
Using Chapel for Natural
Language Processing

And Interaction
Brian Guarraci

CTO @ Cricket Health

Motivation
• Augment chat bot Human-created rulesets with data

• ChatScript provides a powerful rule engine, but
making Human-created rules is unscalable and limited

• Use Chapel as a power-tool to create datasets which
can be plugged into ChatScript engine

• Focus on two main types of custom datasets

• Chord: Use word2vec for language support

• Chriple: Use RDF triple stores for knowledge

Chord: Chapel + Word2Vec
• Word embeddings are vectors computed with a Neural

Network Language Model (NNLM)

• Each word vector characterizes the associated word in
relation to training data and other words in the vocabulary

• Vectors have interesting and useful NLP features

• King - Man + Woman = Queen

• Tokyo - Japan + France = Paris

• Replace Human-derived rules for certain NLP tasks

Chord: Path to Distributed
• First: Port Google’s single-locale classic word2vec and validate

• Second: Port classic model to a multi-locale model

• Maintain single-locale performance in multi-locale version

• Preserve Asynchronous SGD (race conditions by design)

• Encapsulate globals to ensure locale-local only access

• Experiment with dmapped and other distributed memory
strategies to find a fast method for cross machine data
sharing

Chord: Path to Distributed
• Distributed models require periodic model sharing across

locales

• Naïve dmapped approach is very slow due to model specific
behavior yielding excessive cross-machine data transfers

• Use a variant of Google’s Downpour SGD

• Reserve some locales as “parameter locales” and others
as compute locales which train on data shards

• Each compute locale diverges with it’s training data and
updates the parameter locales after each training iteration

• Use AdaGrad to perform model updates on param locales

Chord: Architecture
1 … P

… NP+1

Parameter
Locales

Compute
Locales

Δw
w’

Locales are partitioned into param and compute roles

Δww’ Δw
w’

1 … KData Shards

Chord: Single vs Multi-Locale

Multi-Locale version > 3x faster with similar accuracy (eventually).

Training Speed

Se
co

nd
s

0

350

700

1050

1400

Iterations
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Multi-Locale Single-Locale

Model Accuracy

Pe
rc

en
t C

or
re

ct

0

22.5

45

67.5

90

Iterations
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Multi-Locale Single-Locale

Multi-locale configuration:
• 8 locales: single parameter locale with seven compute locales
• Machine type: EC2 m4.2xlarge (8 vCPU 16GB RAM)

Chriple: Chapel + Triple Store
• Keep it simple to learn what’s useful

• Naïve implementation inspired by TripleBit

• Reasonably memory efficient

• Predicate-based hash partitions on locales

• CHASM (from Chearch) stack-based integer query language

• Supports essential distributed query primitives (AND/OR)

• Supports sub-graph extraction

Chriple: Architecture

Subject-Object Index

Object-Subject Index

Predicate
Entry

Predicate
Hash Table

32-bit Subject ID32-bit ObjectID
64-bit Index Entry

Locale Predicate Hash Partition

Chriple: Distributed Queries

1 … N

QN…Q1

Qtop

Predicate
Partitions
(locales)

Partition
Queries

Top-level Query In-memory
partition holds results
from partition queries.

Chriple: Current Results

• Memory requirements

• ~16 bytes per triple

• 2B triples require ~64GB RAM across cluster

• Performance (8 x EC2 m4.2xlarge [8 vCPU 32GB RAM])

• 1.1M inserts / s (~137K / locale)

• 40K reads / s [via parallel iterator] (~5K / locale)

AllegroGraph Benchmark

http://franz.com/agraph/allegrograph/agraph_benchmarks.lhtml

http://franz.com/agraph/allegrograph/agraph_benchmarks.lhtml

Conclusion
• Work in progress

• Many opportunities for optimization

• Useful for generating data and experimentation

• Code is available on Github

• https://github.com/briangu/chord

• https://github.com/briangu/chriple

https://github.com/briangu/chord
https://github.com/briangu/chriple

