size

Copyright 2016 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

LCALS: Serial Kernel Format

6

• Each serial kernel follows the pattern:

• A few kernels have additional inner loops

Copyright 2016 Cray Inc.

initArrays();
startTimer();
for isamp in 0..#num_samples {

for i in 0..#len {
<main kernel body>

}
}
stopTimer();

initArrays();
startTimer();
for (isamp=0; isamp<num_samples; isamp++) {

for (i=0; i<len; i++) {
<main kernel body>

}
}
stopTimer();

C reference Chapel

C O M P U T E | S T O R E | A N A L Y Z E

LCALS: Performance Comparison

7

0

0.5

1

1.5

2

2.5

3

3.5

4

N
or

m
al

iz
ed

 ti
m

e

Serial Reference
Serial Chapel

Normalized time –
Serial reference is 1.0

chpl --fast
--no-ieee-float

g++ -Ofast -fopenmp

Serial Kernels

Copyright 2016 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

LCALS: Array Inner Multiplications

Copyright 2016 Cray Inc.
8

● LCALS serial performance lags C for many kernels

● Chapel uses an integer multiply for an array’s innermost dimension
● Unnecessary for typical arrays, only for more advanced ones
● e.g., rank-change, reindexing of strided slices, …

● For typical cases, adds overhead relative to C
● Ongoing work is striving to eliminate multiplies in these cases

● Meanwhile, can be squashed manually using a config param
● Results in dramatic serial performance improvements for most loops…
● …bringing them in line with C except for a few outliers

C O M P U T E | S T O R E | A N A L Y Z E

LCALS: Performance Comparison

9

0

0.5

1

1.5

2

2.5

N
or

m
al

iz
ed

 ti
m

e

Serial Reference
Serial Chapel

Normalized time –
Serial reference is 1.0

chpl --fast
--no-ieee-float
-s assertNoSlicing

g++ -Ofast -fopenmp

Serial Kernels
(inner multiply removed)

Copyright 2016 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

LCALS: Parallel Kernel Format

10

• Parallel kernels are derived from serial kernels
• Usually one parallel loop inside the ‘num_samples’ loop

• A few kernels have additional inner loops

Copyright 2016 Cray Inc.

initArrays();
startTimer();
for isamp in 0..#num_samples {

forall i in 0..#len {
<main kernel body>

}
}
stopTimer();

initArrays();
startTimer();
for (isamp=0; isamp<num_samples; isamp++) {

#pragma omp parallel for
for (i=0; i<len; i++) {

<main kernel body>
}

}
stopTimer();

C reference Chapel

C O M P U T E | S T O R E | A N A L Y Z E

LCALS: Performance Comparison

11

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 ti
m

e

Serial Reference
Parallel Chapel
Parallel Reference

Normalized time –
Serial reference is 1.0

chpl --fast
--no-ieee-float
-s assertNoSlicing

g++ -Ofast -fopenmp

Parallel Kernels vs.
Serial Kernels

Copyright 2016 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

LCALS: Performance Comparison

12

0
1
2
3
4
5
6
7
8
9

10

N
or

m
al

iz
ed

 ti
m

e

Parallel Reference
Parallel Chapel

Normalized time –
Parallel reference is 1.0

chpl --fast
--no-ieee-float
-s assertNoSlicing

g++ -Ofast -fopenmp

Parallel Kernels

Copyright 2016 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

LCALS: Array Inner Multiplications

Copyright 2016 Cray Inc.
13

● Most kernels are ~3x slower than OpenMP reference
● …except for pressure_calc (5x) and energy_calc (9x)
● …the two parallel kernels with multiple inner loops

#pragma omp parallel
{

#pragma omp for nowait
for (i=0; i<len; i++) {

…work1()...
}
#pragma omp for nowait
for (i=0; i<len; i++) {

...work2()...
}

}

forall i in 0..len {
…work1()...

}
forall i in 0..len {

...work2()...
}

OpenMP Reference Parallel Chapel

These used an obvious translation:

nowait clause doesn’t have
an obvious Chapel equivalentSo instead, combined
consecutive forall loops.
Not always possible, but
works for these kernels.

Combined foralls

forall i in 0..len {
…work1()...
...work2()...

}

C O M P U T E | S T O R E | A N A L Y Z E

LCALS: Performance Comparison

14

0
1
2
3
4
5
6
7
8
9

10

N
or

m
al

iz
ed

 ti
m

e

Parallel Reference
Chapel 1.13
Combined foralls

Normalized time –
Parallel reference is 1.0

chpl --fast
--no-ieee-float
-s assertNoSlicing

g++ -Ofast -fopenmp

Parallel kernels
(with combined foralls)

Copyright 2016 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

LCALS: Parallel loop startup cost

Copyright 2016 Cray Inc.
15

● ‘forall’ startup is more costly than OpenMP ‘parallel for’
● Allocates and initializes an argument bundle per task
● Should be able to eliminate most of this overhead

● The parallel loops are short, even in the ‘long’ size
● Around 45,000 iterations in each parallel loop
● … split between 24 tasks
● … and repeated 15,000 times
● Magnifies startup cost difference

● Increasing the iteration count would mask the difference
● But need task startup improvements to match OpenMP at small sizes

C O M P U T E | S T O R E | A N A L Y Z E

LCALS: Next Steps

16

● Eliminate array inner multiplies when unnecessary
● The -sassertNoSlicing hammer is too big
● A new feature is planned to do this in a more principled way

● Optimize the last few uncompetitive serial kernels

● Improve task startup overhead
● If the problem size is increased this overhead is masked
● But should be able to match OpenMP performance for small loops too

● Explore more elegant Chapel loop expressions
● Use whole-array operations, array slicing, etc.
● Make sure the elegant versions perform well too

Copyright 2016 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Legal Disclaimer

Copyright 2016 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2,
CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE,
THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

17

https://github.com/chapel-lang/chapelhttp://chapel.cray.com chapel_info@cray.com

