Using Chapel for Natural
. anguage Processing
And Interaction

Brian Guarraci
CTO @ Cricket Health

Votivation

 Augment chat bot Human-created rulesets with data

o ChatScript provides a powerful rule engine, but
making Human-created rules is unscalable and limited

 Use Chapel as a power-tool to create datasets which
can be plugged into ChatScript engine

e Focus on two main types of custom datasets
* Chord: Use word2vec for language support

e Chriple: Use RDF triple stores for knowledge

Chord: Chapel + Word2Vec

 Word embeddings are vectors computed with a Neural
Network Language Model (NNLM)

* Each word vector characterizes the associated word In
relation to training data and other words in the vocabulary

* Vectors have interesting and useful NLP features
* King - Man + Woman = Queen

e Jokyo - Japan + France = Paris

* Replace Human-derived rules for certain NLP tasks

Chord: Path to Distributed

* First: Port Google’s single-locale classic word2vec and validate
* Second: Port classic model to a multi-locale model

* Maintain single-locale performance in multi-locale version

* Preserve Asynchronous SGD (race conditions by design)

* Encapsulate globals to ensure locale-local only access

* Experiment with dmapped and other distributed memory
strategies to find a fast method for cross machine data
sharing

Chord: Path to Distributed

e Distributed models require periodic model sharing across
locales

« Nalve dmapped approach is very slow due to model specific
behavior yielding excessive cross-machine data transfers

* Use a variant of Google’s Downpour SGD

 Reserve some locales as “parameter locales™ and others
as compute locales which train on data shards

 Each compute locale diverges with it's training data and
updates the parameter locales after each training iteration

* Use AdaGrad to perform model updates on param locales

Chord: Architecture
e 11

ZEETI

Computs

AN

Data Shards 1 K

Locales are partitioned into param and compute roles

Chord: Single vs Multi-Locale

Training Speed Model Accuracy

1 1400

90

1050 67.5

700 45

Seconds
Percent Correct

350 22.5

0 S
2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lterations

Multi-Locale Single-Locale

lterations

Multi-Locale Single-Locale

Multi-Locale version > 3x faster with similar accuracy (eventually).

Multi-locale configuration:

* 8 locales: single parameter locale with seven compute locales
* Machine type: EC2 m4.2xlarge (8 vCPU 16GB RAM)

Chriple: Chapel + Triple Store

* Keep it simple to learn what's useful

* Naive implementation inspired by TripleBit
 Reasonably memory efficient
* Predicate-based hash partitions on locales

« CHASM (from Chearch) stack-based integer query language
e Supports essential distributed query primitives (AND/OR)

e Supports sub-graph extraction

Chriple: Architecture

Predicate
Entry
— Subject-Object Index
—>
— Object-Subject Index
o04-bit Index Entry
32-bit ObjectID|32-bit Subject ID
Predicate
Hash Table

Locale Predicate Hash Partition

Chriple: Distributed Queries

Top-level Query In-memory

.+ partition holds results
from partition queries.

Part|t|on
Queries

Predicate
Partitions
(locales)

Chriple: Current Results

* Memory requirements
* ~16 bytes per triple
* 2B triples require ~64GB RAM across cluster

* Performance (8 x EC2 m4.2xlarge [8 vCPU 32GB RAM])
* 1.1M inserts /s (~137K / locale)

* 40K reads /s [via parallel iterator] (~5K / locale)

AllegroGraph Benchmark

LUBM(8000)* 1.106 Billion 36min, 49 sec 500,679
LUBM(8000)**** 1.106 Billion 48min, 30 sec 379,947
LUBM(160,000)* 22.12 Billion 12 hrs, 18m, 16s 499,188

AllegroGraph Pre- 310.269 78 hrs, 9m, 23s 1,102,737
release** Billion

AllegroGraph Pre- 1.009 338 hrs, 5m 829,556
release*** Trillion

http://franz.com/agraph/allegrograph/agraph _benchmarks.lhtml

http://franz.com/agraph/allegrograph/agraph_benchmarks.lhtml

Conclusion

 Work Iin progress

 Many opportunities for optimization

» Useful for generating data and experimentation
* Code is available on Github

 https://github.com/briangu/chord

 https://github.com/briangu/chriple

https://github.com/briangu/chord
https://github.com/briangu/chriple

