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Motivation
• Augment chat bot Human-created rulesets with data 

• ChatScript provides a powerful rule engine, but 
making Human-created rules is unscalable and limited 

• Use Chapel as a power-tool to create datasets which 
can be plugged into ChatScript engine 

• Focus on two main types of custom datasets 

• Chord: Use word2vec for language support 

• Chriple: Use RDF triple stores for knowledge



Chord: Chapel + Word2Vec
• Word embeddings are vectors computed with a Neural 

Network Language Model (NNLM) 

• Each word vector characterizes the associated word in 
relation to training data and other words in the vocabulary 

• Vectors have interesting and useful NLP features 

• King - Man + Woman = Queen 

• Tokyo - Japan + France = Paris 

• Replace Human-derived rules for certain NLP tasks



Chord: Path to Distributed 
• First: Port Google’s single-locale classic word2vec and validate 

• Second: Port classic model to a multi-locale model 

• Maintain single-locale performance in multi-locale version 

• Preserve Asynchronous SGD (race conditions by design) 

• Encapsulate globals to ensure locale-local only access 

• Experiment with dmapped and other distributed memory 
strategies to find a fast method for cross machine data 
sharing



Chord: Path to Distributed 
• Distributed models require periodic model sharing across 

locales 

• Naïve dmapped approach is very slow due to model specific 
behavior yielding excessive cross-machine data transfers 

• Use a variant of Google’s Downpour SGD 

• Reserve some locales as “parameter locales” and others 
as compute locales which train on data shards 

• Each compute locale diverges with it’s training data and 
updates the parameter locales after each training iteration 

• Use AdaGrad to perform model updates on param locales



Chord: Architecture
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Chord: Single vs Multi-Locale

Multi-Locale version > 3x faster with similar accuracy (eventually).
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Multi-locale configuration:  
• 8 locales: single parameter locale with seven compute locales 
• Machine type: EC2 m4.2xlarge (8 vCPU 16GB RAM)



Chriple: Chapel + Triple Store
• Keep it simple to learn what’s useful 

• Naïve implementation inspired by TripleBit 

• Reasonably memory efficient  

• Predicate-based hash partitions on locales 

• CHASM (from Chearch) stack-based integer query language  

• Supports essential distributed query primitives (AND/OR) 

• Supports sub-graph extraction



Chriple: Architecture

Subject-Object Index

Object-Subject Index

Predicate 
Entry

Predicate 
Hash Table

32-bit Subject ID32-bit ObjectID
64-bit Index Entry

Locale Predicate Hash Partition



Chriple: Distributed Queries
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Chriple: Current Results

• Memory requirements 

• ~16 bytes per triple 

• 2B triples require ~64GB RAM across cluster 

• Performance (8 x EC2 m4.2xlarge [8 vCPU 32GB RAM]) 

• 1.1M inserts / s (~137K / locale) 

• 40K reads / s [via parallel iterator] (~5K / locale)



AllegroGraph Benchmark

http://franz.com/agraph/allegrograph/agraph_benchmarks.lhtml

http://franz.com/agraph/allegrograph/agraph_benchmarks.lhtml


Conclusion
• Work in progress 

• Many opportunities for optimization 

• Useful for generating data and experimentation 

• Code is available on Github 

• https://github.com/briangu/chord 

• https://github.com/briangu/chriple

https://github.com/briangu/chord
https://github.com/briangu/chriple

