
C O M P U T E | S T O R E | A N A L Y Z E

Chapel Boot Camp
(everything you need to know about Chapel for CHIUW 2016*)

* that I can cram into 30 minutes

Brad Chamberlain
Chapel Team, Cray Inc.

May 27, 2016

C O M P U T E | S T O R E | A N A L Y Z E

This presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

Safe Harbor Statement

Copyright 2016 Cray Inc.
2

C O M P U T E | S T O R E | A N A L Y Z E

Motivation for Chapel

3

Q: Why doesn’t HPC programming have an equivalent to
Python / Matlab / Java / C++ / (your favorite programming language here) ?
● one that makes it easy to get programs up and running quickly
● one that is portable across system architectures and scales
● one that bridges the HPC, data analysis, and mainstream communities

A: We believe this is due not to any particular technical
challenge, but rather a lack of sufficient…
…long-term efforts
…resources
…community will
…co-design between developers and users
…patience

Chapel is our attempt to reverse this trend!

Copyright 2016 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

What is Chapel?

4

Chapel: An emerging parallel programming language
● portable
● open-source
● a collaborative effort
● a work-in-progress

Goals:
● Support general parallel programming

● “any parallel algorithm on any parallel hardware”
● Make parallel programming far more productive

Copyright 2016 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

What does “Productivity” mean to you?

Copyright 2016 Cray Inc.
5

Recent Graduates:
“something similar to what I used in school: Python, Matlab, Java, …”

Seasoned HPC Programmers:
“that sugary stuff that I don’t need because I was born to suffer”

Computational Scientists:
“something that lets me express my parallel computations
without having to wrestle with architecture-specific details”

Chapel Team:
“something that lets computational scientists express what they want,
without taking away the control that HPC programmers want,
implemented in a language as attractive as recent graduates want.”

want full control
to ensure performance”

C O M P U T E | S T O R E | A N A L Y Z E

Chapel is Portable

Copyright 2016 Cray Inc.
6

● Chapel is designed to be hardware-independent

● The current release requires:
● a C/C++ compiler
● a *NIX environment (Linux, OS X, BSD, Cygwin, …)
● POSIX threads
● RDMA, MPI, or UDP (for distributed memory execution)

● Chapel can run on…
…laptops and workstations
…commodity clusters
…the cloud
…HPC systems from Cray and other vendors
…modern processors like Intel Xeon Phi, GPUs*, etc.

* = academic work only; not yet supported in the official release

C O M P U T E | S T O R E | A N A L Y Z E

Chapel is Open-Source

Copyright 2016 Cray Inc.
7

● Chapel’s development is hosted at GitHub
● https://github.com/chapel-lang

● Chapel is licensed as Apache v2.0 software

● Instructions for download + install are online
● see http://chapel.cray.com/download.html to get started

C O M P U T E | S T O R E | A N A L Y Z E

The Chapel Team at Cray (May 2016)

Copyright 2016 Cray Inc.
8

14 full-time employees + 2 summer interns
(one of each started after photo taken)

C O M P U T E | S T O R E | A N A L Y Z E

Chapel Community R&D Efforts

Copyright 2016 Cray Inc.
9

http://chapel.cray.com/collaborations.html

(and several others, some of whom you will hear from today…)

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2016 Cray Inc.
10

üChapel Motivation and Background
ØChapel in a Nutshell
● Chapel Project: Past, Present, Future
● Chapel Resources

C O M P U T E | S T O R E | A N A L Y Z E
11

Multiresolution Design: Support multiple tiers of features
● higher levels for programmability, productivity
● lower levels for greater degrees of control

● build the higher-level concepts in terms of the lower
● permit the user to intermix layers arbitrarily

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target Machine

Locality Control

Chapel language concepts

Copyright 2016 Cray Inc.

Chapel’s Multiresolution Philosophy

C O M P U T E | S T O R E | A N A L Y Z E
12

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target Machine

Locality Control

Chapel language concepts

Copyright 2016 Cray Inc.

Lower-Level Features

Lower-level Chapel

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features, by example

13

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2016 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features, by example

14

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2016 Cray Inc.

CLU-style iteratorsCLU-style iterators

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features, by example

15

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2016 Cray Inc.

range types and
operators

built-in range types
and operators

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features, by example

16

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2016 Cray Inc.

zippered iteration

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features, by example

17

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2016 Cray Inc.

tuples

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features, by example

18

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2016 Cray Inc.

Static Type Inference for:
• arguments
• return types
• variables

Static Type Inference for:
• arguments
• return types
• variables

Static Type Inference for:
• arguments
• return types
• variables

Static Type Inference for:
• arguments
• return types
• variables

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features, by example

19

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2016 Cray Inc.

swap operator

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features, by example

20

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

Copyright 2016 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism, Locality Control, by example

Copyright 2016 Cray Inc.
21

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef("Hello from task %n of %n "+

"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism, Locality Control, by example

Copyright 2016 Cray Inc.
22

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef("Hello from task %n of %n "+

"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

High-Level
Task	Parallelism

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism, Locality Control, by example

Copyright 2016 Cray Inc.
23

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef("Hello from task %n of %n "+

"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

Abstraction	of
System	Resources

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism, Locality Control, by example

Copyright 2016 Cray Inc.
24

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef("Hello from task %n of %n "+

"running on %s\n",

tid, numTasks, here.name);
}

Control	of	Locality/Affinity

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism, Locality Control, by example

Copyright 2016 Cray Inc.
25

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef("Hello from task %n of %n "+

"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

Abstraction	of
System	Resources

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism, Locality Control, by example

Copyright 2016 Cray Inc.
26

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef("Hello from task %n of %n "+

"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

High-Level
Task	Parallelism

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism, Locality Control, by example

Copyright 2016 Cray Inc.
27

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef("Hello from task %n of %n "+

"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

Not	seen	here:

Data-centric	task	coordination
via	atomic	and	full/empty	 vars

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism, Locality Control, by example

Copyright 2016 Cray Inc.
28

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do
writef("Hello from task %n of %n "+

"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

C O M P U T E | S T O R E | A N A L Y Z E

Parallelism and Locality: Orthogonal in Chapel

Copyright 2016 Cray Inc.
29

● This is a parallel, but local program:

● This is a distributed, but serial program:

● This is a distributedparallel program:

writeln(“Hello from locale 0!”);
on Locales[1] do writeln(“Hello from locale 1!”);
on Locales[2] do writeln(“Hello from locale 2!”);

coforall i in 1..msgs do
writeln(“Hello from task ”, i);

coforall i in 1..msgs do
on Locales[i%numLocales] do

writeln(“Hello from task ”, i,
“ running on locale ”, here.id);

C O M P U T E | S T O R E | A N A L Y Z E
30

Task Parallelism
Base Language

Target Machine

Locality Control

Chapel language concepts

Copyright 2016 Cray Inc.

Higher-Level Features

Higher-level Chapel
Domain Maps

Data Parallelism

C O M P U T E | S T O R E | A N A L Y Z E

Data Parallelism, by example

Copyright 2016 Cray Inc.
31

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

C O M P U T E | S T O R E | A N A L Y Z E

Data Parallelism, by example

Copyright 2016 Cray Inc.
32

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chplDomains	(Index	Sets)

C O M P U T E | S T O R E | A N A L Y Z E

Data Parallelism, by example

Copyright 2016 Cray Inc.
33

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

Arrays

C O M P U T E | S T O R E | A N A L Y Z E

Data Parallelism, by example

Copyright 2016 Cray Inc.
34

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

Data-Parallel	Forall	Loops

C O M P U T E | S T O R E | A N A L Y Z E

Distributed Data Parallelism, by example

Copyright 2016 Cray Inc.
35

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;

var D = {1..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

Domain	Maps	
(Map	Data Parallelism	to	the	System)

C O M P U T E | S T O R E | A N A L Y Z E

Distributed Data Parallelism, by example

Copyright 2016 Cray Inc.
36

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;

var D = {1..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2016 Cray Inc.
37

üChapel Motivation and Background
üChapel in a Nutshell
ØChapel Project: Past, Present, Future
● Chapel Resources

C O M P U T E | S T O R E | A N A L Y Z E

Chapel’s Origins: HPCS

Copyright 2016 Cray Inc.
38

DARPA HPCS: High Productivity Computing Systems
● Goal: improve productivity by a factor of 10x
● Timeframe: Summer 2002 – Fall 2012
● Cray developed a new system architecture, network, software stack…

● this became the very successful Cray XC30™ Supercomputer Series

…and a new programming language: Chapel

C O M P U T E | S T O R E | A N A L Y Z E

Chapel under HPCS: Major Successes

Copyright 2016 Cray Inc.
39

Clean, general parallel language design
● unified data-, task-, concurrent-, nested-parallelism
● distinct concepts for parallelism and locality
● multiresolution language design philosophy

SSCA#2 demonstration on the prototype Cray XC30
● unstructured graph-based compact application
● clean separation of computation from data structure choices
● fine-grain latency-hiding runtime
● use of Cray XC30™ network AMOs via Chapel’s ‘atomic’ types
● ran stably on full-scale demo system for significant length of time

Portable design and implementation
● while still being able to take advantage of Cray-specific features

Revitalization of Community Interest in Parallel Languages
● HPF-disenchantment became interest, cautious optimism, enthusiasm

C O M P U T E | S T O R E | A N A L Y Z E

Chapel under HPCS: Shortcomings

40

Performance was hit-or-miss (and mostly “miss” at scale)
● a litmus test for the HPC community

Focused on a narrow set of benchmarks (mostly SSCA#2)
● several key idioms and language features were neglected

Contract milestones were set too far in advance
● unable to respond effectively to needs of real users
● changes required contract renegotiations

Insufficient focus on emerging node architectures
● unable to effectively leverage NUMA nodes, GPUs

Didn’t get over the tipping point of adoption
● but, we got far enough to make it to the next level…

Copyright 2013 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Chapel’s 5-year push

Copyright 2016 Cray Inc.
41

● Based on positive user response to Chapel under HPCS,
Cray undertook a five-year effort to improve it
● we’ve just completed our third year

● Focus Areas:
1. Improving performance and scaling
2. Fixing immature aspects of the language and implementation

● e.g., strings, memory management, error handling, …
3. Porting to emerging architectures

● Intel Xeon Phi, accelerators, heterogeneous processors and memories, …
4. Improving interoperability
5. Growing the Chapel user and developer community

● including non-scientific computing communities
6. Exploring transition of Chapel governance to a neutral, external body

C O M P U T E | S T O R E | A N A L Y Z E

Chapel is a Work-in-Progress

Copyright 2016 Cray Inc.
42

● Currently being picked up by early adopters
● Users who try it generally like what they see
● Last two releases got ~3500 downloads total in a year

● Most current features are functional and working well
● some areas need improvements, particularly object-oriented features

● Performance is improving, but remains hit-or-miss
● shared memory performance is often competitive with C+OpenMP
● distributed memory performance continues to need more work

● We are actively working to address these lacks

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2016 Cray Inc.
43

üChapel Motivation and Background
üChapel in a Nutshell
üChapel Project: Past, Present, Future
ØChapel Resources

C O M P U T E | S T O R E | A N A L Y Z E

Chapel Websites

44

Project page: http://chapel.cray.com
● overview, papers, presentations, language spec, …

GitHub: https://github.com/chapel-lang
● download Chapel; browse source repository; contribute code

Facebook: https://www.facebook.com/ChapelLanguage

Twitter: https://twitter.com/ChapelLanguage

Copyright 2016 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Suggested Reading

45

Chapel chapter from Programming Models for Parallel Computing
● a detailed overview of Chapel’s history, motivating themes, features
● edited by Pavan Balaji, published by MIT Press, November 2015
● chapter is now also available online

Other Chapel papers/publications available at http://chapel.cray.com/papers.html

Copyright 2016 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Chapel Blog Articles

46

Chapel: Productive Parallel Programming, Cray Blog, May 2013.
● a short-and-sweet introduction to Chapel

Chapel Springs into a Summer of Code, Cray Blog, April 2016.
● a run-down of some current events

Six Ways to Say “Hello” in Chapel (parts 1, 2, 3), Cray Blog, Sep-Oct 2015.
● a series of articles illustrating the basics of parallelism and locality in Chapel

Why Chapel? (parts 1, 2, 3), Cray Blog, Jun-Oct 2014.
● a series of articles answering common questions about why we are pursuing

Chapel in spite of the inherent challenges

[Ten] Myths About Scalable Programming Languages, IEEE TCSC Blog
(index available on chapel.cray.com “blog articles” page), Apr-Nov 2012.

● a series of technical opinion pieces designed to argue against standard
reasons given for not developing high-level parallel languages

Copyright 2016 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Chapel Mailing Lists

47

low-traffic (read-only):
chapel-announce@lists.sourceforge.net: announcements about Chapel

community lists:
chapel-users@lists.sourceforge.net: user-oriented discussion list
chapel-developers@lists.sourceforge.net: developer discussions
chapel-education@lists.sourceforge.net: educator discussions
chapel-bugs@lists.sourceforge.net: public bug forum

(subscribe at SourceForge: http://sourceforge.net/p/chapel/mailman/)

To contact the Cray team:
chapel_info@cray.com: contact the team at Cray
chapel_bugs@cray.com: for reporting non-public bugs

Copyright 2016 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Questions about Chapel?

Copyright 2016 Cray Inc.
48

C O M P U T E | S T O R E | A N A L Y Z E

Legal Disclaimer

Copyright 2016 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2,
CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE,
THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

49

