
C O M P U T E | S T O R E | A N A L Y Z E

Michael Ferguson, Ben Albrecht
Cray Inc,
CHIUW

May 27, 2016

Social Network Analysis on Twitter with
Chapel

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

This presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements may
include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

 Safe Harbor Statement

 2

C O M P U T E | S T O R E | A N A L Y Z E

Talk Outline

 3

● Introduce the label propagation benchmark
● Describe a Chapel version
● Show one part of the benchmark and improvements to it
● Compare with the Spark version (*)

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

Processing Tweets: Background

 4

Twitter: an online social networking service that enables users to
send and read short 140-character messages called "tweets" --
Wikipedia
● tweets support mentioning other users via @username

Benchmark: Label Propagation for Community Detection
● A form of data analytics - a hot topic in big data
● Identifies communities of users
● Useful for advertising or bot detection

● see CUG’15 paper: Implementing a social-network analytics pipeline
using Spark on Urika XA

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

● Computation consists of these steps:
● Read in gzip files storing JSON-encoded tweets
● Find pairs of Twitter users that @mention each other
● Construct a graph from such users
● Run a label propagation algorithm on that graph
● Output the community structure resulting from label propagation

Processing Tweets: Computation Steps

 5

Community 1 Community 2

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

● Computation consists of these steps:
● Read in gzip files storing JSON-encoded tweets
● Find pairs of Twitter users that @mention each other
● Construct a graph from such users
● Run a label propagation algorithm on that graph
● Output the community structure resulting from label propagation

Processing Tweets: Computation Steps

 6

Community 1 Community 2

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

Processing Tweets: First Part

 7

● Files are processed in a forall loop
● Reads file using gunzip via the new Spawn module

● Uses new functionality for parsing JSON
● concept: use types and I/O that ignore irrelevant fields

● Constructs distributed associative domain to find mutual
mentions

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

First Part Kernel

 8

var Pairs: domain((int, int)) dmapped new UserMapAssoc(...);

forall logfile in distributedFiles() {
 while logfile.readf("%~jt", tweet) {
 var id = tweet.user.id;
 for mentions in tweet.entities.user_mentions {
 var other_id = mentions.id;
 if max_id < other_id then max_id = other_id;
 // Add (id, other_id) to Pairs,
 // but leave out self-mentions
 if id != other_id {
 Pairs += (id, other_id);
 }
 }
 }
}

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

First Part Kernel

 9

var Pairs: domain((int, int)) dmapped new UserMapAssoc(...);

forall logfile in distributedFiles() {
 while logfile.readf("%~jt", tweet) {
 var id = tweet.user.id;
 for mentions in tweet.entities.user_mentions {
 var other_id = mentions.id;
 if max_id < other_id then max_id = other_id;
 // Add (id, other_id) to Pairs,
 // but leave out self-mentions
 if id != other_id {
 Pairs += (id, other_id);
 }
 }
 }
}

C O M P U T E | S T O R E | A N A L Y Z E

First Part Scalability

 10

K
ilo

-tw
ee

ts
/s

ec

0

450

900

1350

1800

nodes

0 4 8 12 16

Parse Only
Parse+Set Build

384 files, gasnet, fifo, gnu, XC30 24 cores/locale, fe29555c

C O M P U T E | S T O R E | A N A L Y Z E
 11

Pairs

id1

Get Slot
Add

Unlock

Task
Resumes

Task
Blocked

Lock

Steps in Set Addition
Pairs += (id1, other1);

Find owner

on

C O M P U T E | S T O R E | A N A L Y Z E
 12

Pairs

id1

Get Slot
Add

Unlock

Task
Resumes

Task
Blocked

Lock

Steps in Set Addition
Pairs += (id1, other1);

Find owner

on

● Inefficient communication: small messages
● Inefficient processing: blocking

C O M P U T E | S T O R E | A N A L Y Z E

Operations Buffer Makes this Code Faster

 13

 Pairs += (id1, other1);
 Pairs += (id2, other2);
 Pairs += (id3, other3);
 ...

requestor
task

locale 4

(id1,other1)

(id2,other2)

(id3,other3)

(id1,other1)
(id2,other2)
(id3,other3)

ops
buffer in
cache

C O M P U T E | S T O R E | A N A L Y Z E

Operations Buffer Makes this Code Faster

 14

 Pairs += (id1, other1);
 Pairs += (id2, other2);
 Pairs += (id3, other3);
 ...

requestor
task

locale 4

on body task
on locale 2

ops
buffer in
cache

flush updates

(id1,other1)

(id2,other2)
(id3,other3)

on body task
on locale 1

Similar to PUT support in cache
Provides Aggregation and Overlap

C O M P U T E | S T O R E | A N A L Y Z E

First Part Scalability with Operations Buffer

 15

K
ilo

-tw
ee

ts
/s

0

450

900

1350

1800

nodes

0 4 8 12 16

Parse Only
Parse+Set Build
Parse+Set+Ops Buffer

C O M P U T E | S T O R E | A N A L Y Z E

Bulk Addition is a Manual Alternative

 16

 localPairs.push_back((id1, other1));
 localPairs.push_back((id2, other2));
 localPairs.push_back((id3, other3));
 ...
 sort(localPairs, byDestination());
 Pairs += localPairs;

requestor
task

locale 4

(id1,other1)

(id2,other2)

(id3,other3)

(id1,other1)
(id2,other2)
(id3,other3)

localPairs

C O M P U T E | S T O R E | A N A L Y Z E

Bulk Addition is a Manual Alternative

 17

 localPairs.push_back((id1, other1));
 localPairs.push_back((id2, other2));
 localPairs.push_back((id3, other3));
 ...
 sort(localPairs, byDestination());
 Pairs += localPairs;

requestor
task

locale 4

(id1,other1)
(id2,other2)
(id3,other3)

on body task
on locale 2

localPairs

(id1,other1)

(id2,other2)
(id3,other3)

on body task
on locale 1

Provides Aggregation only

C O M P U T E | S T O R E | A N A L Y Z E

First Part Scalability + Manual Aggregation

 18

K
ilo

-tw
ee

ts
/s

0

450

900

1350

1800

nodes

0 4 8 12 16

Parse Only
Parse+Set Build
Parse+Local Arr+Bulk Add

C O M P U T E | S T O R E | A N A L Y Z E

First Part Scalability: Combining Approaches

 19

K
ilo

-tw
ee

ts
/s

0

450

900

1350

1800

nodes

0 4 8 12 16

Parse Only
Parse+Set Build
Parse+Set Build+Ops Buffer
Parse+Local Arr+Bulk Add+Ops Buffer
Parse+Local Arr+Bulk Add

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

Processing Tweets: Productivity Comparison

 20

● RDDs are immutable

● Algorithm written in terms of
mapping a fn on data

● Chapel arrays are mutable

● Algorithm written in terms
of parallel loops

Spark Chapel

C O M P U T E | S T O R E | A N A L Y Z E

First Part: Chapel vs Spark*

 21

M
eg

a-
tw

ee
ts

 /
da

y

0

25000

50000

75000

100000

nodes

0 8 16 24 32

Chapel Spark

* Lots of caveats. Chapel and Spark implementations are not necessarily optimal. Computing mutual mentions only.
420 files, XC30 36-cores/locale, Chapel version used gasnet, fifo, gnu, fe29555c. Spark 1.5.2

C O M P U T E | S T O R E | A N A L Y Z E

Previous Research on Spark Scalability:
k Nearest Neighbors

 22

k Nearest Neighbors with k=1

M
eg

a-
sa

m
pl

es
/s

ec

0

1.25

2.5

3.75

5

nodes

0 5 10 15 20

CAF/MPI/OpenMP
Spark

Data from experiments reported in Reyes-Ortiz, Oneto, Anguita. Big Data Analytics in the
Cloud: Spark on Hadoop vs MPI/OpenMP on Beowulf

k Nearest Neighbors with k=100

0

0.3

0.6

0.9

1.2

nodes

0 5 10 15 20

CAF/MPI/OpenMP
Spark

C O M P U T E | S T O R E | A N A L Y Z E

Concluding

 23

● We improved scalability for distributed domain +=

● Chapel performance compared favorably with Spark

● We think Chapel has a compelling future in data analytics

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

Legal Disclaimer

 24

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any
intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without
notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product
to deviate from published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release.
Customers and other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing
and any use of Cray Inc. internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate
performance of Cray Inc. products as measured by those tests. Any difference in system hardware or software design or
configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design,
SONEXION, and URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER
CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system
family marks, and associated model number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The
registered trademark LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of
the mark on a worldwide basis. Other trademarks used in this document are the property of their respective owners.

http://github.com/chapel-lang/chapel/http://chapel.cray.com chapel_info@cray.com

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

Backup Slides

 26

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

Processing Tweets: Motivation

 27

Motivating Question: Is Chapel useful for Data Analytics?
● What would it look like?
● What features are we missing?

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

Processing Tweets: Label Propagation

 28

Label Propagation Algorithm
(described in Near linear time algorithm to detect community structures in
large-scale networks)

1. Initialize the labels at all nodes in the network.
2. Set i = 1.
3. Arrange the nodes in the network in a random order and set it to X.
4. For each x in X, set node x’s label to the one that occurs most

frequently among neighbors, with ties broken uniformly randomly.
5. If every node has a label that the maximum number of neighbors

have, stop the algorithm. Otherwise, set i = i + 1 and go to step 3.

http://arxiv.org/pdf/0709.2938.pdf
http://arxiv.org/pdf/0709.2938.pdf

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

Processing Tweets: Implementation Overview

 29

● First version < 400 lines of Chapel code
● plus a Graph module (< 300 lines, to become a standard module)

● current version is partly multi-locale
● graph representation similar to other Chapel graph codes

● e.g., SSCA#2

● I/O is different

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

Processing Tweets: Algorithm in Chapel

 30

Algorithm closely matches the psuedocode:
var i = 0;
var go: atomic bool;
go.write(true);
while go.read(…) && i < maxiter {
 go.write(false);
 // for each x in the randomized order
 forall vid in reordered_vertices {
 // set the label to the most frequent among neigbors
 mylabel = labels[vid].read(memory_order_relaxed);
 maxlabel = mostCommonLabelInNeighbors(vid);
 if countNeighborsWith(vid, mylabel) <
 countNeighborsWith(vid, maxlabel) then
 go.write(true); // stop the algorithm if …
 labels[vid].write(maxlabel, memory_order_relaxed);
 }
 i += 1;
}

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

Sidebar on I/O for Twitter Processing in Chapel

 31

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

Example Tweet in JSON format

 32

{ "coordinates": null, "created_at": "Fri Oct 16 16:00:00 +0000 2015", "favorited": false, "truncated": false, "id_str": "28031452151", "entities":
{ "urls": [{ "expanded_url": null, "url": "http://chapel.cray.com", "indices": [69, 100] }], "hashtags": [], "user_mentions": [{ "name": "Cray
Inc.", "id_str": "23424245", "id": 23424245, "indices": [25, 30], "screen_name": "cray" }] }, "in_reply_to_user_id_str": null, "text": "Let's
mention the user @cray -- here is an embedded url http://chapel.cray.com", "contributors": null, "id": 28039652140, "retweet_count":
null, "in_reply_to_status_id_str": null, "geo": null, "retweeted": false, "in_reply_to_user_id": null, "user": { "profile_sidebar_border_color":
"C0DEED", "name": "Cray Inc.", "profile_sidebar_fill_color": "DDEEF6", "profile_background_tile": false, "profile_image_url": "http://
a3.twimg.com/profile_images/2342452/icon_normal.png", "location": "Seattle, WA", "created_at": "Fri Oct 10 23:10:00 +0000 2008", "id_str":
"23502385", "follow_request_sent": false, "profile_link_color": "0084B4", "favourites_count": 1, "url": "http://cray.com",
"contributors_enabled": false, "utc_offset": -25200, "id": 23548250, "profile_use_background_image": true, "listed_count": 23, "protected":
false, "lang": "en", "profile_text_color": "333333", "followers_count": 1000, "time_zone": "Mountain Time (US & Canada)", "verified": false,
"geo_enabled": true, "profile_background_color": "C0DEED", "notifications": false, "description": "Cray Inc", "friends_count": 71,
"profile_background_image_url": "http://s.twimg.com/a/2349257201/images/themes/theme1/bg.png", "statuses_count": 302,
"screen_name": "gnip", "following": false, "show_all_inline_media": false }, "in_reply_to_screen_name": null, "source": "web", "place": null,
"in_reply_to_status_id": null }

● Tweets have 34 top-level fields
● including nested structures containing much more data

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

Reading JSON Tweets

 33

// define Chapel records whose fields reflect only
// the portions of the JSON data we care about

record TweetUser {
 var id: int;
}
record TweetEntities {
 var user_mentions: list(TweetUser);
}
record User {
 var id: int;
}
record Tweet {
 var id: int,
 user: User,
 entities: TweetEntities;
}

proc process_json(…) {
 var tweet: Tweet;

 while true {
 // “%~jt” format string:
 // j: JSON format
 // t: any record
 // ~: skip other fields
 got = logfile.readf("%~jt",
 tweet,
 error=err);
 if got && !err then
 handle_tweet(tweet);
 if err == EFORMAT then ...;
 if err == EEOF then break;
}

C O M P U T E | S T O R E | A N A L Y Z E

Set Addition is Blocking

 34

 Pairs += (id1, other1);
 Pairs += (id2, other2);
 Pairs += (id3, other3);
 ...

requestor
task

locale 4

on-body task
locale 1

Add (id1,other1)

Done

on-body task
locale 2

Add (id2,other2)

Done
Add (id3,other3)
Done

C O M P U T E | S T O R E | A N A L Y Z E

First Part Scalability + Operations + Manual

 35

K
 tw

ee
ts

/s

0

450

900

1350

1800

nodes

0 4 8 12 16

Parse Only
Parse+Set Build+Ops
Parse+Local Arr+Ops
Parse+Local Arr+Bulk Add+Ops

C O M P U T E | S T O R E | A N A L Y Z E
Copyright 2015 Cray Inc.

Processing Tweets: Productivity Comparison

 36

● RDDs are immutable
● create new RDD every

iteration through algorithm

● Algorithm written in terms of
mapping a fn on data
● difficult to visit vertices in

random order
● movement of information is

described as messages
contributing to a new RDD

● breaking ties randomly might
require a custom operator

● Chapel arrays are mutable
● Algorithm can update labels in-

place

● Algorithm written in terms
of parallel loops
● straightforward to visit vertices

in random order
● movement of information

occurs through variable reads
and writes

● breaking ties randomly is an
easy change

Spark Chapel

These differences reflect Spark’s declarative nature vs. Chapel’s imperative design.

